virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorldOrg, btScalar depthOrg) { m_reportedDistance = depthOrg; m_reportedNormalOnWorld = normalOnBInWorld; btVector3 adjustedPointB = pointInWorldOrg - normalOnBInWorld*m_marginOnB; m_reportedDistance = depthOrg+(m_marginOnA+m_marginOnB); if (m_reportedDistance<0.f) { m_foundResult = true; } m_originalResult->addContactPoint(normalOnBInWorld, adjustedPointB, m_reportedDistance); }
bool btPolyhedralContactClipping::findSeparatingAxis( const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA, const btTransform& transB, btVector3& sep, btDiscreteCollisionDetectorInterface::Result& resultOut) { gActualSATPairTests++; //#ifdef TEST_INTERNAL_OBJECTS const btVector3 c0 = transA * hullA.m_localCenter; const btVector3 c1 = transB * hullB.m_localCenter; const btVector3 DeltaC2 = c0 - c1; //#endif btScalar dmin = FLT_MAX; int curPlaneTests=0; int numFacesA = hullA.m_faces.size(); // Test normals from hullA for(int i=0;i<numFacesA;i++) { const btVector3 Normal(hullA.m_faces[i].m_plane[0], hullA.m_faces[i].m_plane[1], hullA.m_faces[i].m_plane[2]); btVector3 faceANormalWS = transA.getBasis() * Normal; if (DeltaC2.dot(faceANormalWS)<0) faceANormalWS*=-1.f; curPlaneTests++; #ifdef TEST_INTERNAL_OBJECTS gExpectedNbTests++; if(gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, faceANormalWS, hullA, hullB, dmin)) continue; gActualNbTests++; #endif btScalar d; btVector3 wA, wB; if(!TestSepAxis( hullA, hullB, transA, transB, faceANormalWS, d, wA, wB)) return false; if(d<dmin) { dmin = d; sep = faceANormalWS; } } int numFacesB = hullB.m_faces.size(); // Test normals from hullB for(int i=0;i<numFacesB;i++) { const btVector3 Normal(hullB.m_faces[i].m_plane[0], hullB.m_faces[i].m_plane[1], hullB.m_faces[i].m_plane[2]); btVector3 WorldNormal = transB.getBasis() * Normal; if (DeltaC2.dot(WorldNormal)<0) WorldNormal *=-1.f; curPlaneTests++; #ifdef TEST_INTERNAL_OBJECTS gExpectedNbTests++; if(gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, WorldNormal, hullA, hullB, dmin)) continue; gActualNbTests++; #endif btScalar d; btVector3 wA, wB; if(!TestSepAxis(hullA, hullB, transA, transB, WorldNormal, d,wA, wB)) return false; if(d<dmin) { dmin = d; sep = WorldNormal; } } btVector3 edgeAstart, edgeAend, edgeBstart, edgeBend; int edgeA=-1; int edgeB=-1; btVector3 worldEdgeA; btVector3 worldEdgeB; btVector3 witnessPointA, witnessPointB; int curEdgeEdge = 0; // Test edges for(int e0=0;e0<hullA.m_uniqueEdges.size();e0++) { const btVector3 edge0 = hullA.m_uniqueEdges[e0]; const btVector3 WorldEdge0 = transA.getBasis() * edge0; for(int e1=0;e1<hullB.m_uniqueEdges.size();e1++) { const btVector3 edge1 = hullB.m_uniqueEdges[e1]; const btVector3 WorldEdge1 = transB.getBasis() * edge1; btVector3 Cross = WorldEdge0.cross(WorldEdge1); curEdgeEdge++; if(!IsAlmostZero(Cross)) { Cross = Cross.normalize(); if (DeltaC2.dot(Cross)<0) Cross *= -1.f; #ifdef TEST_INTERNAL_OBJECTS gExpectedNbTests++; if(gUseInternalObject && !TestInternalObjects(transA, transB, DeltaC2, Cross, hullA, hullB, dmin)) continue; gActualNbTests++; #endif btScalar dist; btVector3 wA, wB; if(!TestSepAxis( hullA, hullB, transA, transB, Cross, dist, wA, wB)) return false; if(dist<dmin) { dmin = dist; sep = Cross; edgeA=e0; edgeB=e1; worldEdgeA = WorldEdge0; worldEdgeB = WorldEdge1; witnessPointA=wA; witnessPointB=wB; } } } } if (edgeA>=0&&edgeB>=0) { // printf("edge-edge\n"); //add an edge-edge contact btVector3 ptsVector; btVector3 offsetA; btVector3 offsetB; btScalar tA; btScalar tB; btVector3 translation = witnessPointB-witnessPointA; btVector3 dirA = worldEdgeA; btVector3 dirB = worldEdgeB; btScalar hlenB = 1e30f; btScalar hlenA = 1e30f; btSegmentsClosestPoints(ptsVector, offsetA, offsetB, tA, tB, translation, dirA, hlenA, dirB, hlenB); btScalar nlSqrt = ptsVector.length2(); if (nlSqrt>SIMD_EPSILON) { btScalar nl = btSqrt(nlSqrt); ptsVector *= 1.f/nl; if (ptsVector.dot(DeltaC2)<0.f) { ptsVector*=-1.f; } btVector3 ptOnB = witnessPointB + offsetB; btScalar distance = nl; resultOut.addContactPoint(ptsVector, ptOnB,-distance); } } if((DeltaC2.dot(sep))<0.0f) sep = -sep; return true; }
void btPolyhedralContactClipping::clipFaceAgainstHull(const btVector3& separatingNormal, const btConvexPolyhedron& hullA, const btTransform& transA, btVertexArray& worldVertsB1, const btScalar minDist, btScalar maxDist,btDiscreteCollisionDetectorInterface::Result& resultOut) { btVertexArray worldVertsB2; btVertexArray* pVtxIn = &worldVertsB1; btVertexArray* pVtxOut = &worldVertsB2; pVtxOut->reserve(pVtxIn->size()); int closestFaceA=-1; { btScalar dmin = FLT_MAX; for(int face=0;face<hullA.m_faces.size();face++) { const btVector3 Normal(hullA.m_faces[face].m_plane[0], hullA.m_faces[face].m_plane[1], hullA.m_faces[face].m_plane[2]); const btVector3 faceANormalWS = transA.getBasis() * Normal; btScalar d = faceANormalWS.dot(separatingNormal); if (d < dmin) { dmin = d; closestFaceA = face; } } } if (closestFaceA<0) return; const btFace& polyA = hullA.m_faces[closestFaceA]; // clip polygon to back of planes of all faces of hull A that are adjacent to witness face int numContacts = pVtxIn->size(); int numVerticesA = polyA.m_indices.size(); for(int e0=0;e0<numVerticesA;e0++) { const btVector3& a = hullA.m_vertices[polyA.m_indices[e0]]; const btVector3& b = hullA.m_vertices[polyA.m_indices[(e0+1)%numVerticesA]]; const btVector3 edge0 = a - b; const btVector3 WorldEdge0 = transA.getBasis() * edge0; btVector3 worldPlaneAnormal1 = transA.getBasis()* btVector3(polyA.m_plane[0],polyA.m_plane[1],polyA.m_plane[2]); btVector3 planeNormalWS1 = -WorldEdge0.cross(worldPlaneAnormal1);//.cross(WorldEdge0); btVector3 worldA1 = transA*a; btScalar planeEqWS1 = -worldA1.dot(planeNormalWS1); //int otherFace=0; #ifdef BLA1 int otherFace = polyA.m_connectedFaces[e0]; btVector3 localPlaneNormal (hullA.m_faces[otherFace].m_plane[0],hullA.m_faces[otherFace].m_plane[1],hullA.m_faces[otherFace].m_plane[2]); btScalar localPlaneEq = hullA.m_faces[otherFace].m_plane[3]; btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal; btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin()); #else btVector3 planeNormalWS = planeNormalWS1; btScalar planeEqWS=planeEqWS1; #endif //clip face clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); btSwap(pVtxIn,pVtxOut); pVtxOut->resize(0); } //#define ONLY_REPORT_DEEPEST_POINT btVector3 point; // only keep points that are behind the witness face { btVector3 localPlaneNormal (polyA.m_plane[0],polyA.m_plane[1],polyA.m_plane[2]); btScalar localPlaneEq = polyA.m_plane[3]; btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal; btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin()); for (int i=0;i<pVtxIn->size();i++) { btScalar depth = planeNormalWS.dot(pVtxIn->at(i))+planeEqWS; if (depth <=minDist) { // printf("clamped: depth=%f to minDist=%f\n",depth,minDist); depth = minDist; } if (depth <=maxDist) { btVector3 point = pVtxIn->at(i); #ifdef ONLY_REPORT_DEEPEST_POINT curMaxDist = depth; #else #if 0 if (depth<-3) { printf("error in btPolyhedralContactClipping depth = %f\n", depth); printf("likely wrong separatingNormal passed in\n"); } #endif resultOut.addContactPoint(separatingNormal,point,depth); #endif } } } #ifdef ONLY_REPORT_DEEPEST_POINT if (curMaxDist<maxDist) { resultOut.addContactPoint(separatingNormal,point,curMaxDist); } #endif //ONLY_REPORT_DEEPEST_POINT }
int dBoxBox2 (const btVector3& p1, const dMatrix3 R1, const btVector3& side1, const btVector3& p2, const dMatrix3 R2, const btVector3& side2, btVector3& normal, btScalar *depth, int *return_code, int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output) { const btScalar fudge_factor = btScalar(1.05); btVector3 p,pp,normalC(0.f,0.f,0.f); const btScalar *normalR = 0; btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p = p2 - p1; dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths / 2 A[0] = side1[0]*btScalar(0.5); A[1] = side1[1]*btScalar(0.5); A[2] = side1[2]*btScalar(0.5); B[0] = side2[0]*btScalar(0.5); B[1] = side2[1]*btScalar(0.5); B[2] = side2[2]*btScalar(0.5); // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. #define TST(expr1,expr2,norm,cc) \ s2 = btFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); // separating axis = v1,v2,v3 TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ s2 = btFabs(expr1) - (expr2); \ if (s2 > SIMD_EPSILON) return 0; \ l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ if (l > SIMD_EPSILON) { \ s2 /= l; \ if (s2*fudge_factor > s) { \ s = s2; \ normalR = 0; \ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } \ } btScalar fudge2 (1.0e-5f); Q11 += fudge2; Q12 += fudge2; Q13 += fudge2; Q21 += fudge2; Q22 += fudge2; Q23 += fudge2; Q31 += fudge2; Q32 += fudge2; Q33 += fudge2; // separating axis = u1 x (v1,v2,v3) TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); #undef TST if (!code) return 0; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } *depth = -s; // compute contact point(s) if (code > 6) { // an edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 btVector3 pa; btScalar sign; for (i=0; i<3; i++) pa[i] = p1[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0); for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; } // find a point pb on the intersecting edge of box 2 btVector3 pb; for (i=0; i<3; i++) pb[i] = p2[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0); for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; } btScalar alpha,beta; btVector3 ua,ub; for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += ua[i]*alpha; for (i=0; i<3; i++) pb[i] += ub[i]*beta; { //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]); //contact[0].depth = *depth; btVector3 pointInWorld; #ifdef USE_CENTER_POINT for (i=0; i<3; i++) pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5); output.addContactPoint(-normal,pointInWorld,-*depth); #else output.addContactPoint(-normal,pb,-*depth); #endif // *return_code = code; } return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { Ra = R1; Rb = R2; pa = p1; pb = p2; Sa = A; Sb = B; } else { Ra = R2; Rb = R1; pa = p2; pb = p1; Sa = B; Sb = A; } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. btVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } dMULTIPLY1_331 (nr,Rb,normal2); anr[0] = btFabs (nr[0]); anr[1] = btFabs (nr[1]); anr[2] = btFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the indident face. the other axis numbers of the indicent face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates btVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates btScalar quad[8]; // 2D coordinate of incident face (x,y pairs) btScalar c1,c2,m11,m12,m21,m22; c1 = dDOT14 (center,Ra+code1); c2 = dDOT14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dDOT44 (Ra+code1,Rb+a1); m12 = dDOT44 (Ra+code1,Rb+a2); m21 = dDOT44 (Ra+code2,Rb+a1); m22 = dDOT44 (Ra+code2,Rb+a2); { btScalar k1 = m11*Sb[a1]; btScalar k2 = m21*Sb[a1]; btScalar k3 = m12*Sb[a2]; btScalar k4 = m22*Sb[a2]; quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face btScalar rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces btScalar ret[16]; int n = intersectRectQuad2 (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. btScalar point[3*8]; // penetrating contact points btScalar dep[8]; // depths for those points btScalar det1 = 1.f/(m11*m22 - m12*m21); m11 *= det1; m12 *= det1; m21 *= det1; m22 *= det1; int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; } } if (cnum < 1) return 0; // this should never happen // we can't generate more contacts than we actually have if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; if (cnum <= maxc) { if (code<4) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { btVector3 pointInWorld; for (i=0; i<3; i++) pointInWorld[i] = point[j*3+i] + pa[i]; output.addContactPoint(-normal,pointInWorld,-dep[j]); } } else { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { btVector3 pointInWorld; for (i=0; i<3; i++) pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j]; //pointInWorld[i] = point[j*3+i] + pa[i]; output.addContactPoint(-normal,pointInWorld,-dep[j]); } } } else { // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; btScalar maxdepth = dep[0]; for (i=1; i<cnum; i++) { if (dep[i] > maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints2 (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { // dContactGeom *con = CONTACT(contact,skip*j); // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; // con->depth = dep[iret[j]]; btVector3 posInWorld; for (i=0; i<3; i++) posInWorld[i] = point[iret[j]*3+i] + pa[i]; if (code<4) { output.addContactPoint(-normal,posInWorld,-dep[iret[j]]); } else { output.addContactPoint(-normal,posInWorld-normal*dep[iret[j]],-dep[iret[j]]); } } cnum = maxc; } *return_code = code; return cnum; }