ompl::base::PlannerStatus ompl::geometric::RRTstar::solve(const base::PlannerTerminationCondition &ptc) { checkValidity(); base::Goal *goal = pdef_->getGoal().get(); base::GoalSampleableRegion *goal_s = dynamic_cast<base::GoalSampleableRegion*>(goal); bool symCost = opt_->isSymmetric(); // Check if there are more starts if (pis_.haveMoreStartStates() == true) { // There are, add them while (const base::State *st = pis_.nextStart()) { auto *motion = new Motion(si_); si_->copyState(motion->state, st); motion->cost = opt_->identityCost(); nn_->add(motion); startMotions_.push_back(motion); } // And assure that, if we're using an informed sampler, it's reset infSampler_.reset(); } // No else if (nn_->size() == 0) { OMPL_ERROR("%s: There are no valid initial states!", getName().c_str()); return base::PlannerStatus::INVALID_START; } //Allocate a sampler if necessary if (!sampler_ && !infSampler_) { allocSampler(); } OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size()); if ((useTreePruning_ || useRejectionSampling_ || useInformedSampling_ || useNewStateRejection_) && !si_->getStateSpace()->isMetricSpace()) OMPL_WARN("%s: The state space (%s) is not metric and as a result the optimization objective may not satisfy the triangle inequality. " "You may need to disable pruning or rejection." , getName().c_str(), si_->getStateSpace()->getName().c_str()); const base::ReportIntermediateSolutionFn intermediateSolutionCallback = pdef_->getIntermediateSolutionCallback(); Motion *solution = lastGoalMotion_; Motion *approximation = nullptr; double approximatedist = std::numeric_limits<double>::infinity(); bool sufficientlyShort = false; auto *rmotion = new Motion(si_); base::State *rstate = rmotion->state; base::State *xstate = si_->allocState(); std::vector<Motion*> nbh; std::vector<base::Cost> costs; std::vector<base::Cost> incCosts; std::vector<std::size_t> sortedCostIndices; std::vector<int> valid; unsigned int rewireTest = 0; unsigned int statesGenerated = 0; if (solution) OMPL_INFORM("%s: Starting planning with existing solution of cost %.5f", getName().c_str(), solution->cost.value()); if (useKNearest_) OMPL_INFORM("%s: Initial k-nearest value of %u", getName().c_str(), (unsigned int)std::ceil(k_rrg_ * log((double)(nn_->size() + 1u)))); else OMPL_INFORM("%s: Initial rewiring radius of %.2f", getName().c_str(), std::min(maxDistance_, r_rrg_*std::pow(log((double)(nn_->size() + 1u))/((double)(nn_->size() + 1u)), 1/(double)(si_->getStateDimension())))); // our functor for sorting nearest neighbors CostIndexCompare compareFn(costs, *opt_); while (ptc == false) { iterations_++; // sample random state (with goal biasing) // Goal samples are only sampled until maxSampleCount() goals are in the tree, to prohibit duplicate goal states. if (goal_s && goalMotions_.size() < goal_s->maxSampleCount() && rng_.uniform01() < goalBias_ && goal_s->canSample()) goal_s->sampleGoal(rstate); else { // Attempt to generate a sample, if we fail (e.g., too many rejection attempts), skip the remainder of this loop and return to try again if (!sampleUniform(rstate)) continue; } // find closest state in the tree Motion *nmotion = nn_->nearest(rmotion); if (intermediateSolutionCallback && si_->equalStates(nmotion->state, rstate)) continue; base::State *dstate = rstate; // find state to add to the tree double d = si_->distance(nmotion->state, rstate); if (d > maxDistance_) { si_->getStateSpace()->interpolate(nmotion->state, rstate, maxDistance_ / d, xstate); dstate = xstate; } // Check if the motion between the nearest state and the state to add is valid if (si_->checkMotion(nmotion->state, dstate)) { // create a motion auto *motion = new Motion(si_); si_->copyState(motion->state, dstate); motion->parent = nmotion; motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // Find nearby neighbors of the new motion getNeighbors(motion, nbh); rewireTest += nbh.size(); ++statesGenerated; // cache for distance computations // // Our cost caches only increase in size, so they're only // resized if they can't fit the current neighborhood if (costs.size() < nbh.size()) { costs.resize(nbh.size()); incCosts.resize(nbh.size()); sortedCostIndices.resize(nbh.size()); } // cache for motion validity (only useful in a symmetric space) // // Our validity caches only increase in size, so they're // only resized if they can't fit the current neighborhood if (valid.size() < nbh.size()) valid.resize(nbh.size()); std::fill(valid.begin(), valid.begin() + nbh.size(), 0); // Finding the nearest neighbor to connect to // By default, neighborhood states are sorted by cost, and collision checking // is performed in increasing order of cost if (delayCC_) { // calculate all costs and distances for (std::size_t i = 0 ; i < nbh.size(); ++i) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); } // sort the nodes // // we're using index-value pairs so that we can get at // original, unsorted indices for (std::size_t i = 0; i < nbh.size(); ++i) sortedCostIndices[i] = i; std::sort(sortedCostIndices.begin(), sortedCostIndices.begin() + nbh.size(), compareFn); // collision check until a valid motion is found // // ASYMMETRIC CASE: it's possible that none of these // neighbors are valid. This is fine, because motion // already has a connection to the tree through // nmotion (with populated cost fields!). for (std::vector<std::size_t>::const_iterator i = sortedCostIndices.begin(); i != sortedCostIndices.begin() + nbh.size(); ++i) { if (nbh[*i] == nmotion || si_->checkMotion(nbh[*i]->state, motion->state)) { motion->incCost = incCosts[*i]; motion->cost = costs[*i]; motion->parent = nbh[*i]; valid[*i] = 1; break; } else valid[*i] = -1; } } else // if not delayCC { motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // find which one we connect the new state to for (std::size_t i = 0 ; i < nbh.size(); ++i) { if (nbh[i] != nmotion) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); if (opt_->isCostBetterThan(costs[i], motion->cost)) { if (si_->checkMotion(nbh[i]->state, motion->state)) { motion->incCost = incCosts[i]; motion->cost = costs[i]; motion->parent = nbh[i]; valid[i] = 1; } else valid[i] = -1; } } else { incCosts[i] = motion->incCost; costs[i] = motion->cost; valid[i] = 1; } } } if (useNewStateRejection_) { if (opt_->isCostBetterThan(solutionHeuristic(motion), bestCost_)) { nn_->add(motion); motion->parent->children.push_back(motion); } else // If the new motion does not improve the best cost it is ignored. { si_->freeState(motion->state); delete motion; continue; } } else { // add motion to the tree nn_->add(motion); motion->parent->children.push_back(motion); } bool checkForSolution = false; for (std::size_t i = 0; i < nbh.size(); ++i) { if (nbh[i] != motion->parent) { base::Cost nbhIncCost; if (symCost) nbhIncCost = incCosts[i]; else nbhIncCost = opt_->motionCost(motion->state, nbh[i]->state); base::Cost nbhNewCost = opt_->combineCosts(motion->cost, nbhIncCost); if (opt_->isCostBetterThan(nbhNewCost, nbh[i]->cost)) { bool motionValid; if (valid[i] == 0) { motionValid = si_->checkMotion(motion->state, nbh[i]->state); } else { motionValid = (valid[i] == 1); } if (motionValid) { // Remove this node from its parent list removeFromParent (nbh[i]); // Add this node to the new parent nbh[i]->parent = motion; nbh[i]->incCost = nbhIncCost; nbh[i]->cost = nbhNewCost; nbh[i]->parent->children.push_back(nbh[i]); // Update the costs of the node's children updateChildCosts(nbh[i]); checkForSolution = true; } } } } // Add the new motion to the goalMotion_ list, if it satisfies the goal double distanceFromGoal; if (goal->isSatisfied(motion->state, &distanceFromGoal)) { goalMotions_.push_back(motion); checkForSolution = true; } // Checking for solution or iterative improvement if (checkForSolution) { bool updatedSolution = false; for (auto & goalMotion : goalMotions_) { if (opt_->isCostBetterThan(goalMotion->cost, bestCost_)) { if (opt_->isFinite(bestCost_) == false) { OMPL_INFORM("%s: Found an initial solution with a cost of %.2f in %u iterations (%u vertices in the graph)", getName().c_str(), goalMotion->cost.value(), iterations_, nn_->size()); } bestCost_ = goalMotion->cost; updatedSolution = true; } sufficientlyShort = opt_->isSatisfied(goalMotion->cost); if (sufficientlyShort) { solution = goalMotion; break; } else if (!solution || opt_->isCostBetterThan(goalMotion->cost,solution->cost)) { solution = goalMotion; updatedSolution = true; } } if (updatedSolution) { if (useTreePruning_) { pruneTree(bestCost_); } if (intermediateSolutionCallback) { std::vector<const base::State *> spath; Motion *intermediate_solution = solution->parent; // Do not include goal state to simplify code. //Push back until we find the start, but not the start itself while (intermediate_solution->parent != nullptr) { spath.push_back(intermediate_solution->state); intermediate_solution = intermediate_solution->parent; } intermediateSolutionCallback(this, spath, bestCost_); } } } // Checking for approximate solution (closest state found to the goal) if (goalMotions_.size() == 0 && distanceFromGoal < approximatedist) { approximation = motion; approximatedist = distanceFromGoal; } } // terminate if a sufficient solution is found if (solution && sufficientlyShort) break; } bool approximate = (solution == nullptr); bool addedSolution = false; if (approximate) solution = approximation; else lastGoalMotion_ = solution; if (solution != nullptr) { ptc.terminate(); // construct the solution path std::vector<Motion*> mpath; while (solution != nullptr) { mpath.push_back(solution); solution = solution->parent; } // set the solution path auto *geoPath = new PathGeometric(si_); for (int i = mpath.size() - 1 ; i >= 0 ; --i) geoPath->append(mpath[i]->state); base::PathPtr path(geoPath); // Add the solution path. base::PlannerSolution psol(path); psol.setPlannerName(getName()); if (approximate) psol.setApproximate(approximatedist); // Does the solution satisfy the optimization objective? psol.setOptimized(opt_, bestCost_, sufficientlyShort); pdef_->addSolutionPath(psol); addedSolution = true; } si_->freeState(xstate); if (rmotion->state) si_->freeState(rmotion->state); delete rmotion; OMPL_INFORM("%s: Created %u new states. Checked %u rewire options. %u goal states in tree. Final solution cost %.3f", getName().c_str(), statesGenerated, rewireTest, goalMotions_.size(), bestCost_.value()); return base::PlannerStatus(addedSolution, approximate); }
ompl::base::PlannerStatus ompl::geometric::RRTsharp::solve(const base::PlannerTerminationCondition &ptc) { checkValidity(); base::Goal *goal = pdef_->getGoal().get(); base::GoalSampleableRegion *goal_s = dynamic_cast<base::GoalSampleableRegion*>(goal); bool symCost = opt_->isSymmetric(); while (const base::State *st = pis_.nextStart()) { Motion *motion = new Motion(si_); si_->copyState(motion->state, st); motion->cost = opt_->identityCost(); nn_->add(motion); startMotion_ = motion; } if (nn_->size() == 0) { OMPL_ERROR("%s: There are no valid initial states!", getName().c_str()); return base::PlannerStatus::INVALID_START; } if (!sampler_) sampler_ = si_->allocStateSampler(); OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size()); if (prune_ && !si_->getStateSpace()->isMetricSpace()) OMPL_WARN("%s: tree pruning was activated but since the state space %s is not a metric space, " "the optimization objective might not satisfy the triangle inequality. You may need to disable pruning." , getName().c_str(), si_->getStateSpace()->getName().c_str()); const base::ReportIntermediateSolutionFn intermediateSolutionCallback = pdef_->getIntermediateSolutionCallback(); Motion *solution = lastGoalMotion_; // \todo Make this variable unnecessary, or at least have it // persist across solve runs base::Cost bestCost = opt_->infiniteCost(); bestCost_ = opt_->infiniteCost(); Motion *approximation = NULL; double approximatedist = std::numeric_limits<double>::infinity(); bool sufficientlyShort = false; Motion *rmotion = new Motion(si_); base::State *rstate = rmotion->state; base::State *xstate = si_->allocState(); // e+e/d. K-nearest RRT* double k_rrg = boost::math::constants::e<double>() + (boost::math::constants::e<double>() / (double)si_->getStateSpace()->getDimension()); std::vector<Motion*> nbh; std::vector<base::Cost> costs; std::vector<base::Cost> incCosts; std::vector<std::size_t> sortedCostIndices; std::vector<int> valid; rewireTest = 0; statesGenerated = 0; if (solution) OMPL_INFORM("%s: Starting planning with existing solution of cost %.5f", getName().c_str(), solution->cost.value()); OMPL_INFORM("%s: Initial k-nearest value of %u", getName().c_str(), (unsigned int)std::ceil(k_rrg * log((double)(nn_->size() + 1)))); // our functor for sorting nearest neighbors CostIndexCompare compareFn(costs, *opt_); while (ptc == false) { iterations_++; // sample random state (with goal biasing) // Goal samples are only sampled until maxSampleCount() goals are in the tree, to prohibit duplicate goal states. if (goal_s && goalMotions_.size() < goal_s->maxSampleCount() && rng_.uniform01() < goalBias_ && goal_s->canSample()) goal_s->sampleGoal(rstate); else { sampler_->sampleUniform(rstate); if (prune_ && opt_->isCostBetterThan(bestCost_, costToGo(rmotion))) continue; } // find closest state in the tree Motion *nmotion = nn_->nearest(rmotion); if (intermediateSolutionCallback && si_->equalStates(nmotion->state, rstate)) continue; base::State *dstate = rstate; // find state to add to the tree double d = si_->distance(nmotion->state, rstate); if (d > maxDistance_) { si_->getStateSpace()->interpolate(nmotion->state, rstate, maxDistance_ / d, xstate); dstate = xstate; } // Check if the motion between the nearest state and the state to add is valid if (si_->checkMotion(nmotion->state, dstate)) { // create a motion Motion *motion = new Motion(si_); si_->copyState(motion->state, dstate); motion->parent = nmotion; motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // Find nearby neighbors of the new motion - k-nearest RRT* unsigned int k = std::ceil(k_rrg * log((double)(nn_->size() + 1))); nn_->nearestK(motion, k, nbh); rewireTest += nbh.size(); statesGenerated++; // cache for distance computations // // Our cost caches only increase in size, so they're only // resized if they can't fit the current neighborhood if (costs.size() < nbh.size()) { costs.resize(nbh.size()); incCosts.resize(nbh.size()); sortedCostIndices.resize(nbh.size()); } // cache for motion validity (only useful in a symmetric space) // // Our validity caches only increase in size, so they're // only resized if they can't fit the current neighborhood if (valid.size() < nbh.size()) valid.resize(nbh.size()); std::fill(valid.begin(), valid.begin() + nbh.size(), 0); // Finding the nearest neighbor to connect to // By default, neighborhood states are sorted by cost, and collision checking // is performed in increasing order of cost if (delayCC_) { // calculate all costs and distances for (std::size_t i = 0 ; i < nbh.size(); ++i) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); } // sort the nodes // // we're using index-value pairs so that we can get at // original, unsorted indices for (std::size_t i = 0; i < nbh.size(); ++i) sortedCostIndices[i] = i; std::sort(sortedCostIndices.begin(), sortedCostIndices.begin() + nbh.size(), compareFn); // collision check until a valid motion is found // // ASYMMETRIC CASE: it's possible that none of these // neighbors are valid. This is fine, because motion // already has a connection to the tree through // nmotion (with populated cost fields!). for (std::vector<std::size_t>::const_iterator i = sortedCostIndices.begin(); i != sortedCostIndices.begin() + nbh.size(); ++i) { if (nbh[*i] == nmotion || si_->checkMotion(nbh[*i]->state, motion->state)) { motion->incCost = incCosts[*i]; motion->cost = costs[*i]; motion->parent = nbh[*i]; valid[*i] = 1; break; } else valid[*i] = -1; } } else // if not delayCC { motion->incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, motion->incCost); // find which one we connect the new state to for (std::size_t i = 0 ; i < nbh.size(); ++i) { if (nbh[i] != nmotion) { incCosts[i] = opt_->motionCost(nbh[i]->state, motion->state); costs[i] = opt_->combineCosts(nbh[i]->cost, incCosts[i]); if (opt_->isCostBetterThan(costs[i], motion->cost)) { if (si_->checkMotion(nbh[i]->state, motion->state)) { motion->incCost = incCosts[i]; motion->cost = costs[i]; motion->parent = nbh[i]; valid[i] = 1; } else valid[i] = -1; } } else { incCosts[i] = motion->incCost; costs[i] = motion->cost; valid[i] = 1; } } } if (prune_) { if (opt_->isCostBetterThan(costToGo(motion, false), bestCost_)) { nn_->add(motion); motion->parent->children.push_back(motion); } else // If the new motion does not improve the best cost it is ignored. { --statesGenerated; si_->freeState(motion->state); delete motion; continue; } } else { // add motion to the tree nn_->add(motion); motion->parent->children.push_back(motion); } this->nodesToAnalyzeForRewiring = std::priority_queue< Motion* ,std::vector<Motion*>, std::greater<Motion*>>(); assert(nodesToAnalyzeForRewiring.empty()); this->visitedMotions.clear(); this->toVisitMotions.clear(); bool checkForSolution = false; toVisitMotions.insert(motion); nodesToAnalyzeForRewiring.push(motion); while (!nodesToAnalyzeForRewiring.empty()) { // if (((int)nn_->size())>7000) // usleep(200000); Motion* mc = nodesToAnalyzeForRewiring.top(); nodesToAnalyzeForRewiring.pop(); visitedMotions.insert(mc); toVisitMotions.erase(mc); nn_->nearestK(mc, k, nbh); // Cost minNbhCost = mc->cost; bool updatedWiring = false; if (mc!=motion){ for (std::size_t i = 0; i < nbh.size(); ++i){ rewireTest++; // TODO: add if(symCost) option base::Cost temp_incCost = opt_->motionCost(nbh[i]->state, mc->state); base::Cost temp_Cost = opt_->combineCosts(nbh[i]->cost, temp_incCost); if (opt_->isCostBetterThan(temp_Cost,mc->cost)){ if (si_->checkMotion(nbh[i]->state, mc->state)) { removeFromParent (mc); mc->parent = nbh[i]; mc->cost = temp_Cost; mc->incCost = temp_incCost; mc->parent->children.push_back(mc); updatedWiring = true; checkForSolution = true; } } } } else { updatedWiring = true; } if (updatedWiring){ // add children to update list for (std::size_t j = 0; j < mc->children.size(); ++j){ if (toVisitMotions.count(mc->children[j])==0 && visitedMotions.count(mc->children[j])==0){ nodesToAnalyzeForRewiring.push(mc->children[j]); toVisitMotions.insert(mc->children[j]); } } for (std::size_t i = 0; i < nbh.size(); ++i){ // TODO: avoid repeated calculation of same value if (opt_->isCostBetterThan(opt_->combineCosts(mc->cost, opt_->motionCost(mc->state, nbh[i]->state)),nbh[i]->cost) && toVisitMotions.count(nbh[i])==0 && visitedMotions.count(nbh[i])==0){ nodesToAnalyzeForRewiring.push(nbh[i]); toVisitMotions.insert(nbh[i]); } } } } // Add the new motion to the goalMotion_ list, if it satisfies the goal double distanceFromGoal; if (goal->isSatisfied(motion->state, &distanceFromGoal)) { goalMotions_.push_back(motion); checkForSolution = true; } // Checking for solution or iterative improvement if (checkForSolution) { bool updatedSolution = false; for (size_t i = 0; i < goalMotions_.size(); ++i) { if (opt_->isCostBetterThan(goalMotions_[i]->cost, bestCost)) { bestCost = goalMotions_[i]->cost; bestCost_ = bestCost; updatedSolution = true; } sufficientlyShort = opt_->isSatisfied(goalMotions_[i]->cost); if (sufficientlyShort) { solution = goalMotions_[i]; break; } else if (!solution || opt_->isCostBetterThan(goalMotions_[i]->cost,solution->cost)) { solution = goalMotions_[i]; updatedSolution = true; } } if (updatedSolution) { if (prune_) { int n = pruneTree(bestCost_); statesGenerated -= n; } if (intermediateSolutionCallback) { std::vector<const base::State *> spath; Motion *intermediate_solution = solution->parent; // Do not include goal state to simplify code. do { spath.push_back(intermediate_solution->state); intermediate_solution = intermediate_solution->parent; } while (intermediate_solution->parent != 0); // Do not include the start state. intermediateSolutionCallback(this, spath, bestCost_); } } } // Checking for approximate solution (closest state found to the goal) if (goalMotions_.size() == 0 && distanceFromGoal < approximatedist) { approximation = motion; approximatedist = distanceFromGoal; } } // terminate if a sufficient solution is found if (solution && sufficientlyShort) break; } bool approximate = (solution == NULL); bool addedSolution = false; if (approximate) solution = approximation; else lastGoalMotion_ = solution; if (solution != NULL) { ptc.terminate(); // construct the solution path std::vector<Motion*> mpath; while (solution != NULL) { mpath.push_back(solution); solution = solution->parent; } // set the solution path PathGeometric *geoPath = new PathGeometric(si_); for (int i = mpath.size() - 1 ; i >= 0 ; --i) geoPath->append(mpath[i]->state); base::PathPtr path(geoPath); // Add the solution path. base::PlannerSolution psol(path); psol.setPlannerName(getName()); if (approximate) psol.setApproximate(approximatedist); // Does the solution satisfy the optimization objective? psol.setOptimized(opt_, bestCost, sufficientlyShort); pdef_->addSolutionPath(psol); addedSolution = true; } si_->freeState(xstate); if (rmotion->state) si_->freeState(rmotion->state); delete rmotion; OMPL_INFORM("%s: Created %u new states. Checked %u rewire options. %u goal states in tree.", getName().c_str(), statesGenerated, rewireTest, goalMotions_.size()); return base::PlannerStatus(addedSolution, approximate); }
ompl::base::PlannerStatus ompl::geometric::RRTXstatic::solve(const base::PlannerTerminationCondition &ptc) { checkValidity(); base::Goal *goal = pdef_->getGoal().get(); auto *goal_s = dynamic_cast<base::GoalSampleableRegion *>(goal); // Check if there are more starts if (pis_.haveMoreStartStates() == true) { // There are, add them while (const base::State *st = pis_.nextStart()) { auto *motion = new Motion(si_); si_->copyState(motion->state, st); motion->cost = opt_->identityCost(); nn_->add(motion); } // And assure that, if we're using an informed sampler, it's reset infSampler_.reset(); } // No else if (nn_->size() == 0) { OMPL_ERROR("%s: There are no valid initial states!", getName().c_str()); return base::PlannerStatus::INVALID_START; } // Allocate a sampler if necessary if (!sampler_ && !infSampler_) { allocSampler(); } OMPL_INFORM("%s: Starting planning with %u states already in datastructure", getName().c_str(), nn_->size()); if (!si_->getStateSpace()->isMetricSpace()) OMPL_WARN("%s: The state space (%s) is not metric and as a result the optimization objective may not satisfy " "the triangle inequality. " "You may need to disable rejection.", getName().c_str(), si_->getStateSpace()->getName().c_str()); const base::ReportIntermediateSolutionFn intermediateSolutionCallback = pdef_->getIntermediateSolutionCallback(); Motion *solution = lastGoalMotion_; Motion *approximation = nullptr; double approximatedist = std::numeric_limits<double>::infinity(); bool sufficientlyShort = false; auto *rmotion = new Motion(si_); base::State *rstate = rmotion->state; base::State *xstate = si_->allocState(); base::State *dstate; Motion *motion; Motion *nmotion; Motion *nb; Motion *min; Motion *c; bool feas; unsigned int rewireTest = 0; unsigned int statesGenerated = 0; base::Cost incCost, cost; if (solution) OMPL_INFORM("%s: Starting planning with existing solution of cost %.5f", getName().c_str(), solution->cost.value()); if (useKNearest_) OMPL_INFORM("%s: Initial k-nearest value of %u", getName().c_str(), (unsigned int)std::ceil(k_rrt_ * log((double)(nn_->size() + 1u)))); else OMPL_INFORM( "%s: Initial rewiring radius of %.2f", getName().c_str(), std::min(maxDistance_, r_rrt_ * std::pow(log((double)(nn_->size() + 1u)) / ((double)(nn_->size() + 1u)), 1 / (double)(si_->getStateDimension())))); while (ptc == false) { iterations_++; // Computes the RRG values for this iteration (number or radius of neighbors) calculateRRG(); // sample random state (with goal biasing) // Goal samples are only sampled until maxSampleCount() goals are in the tree, to prohibit duplicate goal // states. if (goal_s && goalMotions_.size() < goal_s->maxSampleCount() && rng_.uniform01() < goalBias_ && goal_s->canSample()) goal_s->sampleGoal(rstate); else { // Attempt to generate a sample, if we fail (e.g., too many rejection attempts), skip the remainder of this // loop and return to try again if (!sampleUniform(rstate)) continue; } // find closest state in the tree nmotion = nn_->nearest(rmotion); if (intermediateSolutionCallback && si_->equalStates(nmotion->state, rstate)) continue; dstate = rstate; // find state to add to the tree double d = si_->distance(nmotion->state, rstate); if (d > maxDistance_) { si_->getStateSpace()->interpolate(nmotion->state, rstate, maxDistance_ / d, xstate); dstate = xstate; } // Check if the motion between the nearest state and the state to add is valid if (si_->checkMotion(nmotion->state, dstate)) { // create a motion motion = new Motion(si_); si_->copyState(motion->state, dstate); motion->parent = nmotion; incCost = opt_->motionCost(nmotion->state, motion->state); motion->cost = opt_->combineCosts(nmotion->cost, incCost); // Find nearby neighbors of the new motion getNeighbors(motion); // find which one we connect the new state to for (auto it = motion->nbh.begin(); it != motion->nbh.end();) { nb = it->first; feas = it->second; // Compute cost using nb as a parent incCost = opt_->motionCost(nb->state, motion->state); cost = opt_->combineCosts(nb->cost, incCost); if (opt_->isCostBetterThan(cost, motion->cost)) { // Check range and feasibility if ((!useKNearest_ || distanceFunction(motion, nb) < maxDistance_) && si_->checkMotion(nb->state, motion->state)) { // mark than the motino has been checked as valid it->second = true; motion->cost = cost; motion->parent = nb; ++it; } else { // Remove unfeasible neighbor from the list of neighbors it = motion->nbh.erase(it); } } else { ++it; } } // Check if the vertex should included if (!includeVertex(motion)) { si_->freeState(motion->state); delete motion; continue; } // Update neighbor motions neighbor datastructure for (auto it = motion->nbh.begin(); it != motion->nbh.end(); ++it) { it->first->nbh.emplace_back(motion, it->second); } // add motion to the tree ++statesGenerated; nn_->add(motion); if (updateChildren_) motion->parent->children.push_back(motion); // add the new motion to the queue to propagate the changes updateQueue(motion); bool checkForSolution = false; // Add the new motion to the goalMotion_ list, if it satisfies the goal double distanceFromGoal; if (goal->isSatisfied(motion->state, &distanceFromGoal)) { goalMotions_.push_back(motion); checkForSolution = true; } // Process the elements in the queue and rewire the tree until epsilon-optimality while (!q_.empty()) { // Get element to update min = q_.top()->data; // Remove element from the queue and NULL the handle so that we know it's not in the queue anymore q_.pop(); min->handle = nullptr; // Stop cost propagation if it is not in the relevant region if (opt_->isCostBetterThan(bestCost_, mc_.costPlusHeuristic(min))) break; // Try min as a parent to optimize each neighbor for (auto it = min->nbh.begin(); it != min->nbh.end();) { nb = it->first; feas = it->second; // Neighbor culling: removes neighbors farther than the neighbor radius if ((!useKNearest_ || min->nbh.size() > rrg_k_) && distanceFunction(min, nb) > rrg_r_) { it = min->nbh.erase(it); continue; } // Calculate cost of nb using min as a parent incCost = opt_->motionCost(min->state, nb->state); cost = opt_->combineCosts(min->cost, incCost); // If cost improvement is better than epsilon if (opt_->isCostBetterThan(opt_->combineCosts(cost, epsilonCost_), nb->cost)) { if (nb->parent != min) { // changing parent, check feasibility if (!feas) { feas = si_->checkMotion(nb->state, min->state); if (!feas) { // Remove unfeasible neighbor from the list of neighbors it = min->nbh.erase(it); continue; } else { // mark than the motino has been checked as valid it->second = true; } } if (updateChildren_) { // Remove this node from its parent list removeFromParent(nb); // add it as a children of min min->children.push_back(nb); } // Add this node to the new parent nb->parent = min; ++rewireTest; } nb->cost = cost; // Add to the queue for more improvements updateQueue(nb); checkForSolution = true; } ++it; } if (updateChildren_) { // Propagatino of the cost to the children for (auto it = min->children.begin(), end = min->children.end(); it != end; ++it) { c = *it; incCost = opt_->motionCost(min->state, c->state); cost = opt_->combineCosts(min->cost, incCost); c->cost = cost; // Add to the queue for more improvements updateQueue(c); checkForSolution = true; } } } // empty q and reset handles while (!q_.empty()) { q_.top()->data->handle = nullptr; q_.pop(); } q_.clear(); // Checking for solution or iterative improvement if (checkForSolution) { bool updatedSolution = false; for (auto &goalMotion : goalMotions_) { if (opt_->isCostBetterThan(goalMotion->cost, bestCost_)) { if (opt_->isFinite(bestCost_) == false) { OMPL_INFORM("%s: Found an initial solution with a cost of %.2f in %u iterations (%u " "vertices in the graph)", getName().c_str(), goalMotion->cost.value(), iterations_, nn_->size()); } bestCost_ = goalMotion->cost; updatedSolution = true; } sufficientlyShort = opt_->isSatisfied(goalMotion->cost); if (sufficientlyShort) { solution = goalMotion; break; } else if (!solution || opt_->isCostBetterThan(goalMotion->cost, solution->cost)) { solution = goalMotion; updatedSolution = true; } } if (updatedSolution) { if (intermediateSolutionCallback) { std::vector<const base::State *> spath; Motion *intermediate_solution = solution->parent; // Do not include goal state to simplify code. // Push back until we find the start, but not the start itself while (intermediate_solution->parent != nullptr) { spath.push_back(intermediate_solution->state); intermediate_solution = intermediate_solution->parent; } intermediateSolutionCallback(this, spath, bestCost_); } } } // Checking for approximate solution (closest state found to the goal) if (goalMotions_.size() == 0 && distanceFromGoal < approximatedist) { approximation = motion; approximatedist = distanceFromGoal; } } // terminate if a sufficient solution is found if (solution && sufficientlyShort) break; } bool approximate = (solution == nullptr); bool addedSolution = false; if (approximate) solution = approximation; else lastGoalMotion_ = solution; if (solution != nullptr) { ptc.terminate(); // construct the solution path std::vector<Motion *> mpath; while (solution != nullptr) { mpath.push_back(solution); solution = solution->parent; } // set the solution path auto path = std::make_shared<PathGeometric>(si_); for (int i = mpath.size() - 1; i >= 0; --i) path->append(mpath[i]->state); // Add the solution path. base::PlannerSolution psol(path); psol.setPlannerName(getName()); if (approximate) psol.setApproximate(approximatedist); // Does the solution satisfy the optimization objective? psol.setOptimized(opt_, bestCost_, sufficientlyShort); pdef_->addSolutionPath(psol); addedSolution = true; } si_->freeState(xstate); if (rmotion->state) si_->freeState(rmotion->state); delete rmotion; OMPL_INFORM("%s: Created %u new states. Checked %u rewire options. %u goal states in tree. Final solution cost " "%.3f", getName().c_str(), statesGenerated, rewireTest, goalMotions_.size(), bestCost_.value()); return {addedSolution, approximate}; }