Exemple #1
0
/**
 * Creates the output workspace for this algorithm
 * @param inputWorkspace A parent workspace to initialize from.
 * @return A pointer to the output workspace.
 */
API::MatrixWorkspace_sptr Transpose::createOutputWorkspace(
    API::MatrixWorkspace_const_sptr inputWorkspace) {
  Mantid::API::Axis *yAxis = getVerticalAxis(inputWorkspace);
  const size_t oldNhist = inputWorkspace->getNumberHistograms();
  const auto &inX = inputWorkspace->x(0);
  const size_t oldYlength = inputWorkspace->blocksize();
  const size_t oldVerticalAxislength = yAxis->length();

  // The input Y axis may be binned so the new X data should be too
  size_t newNhist(oldYlength), newXsize(oldVerticalAxislength),
      newYsize(oldNhist);
  MatrixWorkspace_sptr outputWorkspace = inputWorkspace->cloneEmpty();
  outputWorkspace->initialize(newNhist, newXsize, newYsize);
  outputWorkspace->setTitle(inputWorkspace->getTitle());
  outputWorkspace->setComment(inputWorkspace->getComment());
  outputWorkspace->copyExperimentInfoFrom(inputWorkspace.get());
  outputWorkspace->setYUnit(inputWorkspace->YUnit());
  outputWorkspace->setYUnitLabel(inputWorkspace->YUnitLabel());
  outputWorkspace->setDistribution(inputWorkspace->isDistribution());

  // Create a new numeric axis for Y the same length as the old X array
  // Values come from input X
  API::NumericAxis *newYAxis(nullptr);
  if (inputWorkspace->isHistogramData()) {
    newYAxis = new API::BinEdgeAxis(inX.rawData());
  } else {
    newYAxis = new API::NumericAxis(inX.rawData());
  }

  newYAxis->unit() = inputWorkspace->getAxis(0)->unit();
  outputWorkspace->getAxis(0)->unit() = inputWorkspace->getAxis(1)->unit();
  outputWorkspace->replaceAxis(1, newYAxis);
  setProperty("OutputWorkspace", outputWorkspace);
  return outputWorkspace;
}
    /**
     * Create a masking workspace to return.
     *
     * @param inputWS The workspace to initialize from. The instrument is copied from this.
     */
    DataObjects::MaskWorkspace_sptr DetectorDiagnostic::generateEmptyMask(API::MatrixWorkspace_const_sptr inputWS)
    {
      // Create a new workspace for the results, copy from the input to ensure that we copy over the instrument and current masking
      DataObjects::MaskWorkspace_sptr maskWS(new DataObjects::MaskWorkspace());
      maskWS->initialize(inputWS->getNumberHistograms(), 1, 1);
      WorkspaceFactory::Instance().initializeFromParent(inputWS, maskWS, false);
      maskWS->setTitle(inputWS->getTitle());

      return maskWS;
    }
Exemple #3
0
/**
 * Create a masking workspace to return.
 *
 * @param inputWS The workspace to initialize from. The instrument is copied
 *from this.
 */
DataObjects::MaskWorkspace_sptr
DetectorDiagnostic::generateEmptyMask(API::MatrixWorkspace_const_sptr inputWS) {
  // Create a new workspace for the results, copy from the input to ensure that
  // we copy over the instrument and current masking
  auto maskWS =
      create<DataObjects::MaskWorkspace>(*inputWS, HistogramData::Points(1));
  maskWS->setTitle(inputWS->getTitle());

  return std::move(maskWS);
}
Exemple #4
0
    /**
     * Init variables caches
     * @param :: Workspace pointer
     */
    void SofQW2::initCachedValues(API::MatrixWorkspace_const_sptr workspace)
    {
      m_progress->report("Initializing caches");

      // Retrieve the emode & efixed properties
      const std::string emode = getProperty("EMode");
      // Convert back to an integer representation
      m_emode = 0;
      if (emode == "Direct") m_emode=1;
      else if (emode == "Indirect") m_emode = 2;
      m_efixed = getProperty("EFixed");

      // Conversion constant for E->k. k(A^-1) = sqrt(energyToK*E(meV))
      m_EtoK = 8.0*M_PI*M_PI*PhysicalConstants::NeutronMass*PhysicalConstants::meV*1e-20 / 
        (PhysicalConstants::h*PhysicalConstants::h);

      // Get a pointer to the instrument contained in the workspace
      Geometry::Instrument_const_sptr instrument = workspace->getInstrument();
      // Get the distance between the source and the sample (assume in metres)
      Geometry::IObjComponent_const_sptr source = instrument->getSource();
      Geometry::IObjComponent_const_sptr sample = instrument->getSample();
      m_samplePos = sample->getPos();
      m_beamDir = m_samplePos - source->getPos();
      m_beamDir.normalize();
      // Is the instrument set up correctly
      double l1(0.0);
      try
      {
        l1 = source->getDistance(*sample);
        g_log.debug() << "Source-sample distance: " << l1 << std::endl;
      }
      catch (Exception::NotFoundError &)
      {
        throw Exception::InstrumentDefinitionError("Unable to calculate source-sample distance", 
                                                   workspace->getTitle());
      }
      // Index Q cache
      initQCache(workspace);
    }
/** method does preliminary calculations of the detectors positions to convert
results into k-dE space ;
and places the results into static cash to be used in subsequent calls to this
algorithm */
void PreprocessDetectorsToMD::processDetectorsPositions(
    const API::MatrixWorkspace_const_sptr &inputWS,
    DataObjects::TableWorkspace_sptr &targWS) {
  g_log.information()
      << "Preprocessing detector locations in a target reciprocal space\n";
  //
  Geometry::Instrument_const_sptr instrument = inputWS->getInstrument();
  // this->pBaseInstr                = instrument->baseInstrument();
  //
  Geometry::IComponent_const_sptr source = instrument->getSource();
  Geometry::IComponent_const_sptr sample = instrument->getSample();
  if ((!source) || (!sample)) {
    g_log.error() << " Instrument is not fully defined. Can not identify "
                     "source or sample\n";
    throw Kernel::Exception::InstrumentDefinitionError(
        "Instrument not sufficiently defined: failed to get source and/or "
        "sample");
  }

  // L1
  try {
    double L1 = source->getDistance(*sample);
    targWS->logs()->addProperty<double>("L1", L1, true);
    g_log.debug() << "Source-sample distance: " << L1 << '\n';
  } catch (Kernel::Exception::NotFoundError &) {
    throw Kernel::Exception::InstrumentDefinitionError(
        "Unable to calculate source-sample distance for workspace",
        inputWS->getTitle());
  }
  // Instrument name
  std::string InstrName = instrument->getName();
  targWS->logs()->addProperty<std::string>(
      "InstrumentName", InstrName,
      true); // "The name which should unique identify current instrument");
  targWS->logs()->addProperty<bool>("FakeDetectors", false, true);

  // get access to the workspace memory
  auto &sp2detMap = targWS->getColVector<size_t>("spec2detMap");
  auto &detId = targWS->getColVector<int32_t>("DetectorID");
  auto &detIDMap = targWS->getColVector<size_t>("detIDMap");
  auto &L2 = targWS->getColVector<double>("L2");
  auto &TwoTheta = targWS->getColVector<double>("TwoTheta");
  auto &Azimuthal = targWS->getColVector<double>("Azimuthal");
  auto &detDir = targWS->getColVector<Kernel::V3D>("DetDirections");

  // Efixed; do we need one and does one exist?
  double Efi = targWS->getLogs()->getPropertyValueAsType<double>("Ei");
  float *pEfixedArray(nullptr);
  const Geometry::ParameterMap &pmap = inputWS->constInstrumentParameters();
  if (m_getEFixed)
    pEfixedArray = targWS->getColDataArray<float>("eFixed");

  // check if one needs to generate masked detectors column.
  int *pMasksArray(nullptr);
  if (m_getIsMasked)
    pMasksArray = targWS->getColDataArray<int>("detMask");

  //// progress message appearance
  size_t div = 100;
  size_t nHist = targWS->rowCount();
  Mantid::API::Progress theProgress(this, 0, 1, nHist);
  //// Loop over the spectra
  uint32_t liveDetectorsCount(0);
  const auto &spectrumInfo = inputWS->spectrumInfo();
  for (size_t i = 0; i < nHist; i++) {
    sp2detMap[i] = std::numeric_limits<uint64_t>::quiet_NaN();
    detId[i] = std::numeric_limits<int32_t>::quiet_NaN();
    detIDMap[i] = std::numeric_limits<uint64_t>::quiet_NaN();
    L2[i] = std::numeric_limits<double>::quiet_NaN();
    TwoTheta[i] = std::numeric_limits<double>::quiet_NaN();
    Azimuthal[i] = std::numeric_limits<double>::quiet_NaN();
    //     detMask[i]  = true;

    if (!spectrumInfo.hasDetectors(i) || spectrumInfo.isMonitor(i))
      continue;

    // if masked detectors state is not used, masked detectors just ignored;
    bool maskDetector = spectrumInfo.isMasked(i);
    if (m_getIsMasked)
      *(pMasksArray + liveDetectorsCount) = maskDetector ? 1 : 0;
    else if (maskDetector)
      continue;

    const auto &spDet = spectrumInfo.detector(i);

    // calculate the requested values;
    sp2detMap[i] = liveDetectorsCount;
    detId[liveDetectorsCount] = int32_t(spDet.getID());
    detIDMap[liveDetectorsCount] = i;
    L2[liveDetectorsCount] = spectrumInfo.l2(i);

    double polar = spectrumInfo.twoTheta(i);
    double azim = spDet.getPhi();
    TwoTheta[liveDetectorsCount] = polar;
    Azimuthal[liveDetectorsCount] = azim;

    double sPhi = sin(polar);
    double ez = cos(polar);
    double ex = sPhi * cos(azim);
    double ey = sPhi * sin(azim);

    detDir[liveDetectorsCount].setX(ex);
    detDir[liveDetectorsCount].setY(ey);
    detDir[liveDetectorsCount].setZ(ez);

    // double sinTheta=sin(0.5*polar);
    // this->SinThetaSq[liveDetectorsCount]  = sinTheta*sinTheta;

    // specific code which should work and makes sense
    // for indirect instrument but may be deployed on any code with Ei property
    // defined;
    if (pEfixedArray) {
      try {
        Geometry::Parameter_sptr par = pmap.getRecursive(&spDet, "eFixed");
        if (par)
          Efi = par->value<double>();
      } catch (std::runtime_error &) {
      }
      // set efixed for each existing detector
      *(pEfixedArray + liveDetectorsCount) = static_cast<float>(Efi);
    }

    liveDetectorsCount++;
    if (i % div == 0)
      theProgress.report(i, "Preprocessing detectors");
  }
  targWS->logs()->addProperty<uint32_t>("ActualDetectorsNum",
                                        liveDetectorsCount, true);

  theProgress.report();
  g_log.information() << "Finished preprocessing detector locations. Found: "
                      << liveDetectorsCount << " detectors out of: " << nHist
                      << " histograms\n";
}