vectori sampleDisc(const vectorf &weights, const uint num) { vectori inds(num, 0); int maxind = (int) weights.size() - 1; // normalize weights vectorf nw(weights.size()); nw[0] = weights[0]; for (uint k = 1; k < weights.size(); k++) nw[k] = nw[k - 1] + weights[k]; // get uniform random numbers static vectorf r; r = randfloatvec(num); //#pragma omp parallel for for (int k = 0; k < (int) num; k++) for (uint j = 0; j < weights.size(); j++) { if (r[k] > nw[j] && inds[k] < maxind) inds[k]++; else break; } return inds; }
void EdgeBoxGenerator::clusterEdges( arrayf &E, arrayf &O, arrayf &V ) { int c, r, cd, rd, i, j; h=E._h; w=E._w; // greedily merge connected edge pixels into clusters (create _segIds) _segIds.init(h,w); _segCnt=1; for( c=0; c<w; c++ ) for( r=0; r<h; r++ ) { if( c==0 || r==0 || c==w-1 || r==h-1 || E.val(c,r)<=_edgeMinMag ) _segIds.val(c,r)=-1; else _segIds.val(c,r)=0; } for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) { if(_segIds.val(c,r)!=0) continue; float sumv=0; int c0=c, r0=r; vectorf vs; vectori cs, rs; while( sumv < _edgeMergeThr ) { _segIds.val(c0,r0)=_segCnt; float o0 = O.val(c0,r0), o1, v; bool found; for( cd=-1; cd<=1; cd++ ) for( rd=-1; rd<=1; rd++ ) { if( _segIds.val(c0+cd,r0+rd)!=0 ) continue; found=false; for( i=0; i<cs.size(); i++ ) if( cs[i]==c0+cd && rs[i]==r0+rd ) { found=true; break; } if( found ) continue; o1=O.val(c0+cd,r0+rd); v=fabs(o1-o0)/PI; if(v>.5) v=1-v; vs.push_back(v); cs.push_back(c0+cd); rs.push_back(r0+rd); } float minv=1000; j=0; for( i=0; i<vs.size(); i++ ) if( vs[i]<minv ) { minv=vs[i]; c0=cs[i]; r0=rs[i]; j=i; } sumv+=minv; if(minv<1000) vs[j]=1000; } _segCnt++; } // merge or remove small segments _segMag.resize(_segCnt,0); for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) if( (j=_segIds.val(c,r))>0 ) _segMag[j]+=E.val(c,r); for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) if( (j=_segIds.val(c,r))>0 && _segMag[j]<=_clusterMinMag) _segIds.val(c,r)=0; i=1; while(i>0) { i=0; for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) { if( _segIds.val(c,r)!=0 ) continue; float o0=O.val(c,r), o1, v, minv=1000; j=0; for( cd=-1; cd<=1; cd++ ) for( rd=-1; rd<=1; rd++ ) { if( _segIds.val(c+cd,r+rd)<=0 ) continue; o1=O.val(c+cd,r+rd); v=fabs(o1-o0)/PI; if(v>.5) v=1-v; if( v<minv ) { minv=v; j=_segIds.val(c+cd,r+rd); } } _segIds.val(c,r)=j; if(j>0) i++; } } // compactify representation _segMag.assign(_segCnt,0); vectori map(_segCnt,0); _segCnt=1; for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) if( (j=_segIds.val(c,r))>0 ) _segMag[j]+=E.val(c,r); for( i=0; i<_segMag.size(); i++ ) if( _segMag[i]>0 ) map[i]=_segCnt++; for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) if( (j=_segIds.val(c,r))>0 ) _segIds.val(c,r)=map[j]; // compute positional means and recompute _segMag _segMag.assign(_segCnt,0); vectorf meanX(_segCnt,0), meanY(_segCnt,0); vectorf meanOx(_segCnt,0), meanOy(_segCnt,0), meanO(_segCnt,0); for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) { j=_segIds.val(c,r); if(j<=0) continue; float m=E.val(c,r), o=O.val(c,r); _segMag[j]+=m; meanOx[j]+=m*cos(2*o); meanOy[j]+=m*sin(2*o); meanX[j]+=m*c; meanY[j]+=m*r; } for( i=0; i<_segCnt; i++ ) if( _segMag[i]>0 ) { float m=_segMag[i]; meanX[i]/=m; meanY[i]/=m; meanO[i]=atan2(meanOy[i]/m,meanOx[i]/m)/2; } // compute segment affinities _segAff.resize(_segCnt); _segAffIdx.resize(_segCnt); for(i=0; i<_segCnt; i++) _segAff[i].resize(0); for(i=0; i<_segCnt; i++) _segAffIdx[i].resize(0); const int rad = 2; for( c=rad; c<w-rad; c++ ) for( r=rad; r<h-rad; r++ ) { int s0=_segIds.val(c,r); if( s0<=0 ) continue; for( cd=-rad; cd<=rad; cd++ ) for( rd=-rad; rd<=rad; rd++ ) { int s1=_segIds.val(c+cd,r+rd); if(s1<=s0) continue; bool found = false; for(i=0;i<_segAffIdx[s0].size();i++) if(_segAffIdx[s0][i] == s1) { found=true; break; } if( found ) continue; float o=atan2(meanY[s0]-meanY[s1],meanX[s0]-meanX[s1])+PI/2; float a=fabs(cos(meanO[s0]-o)*cos(meanO[s1]-o)); a=pow(a,_gamma); _segAff[s0].push_back(a); _segAffIdx[s0].push_back(s1); _segAff[s1].push_back(a); _segAffIdx[s1].push_back(s0); } } // compute _segC and _segR _segC.resize(_segCnt); _segR.resize(_segCnt); for( c=1; c<w-1; c++ ) for( r=1; r<h-1; r++ ) if( (j=_segIds.val(c,r))>0 ) { _segC[j]=c; _segR[j]=r; } // optionally create visualization (assume memory initialized is 3*w*h) if( V._x ) for( c=0; c<w; c++ ) for( r=0; r<h; r++ ) { i=_segIds.val(c,r); V.val(c+w*0,r) = i<=0 ? 1 : ((123*i + 128)%255)/255.0f; V.val(c+w*1,r) = i<=0 ? 1 : ((7*i + 3)%255)/255.0f; V.val(c+w*2,r) = i<=0 ? 1 : ((174*i + 80)%255)/255.0f; } }
void DynamicProgram<T>::argmin(Parts& parts, const vector2DMat& rootv, const vector2DMat& rooti, const vectorf scales, const vector4DMat& Ix, const vector4DMat& Iy, const vector4DMat& Ik, vectorCandidate& candidates) { // for each scale, and each component, traverse back down the tree to retrieve the part positions int nscales = scales.size(); #ifdef _OPENMP #pragma omp parallel for #endif for (int n = 0; n < nscales; ++n) { T scale = scales[n]; for (int c = 0; c < parts.ncomponents(); ++c) { // get the scores and indices for this tree of parts const vector2DMat& Iknc = Ik[n][c]; const vector2DMat& Ixnc = Ix[n][c]; const vector2DMat& Iync = Iy[n][c]; int nparts = parts.nparts(c); // threshold the root score Mat over_thresh = rootv[n][c] > thresh_; Mat rootmix = rooti[n][c]; vectorPoint inds; find(over_thresh, inds); for (int i = 0; i < inds.size(); ++i) { Candidate candidate; vectori xv(nparts); vectori yv(nparts); vectori mv(nparts); for (int p = 0; p < nparts; ++p) { ComponentPart part = parts.component(c, p); // calculate the child's points from the parent's points int x, y, m; if (part.isRoot()) { x = xv[0] = inds[i].x; y = yv[0] = inds[i].y; m = mv[0] = rootmix.at<int>(inds[i]); } else { int idx = part.parent().self(); x = xv[idx]; y = yv[idx]; m = mv[idx]; xv[p] = Ixnc[p][m].at<int>(y,x); yv[p] = Iync[p][m].at<int>(y,x); mv[p] = Iknc[p][m].at<int>(y,x); } // calculate the bounding rectangle and add it to the Candidate Point ptwo = Point(2,2); Point pone = Point(1,1); Point xy1 = (Point(xv[p],yv[p])-ptwo)*scale; Point xy2 = xy1 + Point(part.xsize(m), part.ysize(m))*scale - pone; if (part.isRoot()) candidate.addPart(Rect(xy1, xy2), rootv[n][c].at<T>(inds[i])); else candidate.addPart(Rect(xy1, xy2), 0.0); } #ifdef _OPENMP #pragma omp critical(addcandidate) #endif { candidates.push_back(candidate); } } } } }
//! set the root score of the detection void setScore(float confidence) { if (confidence_.size() == 0) confidence_.resize(1); confidence_[0] = confidence; }
//! get the root score of the detection. Using for sorting float score(void) const { return (confidence_.size() > 0) ? confidence_[0] : -std::numeric_limits<double>::infinity(); }