CCallHelpers::JumpList generateImpl(AccessGenerationState& state, const RegisterSet& usedRegistersBySnippet, CCallHelpers& jit, std::index_sequence<ArgumentsIndex...>) { CCallHelpers::JumpList exceptions; // We spill (1) the used registers by IC and (2) the used registers by Snippet. AccessGenerationState::SpillState spillState = state.preserveLiveRegistersToStackForCall(usedRegistersBySnippet); jit.store32( CCallHelpers::TrustedImm32(state.callSiteIndexForExceptionHandlingOrOriginal().bits()), CCallHelpers::tagFor(static_cast<VirtualRegister>(CallFrameSlot::argumentCount))); jit.makeSpaceOnStackForCCall(); jit.setupArguments<FunctionType>(std::get<ArgumentsIndex>(m_arguments)...); CCallHelpers::Call operationCall = jit.call(OperationPtrTag); auto function = m_function; jit.addLinkTask([=] (LinkBuffer& linkBuffer) { linkBuffer.link(operationCall, FunctionPtr<OperationPtrTag>(function)); }); jit.setupResults(m_result); jit.reclaimSpaceOnStackForCCall(); CCallHelpers::Jump noException = jit.emitExceptionCheck(state.m_vm, CCallHelpers::InvertedExceptionCheck); state.restoreLiveRegistersFromStackForCallWithThrownException(spillState); exceptions.append(jit.jump()); noException.link(&jit); RegisterSet dontRestore; dontRestore.set(m_result); state.restoreLiveRegistersFromStackForCall(spillState, dontRestore); return exceptions; }
CCallHelpers::JumpList AccessCaseSnippetParams::emitSlowPathCalls(AccessGenerationState& state, const RegisterSet& usedRegistersBySnippet, CCallHelpers& jit) { CCallHelpers::JumpList exceptions; for (auto& generator : m_generators) exceptions.append(generator->generate(state, usedRegistersBySnippet, jit)); return exceptions; }
void emitSetupVarargsFrameFastCase(CCallHelpers& jit, GPRReg numUsedSlotsGPR, GPRReg scratchGPR1, GPRReg scratchGPR2, GPRReg scratchGPR3, ValueRecovery argCountRecovery, VirtualRegister firstArgumentReg, unsigned firstVarArgOffset, CCallHelpers::JumpList& slowCase) { CCallHelpers::JumpList end; if (argCountRecovery.isConstant()) { // FIXME: We could constant-fold a lot of the computation below in this case. // https://bugs.webkit.org/show_bug.cgi?id=141486 jit.move(CCallHelpers::TrustedImm32(argCountRecovery.constant().asInt32()), scratchGPR1); } else jit.load32(CCallHelpers::payloadFor(argCountRecovery.virtualRegister()), scratchGPR1); if (firstVarArgOffset) { CCallHelpers::Jump sufficientArguments = jit.branch32(CCallHelpers::GreaterThan, scratchGPR1, CCallHelpers::TrustedImm32(firstVarArgOffset + 1)); jit.move(CCallHelpers::TrustedImm32(1), scratchGPR1); CCallHelpers::Jump endVarArgs = jit.jump(); sufficientArguments.link(&jit); jit.sub32(CCallHelpers::TrustedImm32(firstVarArgOffset), scratchGPR1); endVarArgs.link(&jit); } slowCase.append(jit.branch32(CCallHelpers::Above, scratchGPR1, CCallHelpers::TrustedImm32(maxArguments + 1))); emitSetVarargsFrame(jit, scratchGPR1, true, numUsedSlotsGPR, scratchGPR2); slowCase.append(jit.branchPtr(CCallHelpers::Above, CCallHelpers::AbsoluteAddress(jit.vm()->addressOfStackLimit()), scratchGPR2)); // Initialize ArgumentCount. jit.store32(scratchGPR1, CCallHelpers::Address(scratchGPR2, JSStack::ArgumentCount * static_cast<int>(sizeof(Register)) + PayloadOffset)); // Copy arguments. jit.signExtend32ToPtr(scratchGPR1, scratchGPR1); CCallHelpers::Jump done = jit.branchSubPtr(CCallHelpers::Zero, CCallHelpers::TrustedImm32(1), scratchGPR1); // scratchGPR1: argumentCount CCallHelpers::Label copyLoop = jit.label(); int argOffset = (firstArgumentReg.offset() - 1 + firstVarArgOffset) * static_cast<int>(sizeof(Register)); #if USE(JSVALUE64) jit.load64(CCallHelpers::BaseIndex(GPRInfo::callFrameRegister, scratchGPR1, CCallHelpers::TimesEight, argOffset), scratchGPR3); jit.store64(scratchGPR3, CCallHelpers::BaseIndex(scratchGPR2, scratchGPR1, CCallHelpers::TimesEight, CallFrame::thisArgumentOffset() * static_cast<int>(sizeof(Register)))); #else // USE(JSVALUE64), so this begins the 32-bit case jit.load32(CCallHelpers::BaseIndex(GPRInfo::callFrameRegister, scratchGPR1, CCallHelpers::TimesEight, argOffset + TagOffset), scratchGPR3); jit.store32(scratchGPR3, CCallHelpers::BaseIndex(scratchGPR2, scratchGPR1, CCallHelpers::TimesEight, CallFrame::thisArgumentOffset() * static_cast<int>(sizeof(Register)) + TagOffset)); jit.load32(CCallHelpers::BaseIndex(GPRInfo::callFrameRegister, scratchGPR1, CCallHelpers::TimesEight, argOffset + PayloadOffset), scratchGPR3); jit.store32(scratchGPR3, CCallHelpers::BaseIndex(scratchGPR2, scratchGPR1, CCallHelpers::TimesEight, CallFrame::thisArgumentOffset() * static_cast<int>(sizeof(Register)) + PayloadOffset)); #endif // USE(JSVALUE64), end of 32-bit case jit.branchSubPtr(CCallHelpers::NonZero, CCallHelpers::TrustedImm32(1), scratchGPR1).linkTo(copyLoop, &jit); done.link(&jit); }
bool JITNegGenerator::generateFastPath(CCallHelpers& jit, CCallHelpers::JumpList& endJumpList, CCallHelpers::JumpList& slowPathJumpList, const ArithProfile* arithProfile, bool shouldEmitProfiling) { ASSERT(m_scratchGPR != m_src.payloadGPR()); ASSERT(m_scratchGPR != m_result.payloadGPR()); ASSERT(m_scratchGPR != InvalidGPRReg); #if USE(JSVALUE32_64) ASSERT(m_scratchGPR != m_src.tagGPR()); ASSERT(m_scratchGPR != m_result.tagGPR()); #endif jit.moveValueRegs(m_src, m_result); CCallHelpers::Jump srcNotInt = jit.branchIfNotInt32(m_src); // -0 should produce a double, and hence cannot be negated as an int. // The negative int32 0x80000000 doesn't have a positive int32 representation, and hence cannot be negated as an int. slowPathJumpList.append(jit.branchTest32(CCallHelpers::Zero, m_src.payloadGPR(), CCallHelpers::TrustedImm32(0x7fffffff))); jit.neg32(m_result.payloadGPR()); #if USE(JSVALUE64) jit.boxInt32(m_result.payloadGPR(), m_result); #endif endJumpList.append(jit.jump()); srcNotInt.link(&jit); slowPathJumpList.append(jit.branchIfNotNumber(m_src, m_scratchGPR)); // For a double, all we need to do is to invert the sign bit. #if USE(JSVALUE64) jit.move(CCallHelpers::TrustedImm64((int64_t)(1ull << 63)), m_scratchGPR); jit.xor64(m_scratchGPR, m_result.payloadGPR()); #else jit.xor32(CCallHelpers::TrustedImm32(1 << 31), m_result.tagGPR()); #endif // The flags of ArithNegate are basic in DFG. // We only need to know if we ever produced a number. if (shouldEmitProfiling && arithProfile && !arithProfile->lhsObservedType().sawNumber() && !arithProfile->didObserveDouble()) arithProfile->emitSetDouble(jit); return true; }
static MacroAssemblerCodeRef virtualForThunkGenerator( VM* vm, CodeSpecializationKind kind, RegisterPreservationMode registers) { // The callee is in regT0 (for JSVALUE32_64, the tag is in regT1). // The return address is on the stack, or in the link register. We will hence // jump to the callee, or save the return address to the call frame while we // make a C++ function call to the appropriate JIT operation. CCallHelpers jit(vm); CCallHelpers::JumpList slowCase; // FIXME: we should have a story for eliminating these checks. In many cases, // the DFG knows that the value is definitely a cell, or definitely a function. #if USE(JSVALUE64) jit.move(CCallHelpers::TrustedImm64(TagMask), GPRInfo::regT2); slowCase.append( jit.branchTest64( CCallHelpers::NonZero, GPRInfo::regT0, GPRInfo::regT2)); #else slowCase.append( jit.branch32( CCallHelpers::NotEqual, GPRInfo::regT1, CCallHelpers::TrustedImm32(JSValue::CellTag))); #endif AssemblyHelpers::emitLoadStructure(jit, GPRInfo::regT0, GPRInfo::regT2, GPRInfo::regT1); slowCase.append( jit.branchPtr( CCallHelpers::NotEqual, CCallHelpers::Address(GPRInfo::regT2, Structure::classInfoOffset()), CCallHelpers::TrustedImmPtr(JSFunction::info()))); // Now we know we have a JSFunction. jit.loadPtr( CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfExecutable()), GPRInfo::regT2); jit.loadPtr( CCallHelpers::Address( GPRInfo::regT2, ExecutableBase::offsetOfJITCodeWithArityCheckFor(kind, registers)), GPRInfo::regT2); slowCase.append(jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT2)); // Now we know that we have a CodeBlock, and we're committed to making a fast // call. jit.loadPtr( CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfScopeChain()), GPRInfo::regT1); #if USE(JSVALUE64) jit.emitPutToCallFrameHeaderBeforePrologue(GPRInfo::regT1, JSStack::ScopeChain); #else jit.emitPutPayloadToCallFrameHeaderBeforePrologue(GPRInfo::regT1, JSStack::ScopeChain); jit.emitPutTagToCallFrameHeaderBeforePrologue(CCallHelpers::TrustedImm32(JSValue::CellTag), JSStack::ScopeChain); #endif // Make a tail call. This will return back to JIT code. emitPointerValidation(jit, GPRInfo::regT2); jit.jump(GPRInfo::regT2); slowCase.link(&jit); // Here we don't know anything, so revert to the full slow path. slowPathFor(jit, vm, operationVirtualFor(kind, registers)); LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID); return FINALIZE_CODE( patchBuffer, ("Virtual %s%s slow path thunk", kind == CodeForCall ? "call" : "construct", registers == MustPreserveRegisters ? " that preserves registers" : "")); }
static MacroAssemblerCodeRef virtualForThunkGenerator( JSGlobalData* globalData, CodeSpecializationKind kind) { // The return address is on the stack, or in the link register. We will hence // jump to the callee, or save the return address to the call frame while we // make a C++ function call to the appropriate DFG operation. CCallHelpers jit(globalData); CCallHelpers::JumpList slowCase; // FIXME: we should have a story for eliminating these checks. In many cases, // the DFG knows that the value is definitely a cell, or definitely a function. #if USE(JSVALUE64) slowCase.append( jit.branchTestPtr( CCallHelpers::NonZero, GPRInfo::nonArgGPR0, GPRInfo::tagMaskRegister)); #else slowCase.append( jit.branch32( CCallHelpers::NotEqual, GPRInfo::nonArgGPR1, CCallHelpers::TrustedImm32(JSValue::CellTag))); #endif jit.loadPtr(CCallHelpers::Address(GPRInfo::nonArgGPR0, JSCell::structureOffset()), GPRInfo::nonArgGPR2); slowCase.append( jit.branchPtr( CCallHelpers::NotEqual, CCallHelpers::Address(GPRInfo::nonArgGPR2, Structure::classInfoOffset()), CCallHelpers::TrustedImmPtr(&JSFunction::s_info))); // Now we know we have a JSFunction. jit.loadPtr( CCallHelpers::Address(GPRInfo::nonArgGPR0, JSFunction::offsetOfExecutable()), GPRInfo::nonArgGPR2); slowCase.append( jit.branch32( CCallHelpers::LessThan, CCallHelpers::Address( GPRInfo::nonArgGPR2, ExecutableBase::offsetOfNumParametersFor(kind)), CCallHelpers::TrustedImm32(0))); // Now we know that we have a CodeBlock, and we're committed to making a fast // call. jit.loadPtr( CCallHelpers::Address(GPRInfo::nonArgGPR0, JSFunction::offsetOfScopeChain()), GPRInfo::nonArgGPR1); #if USE(JSVALUE64) jit.storePtr( GPRInfo::nonArgGPR1, CCallHelpers::Address( GPRInfo::callFrameRegister, static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain)); #else jit.storePtr( GPRInfo::nonArgGPR1, CCallHelpers::Address( GPRInfo::callFrameRegister, static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload))); jit.store32( CCallHelpers::TrustedImm32(JSValue::CellTag), CCallHelpers::Address( GPRInfo::callFrameRegister, static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag))); #endif jit.loadPtr( CCallHelpers::Address(GPRInfo::nonArgGPR2, ExecutableBase::offsetOfJITCodeWithArityCheckFor(kind)), GPRInfo::regT0); // Make a tail call. This will return back to DFG code. emitPointerValidation(jit, GPRInfo::regT0); jit.jump(GPRInfo::regT0); slowCase.link(&jit); // Here we don't know anything, so revert to the full slow path. slowPathFor(jit, globalData, kind == CodeForCall ? operationVirtualCall : operationVirtualConstruct); LinkBuffer patchBuffer(*globalData, &jit, GLOBAL_THUNK_ID); return FINALIZE_CODE( patchBuffer, ("DFG virtual %s slow path thunk", kind == CodeForCall ? "call" : "construct")); }
void link(State& state) { Graph& graph = state.graph; CodeBlock* codeBlock = graph.m_codeBlock; VM& vm = graph.m_vm; // LLVM will create its own jump tables as needed. codeBlock->clearSwitchJumpTables(); #if !FTL_USES_B3 // What LLVM's stackmaps call stackSizeForLocals and what we call frameRegisterCount have a simple // relationship, though it's not obvious from reading the code. The easiest way to understand them // is to look at stackOffset, i.e. what you have to add to FP to get SP. For LLVM that is just: // // stackOffset == -state.jitCode->stackmaps.stackSizeForLocals() // // The way we define frameRegisterCount is that it satisfies this equality: // // stackOffset == virtualRegisterForLocal(frameRegisterCount - 1).offset() * sizeof(Register) // // We can simplify this when we apply virtualRegisterForLocal(): // // stackOffset == (-1 - (frameRegisterCount - 1)) * sizeof(Register) // stackOffset == (-1 - frameRegisterCount + 1) * sizeof(Register) // stackOffset == -frameRegisterCount * sizeof(Register) // // Therefore we just have: // // frameRegisterCount == -stackOffset / sizeof(Register) // // If we substitute what we have above, we get: // // frameRegisterCount == -(-state.jitCode->stackmaps.stackSizeForLocals()) / sizeof(Register) // frameRegisterCount == state.jitCode->stackmaps.stackSizeForLocals() / sizeof(Register) state.jitCode->common.frameRegisterCount = state.jitCode->stackmaps.stackSizeForLocals() / sizeof(void*); #endif state.jitCode->common.requiredRegisterCountForExit = graph.requiredRegisterCountForExit(); if (!graph.m_plan.inlineCallFrames->isEmpty()) state.jitCode->common.inlineCallFrames = graph.m_plan.inlineCallFrames; graph.registerFrozenValues(); // Create the entrypoint. Note that we use this entrypoint totally differently // depending on whether we're doing OSR entry or not. CCallHelpers jit(&vm, codeBlock); std::unique_ptr<LinkBuffer> linkBuffer; CCallHelpers::Address frame = CCallHelpers::Address( CCallHelpers::stackPointerRegister, -static_cast<int32_t>(AssemblyHelpers::prologueStackPointerDelta())); if (Profiler::Compilation* compilation = graph.compilation()) { compilation->addDescription( Profiler::OriginStack(), toCString("Generated FTL JIT code for ", CodeBlockWithJITType(codeBlock, JITCode::FTLJIT), ", instruction count = ", graph.m_codeBlock->instructionCount(), ":\n")); graph.ensureDominators(); graph.ensureNaturalLoops(); const char* prefix = " "; DumpContext dumpContext; StringPrintStream out; Node* lastNode = 0; for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); ++blockIndex) { BasicBlock* block = graph.block(blockIndex); if (!block) continue; graph.dumpBlockHeader(out, prefix, block, Graph::DumpLivePhisOnly, &dumpContext); compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); for (size_t nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); Profiler::OriginStack stack; if (node->origin.semantic.isSet()) { stack = Profiler::OriginStack( *vm.m_perBytecodeProfiler, codeBlock, node->origin.semantic); } if (graph.dumpCodeOrigin(out, prefix, lastNode, node, &dumpContext)) { compilation->addDescription(stack, out.toCString()); out.reset(); } graph.dump(out, prefix, node, &dumpContext); compilation->addDescription(stack, out.toCString()); out.reset(); if (node->origin.semantic.isSet()) lastNode = node; } } dumpContext.dump(out, prefix); compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); out.print(" Disassembly:\n"); #if FTL_USES_B3 out.print(" <not implemented yet>\n"); #else for (unsigned i = 0; i < state.jitCode->handles().size(); ++i) { if (state.codeSectionNames[i] != SECTION_NAME("text")) continue; ExecutableMemoryHandle* handle = state.jitCode->handles()[i].get(); disassemble( MacroAssemblerCodePtr(handle->start()), handle->sizeInBytes(), " ", out, LLVMSubset); } #endif compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); state.jitCode->common.compilation = compilation; } switch (graph.m_plan.mode) { case FTLMode: { CCallHelpers::JumpList mainPathJumps; jit.load32( frame.withOffset(sizeof(Register) * JSStack::ArgumentCount), GPRInfo::regT1); mainPathJumps.append(jit.branch32( CCallHelpers::AboveOrEqual, GPRInfo::regT1, CCallHelpers::TrustedImm32(codeBlock->numParameters()))); jit.emitFunctionPrologue(); jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); jit.store32( CCallHelpers::TrustedImm32(CallSiteIndex(0).bits()), CCallHelpers::tagFor(JSStack::ArgumentCount)); jit.storePtr(GPRInfo::callFrameRegister, &vm.topCallFrame); CCallHelpers::Call callArityCheck = jit.call(); #if !ASSERT_DISABLED // FIXME: need to make this call register with exception handling somehow. This is // part of a bigger problem: FTL should be able to handle exceptions. // https://bugs.webkit.org/show_bug.cgi?id=113622 // Until then, use a JIT ASSERT. jit.load64(vm.addressOfException(), GPRInfo::regT1); jit.jitAssertIsNull(GPRInfo::regT1); #endif jit.move(GPRInfo::returnValueGPR, GPRInfo::argumentGPR0); jit.emitFunctionEpilogue(); mainPathJumps.append(jit.branchTest32(CCallHelpers::Zero, GPRInfo::argumentGPR0)); jit.emitFunctionPrologue(); CCallHelpers::Call callArityFixup = jit.call(); jit.emitFunctionEpilogue(); mainPathJumps.append(jit.jump()); linkBuffer = std::make_unique<LinkBuffer>(vm, jit, codeBlock, JITCompilationCanFail); if (linkBuffer->didFailToAllocate()) { state.allocationFailed = true; return; } linkBuffer->link(callArityCheck, codeBlock->m_isConstructor ? operationConstructArityCheck : operationCallArityCheck); linkBuffer->link(callArityFixup, FunctionPtr((vm.getCTIStub(arityFixupGenerator)).code().executableAddress())); linkBuffer->link(mainPathJumps, CodeLocationLabel(bitwise_cast<void*>(state.generatedFunction))); state.jitCode->initializeAddressForCall(MacroAssemblerCodePtr(bitwise_cast<void*>(state.generatedFunction))); break; } case FTLForOSREntryMode: { // We jump to here straight from DFG code, after having boxed up all of the // values into the scratch buffer. Everything should be good to go - at this // point we've even done the stack check. Basically we just have to make the // call to the LLVM-generated code. CCallHelpers::Label start = jit.label(); jit.emitFunctionEpilogue(); CCallHelpers::Jump mainPathJump = jit.jump(); linkBuffer = std::make_unique<LinkBuffer>(vm, jit, codeBlock, JITCompilationCanFail); if (linkBuffer->didFailToAllocate()) { state.allocationFailed = true; return; } linkBuffer->link(mainPathJump, CodeLocationLabel(bitwise_cast<void*>(state.generatedFunction))); state.jitCode->initializeAddressForCall(linkBuffer->locationOf(start)); break; } default: RELEASE_ASSERT_NOT_REACHED(); break; } state.finalizer->entrypointLinkBuffer = WTFMove(linkBuffer); state.finalizer->function = state.generatedFunction; state.finalizer->jitCode = state.jitCode; }
// FIXME: We should distinguish between a megamorphic virtual call vs. a slow // path virtual call so that we can enable fast tail calls for megamorphic // virtual calls by using the shuffler. // https://bugs.webkit.org/show_bug.cgi?id=148831 MacroAssemblerCodeRef virtualThunkFor(VM* vm, CallLinkInfo& callLinkInfo) { // The callee is in regT0 (for JSVALUE32_64, the tag is in regT1). // The return address is on the stack, or in the link register. We will hence // jump to the callee, or save the return address to the call frame while we // make a C++ function call to the appropriate JIT operation. CCallHelpers jit(vm); CCallHelpers::JumpList slowCase; // This is a slow path execution, and regT2 contains the CallLinkInfo. Count the // slow path execution for the profiler. jit.add32( CCallHelpers::TrustedImm32(1), CCallHelpers::Address(GPRInfo::regT2, CallLinkInfo::offsetOfSlowPathCount())); // FIXME: we should have a story for eliminating these checks. In many cases, // the DFG knows that the value is definitely a cell, or definitely a function. #if USE(JSVALUE64) jit.move(CCallHelpers::TrustedImm64(TagMask), GPRInfo::regT4); slowCase.append( jit.branchTest64( CCallHelpers::NonZero, GPRInfo::regT0, GPRInfo::regT4)); #else slowCase.append( jit.branch32( CCallHelpers::NotEqual, GPRInfo::regT1, CCallHelpers::TrustedImm32(JSValue::CellTag))); #endif AssemblyHelpers::emitLoadStructure(jit, GPRInfo::regT0, GPRInfo::regT4, GPRInfo::regT1); slowCase.append( jit.branchPtr( CCallHelpers::NotEqual, CCallHelpers::Address(GPRInfo::regT4, Structure::classInfoOffset()), CCallHelpers::TrustedImmPtr(JSFunction::info()))); // Now we know we have a JSFunction. jit.loadPtr( CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfExecutable()), GPRInfo::regT4); jit.loadPtr( CCallHelpers::Address( GPRInfo::regT4, ExecutableBase::offsetOfJITCodeWithArityCheckFor( callLinkInfo.specializationKind())), GPRInfo::regT4); slowCase.append(jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT4)); // Now we know that we have a CodeBlock, and we're committed to making a fast // call. // Make a tail call. This will return back to JIT code. emitPointerValidation(jit, GPRInfo::regT4); if (callLinkInfo.isTailCall()) { jit.preserveReturnAddressAfterCall(GPRInfo::regT0); jit.prepareForTailCallSlow(GPRInfo::regT4); } jit.jump(GPRInfo::regT4); slowCase.link(&jit); // Here we don't know anything, so revert to the full slow path. slowPathFor(jit, vm, operationVirtualCall); LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID); return FINALIZE_CODE( patchBuffer, ("Virtual %s slow path thunk", callLinkInfo.callMode() == CallMode::Regular ? "call" : callLinkInfo.callMode() == CallMode::Tail ? "tail call" : "construct")); }
void link(State& state) { Graph& graph = state.graph; CodeBlock* codeBlock = graph.m_codeBlock; VM& vm = graph.m_vm; // LLVM will create its own jump tables as needed. codeBlock->clearSwitchJumpTables(); // FIXME: Need to know the real frame register count. // https://bugs.webkit.org/show_bug.cgi?id=125727 state.jitCode->common.frameRegisterCount = 1000; state.jitCode->common.requiredRegisterCountForExit = graph.requiredRegisterCountForExit(); if (!graph.m_plan.inlineCallFrames->isEmpty()) state.jitCode->common.inlineCallFrames = graph.m_plan.inlineCallFrames; graph.registerFrozenValues(); // Create the entrypoint. Note that we use this entrypoint totally differently // depending on whether we're doing OSR entry or not. CCallHelpers jit(&vm, codeBlock); std::unique_ptr<LinkBuffer> linkBuffer; CCallHelpers::Address frame = CCallHelpers::Address( CCallHelpers::stackPointerRegister, -static_cast<int32_t>(AssemblyHelpers::prologueStackPointerDelta())); if (Profiler::Compilation* compilation = graph.compilation()) { compilation->addDescription( Profiler::OriginStack(), toCString("Generated FTL JIT code for ", CodeBlockWithJITType(codeBlock, JITCode::FTLJIT), ", instruction count = ", graph.m_codeBlock->instructionCount(), ":\n")); graph.m_dominators.computeIfNecessary(graph); graph.m_naturalLoops.computeIfNecessary(graph); const char* prefix = " "; DumpContext dumpContext; StringPrintStream out; Node* lastNode = 0; for (size_t blockIndex = 0; blockIndex < graph.numBlocks(); ++blockIndex) { BasicBlock* block = graph.block(blockIndex); if (!block) continue; graph.dumpBlockHeader(out, prefix, block, Graph::DumpLivePhisOnly, &dumpContext); compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); for (size_t nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { Node* node = block->at(nodeIndex); if (!node->willHaveCodeGenOrOSR() && !Options::showAllDFGNodes()) continue; Profiler::OriginStack stack; if (node->origin.semantic.isSet()) { stack = Profiler::OriginStack( *vm.m_perBytecodeProfiler, codeBlock, node->origin.semantic); } if (graph.dumpCodeOrigin(out, prefix, lastNode, node, &dumpContext)) { compilation->addDescription(stack, out.toCString()); out.reset(); } graph.dump(out, prefix, node, &dumpContext); compilation->addDescription(stack, out.toCString()); out.reset(); if (node->origin.semantic.isSet()) lastNode = node; } } dumpContext.dump(out, prefix); compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); out.print(" Disassembly:\n"); for (unsigned i = 0; i < state.jitCode->handles().size(); ++i) { if (state.codeSectionNames[i] != SECTION_NAME("text")) continue; ExecutableMemoryHandle* handle = state.jitCode->handles()[i].get(); disassemble( MacroAssemblerCodePtr(handle->start()), handle->sizeInBytes(), " ", out, LLVMSubset); } compilation->addDescription(Profiler::OriginStack(), out.toCString()); out.reset(); state.jitCode->common.compilation = compilation; } switch (graph.m_plan.mode) { case FTLMode: { CCallHelpers::JumpList mainPathJumps; jit.load32( frame.withOffset(sizeof(Register) * JSStack::ArgumentCount), GPRInfo::regT1); mainPathJumps.append(jit.branch32( CCallHelpers::AboveOrEqual, GPRInfo::regT1, CCallHelpers::TrustedImm32(codeBlock->numParameters()))); jit.emitFunctionPrologue(); jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); jit.store32( CCallHelpers::TrustedImm32(CallFrame::Location::encodeAsBytecodeOffset(0)), CCallHelpers::tagFor(JSStack::ArgumentCount)); jit.storePtr(GPRInfo::callFrameRegister, &vm.topCallFrame); CCallHelpers::Call callArityCheck = jit.call(); #if !ASSERT_DISABLED // FIXME: need to make this call register with exception handling somehow. This is // part of a bigger problem: FTL should be able to handle exceptions. // https://bugs.webkit.org/show_bug.cgi?id=113622 // Until then, use a JIT ASSERT. jit.load64(vm.addressOfException(), GPRInfo::regT1); jit.jitAssertIsNull(GPRInfo::regT1); #endif jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); jit.emitFunctionEpilogue(); mainPathJumps.append(jit.branchTest32(CCallHelpers::Zero, GPRInfo::regT0)); jit.emitFunctionPrologue(); jit.move(CCallHelpers::TrustedImmPtr(vm.arityCheckFailReturnThunks->returnPCsFor(vm, codeBlock->numParameters())), GPRInfo::regT7); jit.loadPtr(CCallHelpers::BaseIndex(GPRInfo::regT7, GPRInfo::regT0, CCallHelpers::timesPtr()), GPRInfo::regT7); CCallHelpers::Call callArityFixup = jit.call(); jit.emitFunctionEpilogue(); mainPathJumps.append(jit.jump()); linkBuffer = std::make_unique<LinkBuffer>(vm, jit, codeBlock, JITCompilationMustSucceed); linkBuffer->link(callArityCheck, codeBlock->m_isConstructor ? operationConstructArityCheck : operationCallArityCheck); linkBuffer->link(callArityFixup, FunctionPtr((vm.getCTIStub(arityFixupGenerator)).code().executableAddress())); linkBuffer->link(mainPathJumps, CodeLocationLabel(bitwise_cast<void*>(state.generatedFunction))); state.jitCode->initializeAddressForCall(MacroAssemblerCodePtr(bitwise_cast<void*>(state.generatedFunction))); break; } case FTLForOSREntryMode: { // We jump to here straight from DFG code, after having boxed up all of the // values into the scratch buffer. Everything should be good to go - at this // point we've even done the stack check. Basically we just have to make the // call to the LLVM-generated code. CCallHelpers::Label start = jit.label(); jit.emitFunctionEpilogue(); CCallHelpers::Jump mainPathJump = jit.jump(); linkBuffer = std::make_unique<LinkBuffer>(vm, jit, codeBlock, JITCompilationMustSucceed); linkBuffer->link(mainPathJump, CodeLocationLabel(bitwise_cast<void*>(state.generatedFunction))); state.jitCode->initializeAddressForCall(linkBuffer->locationOf(start)); break; } default: RELEASE_ASSERT_NOT_REACHED(); break; } state.finalizer->entrypointLinkBuffer = WTF::move(linkBuffer); state.finalizer->function = state.generatedFunction; state.finalizer->jitCode = state.jitCode; }