void Fluid2DTextureApp::draw()
{
	// clear out the window with black
	gl::clear( Color( 0, 0, 0 ) ); 
	gl::setMatricesWindow( getWindowWidth(), getWindowHeight() );

	// Update the positions and tex coords
	Rectf drawRect = getWindowBounds();
	int limX = mFluid2D.resX() - 1;
	int limY = mFluid2D.resY() - 1;
	float dx = drawRect.getWidth()/(float)limX;
	float dy = drawRect.getHeight()/(float)limY;
	
	for( int j = 0; j < mFluid2D.resY(); ++j ) {
		for( int i = 0; i < mFluid2D.resX(); ++i ) {
			vec2 P = vec2( i*dx, j*dy );
			vec2 uv = mFluid2D.texCoordAt( i, j );

			int idx = j*mFluid2D.resX() + i;
			mTriMesh->getPositions<2>()[idx] = P;
			mTriMesh->getTexCoords0<2>()[idx] = uv;
			
		}
	}

	mTex->bind();
	gl::bindStockShader( gl::ShaderDef().color().texture() );
	gl::draw( gl::VboMesh::create(*mTriMesh) );
	mTex->unbind();
	
	mParams.draw();	
}
void Fluid2DTextureApp::draw()
{
	// clear out the window with black
	gl::clear( Color( 0, 0, 0 ) ); 
	gl::setMatricesWindow( getWindowWidth(), getWindowHeight() );

	// Update the positions and tex coords
	Rectf drawRect = getWindowBounds();
	int limX = mFluid2D.resX() - 1;
	int limY = mFluid2D.resY() - 1;
	float dx = drawRect.getWidth()/(float)limX;
	float dy = drawRect.getHeight()/(float)limY;
	
	for( int j = 0; j < mFluid2D.resY(); ++j ) {
		for( int i = 0; i < mFluid2D.resX(); ++i ) {
			Vec2f P = Vec2f( i*dx, j*dy );
			Vec2f uv = mFluid2D.texCoordAt( i, j );

			int idx = j*mFluid2D.resX() + i;
			mTriMesh.getVertices()[idx] = P;
			mTriMesh.getTexCoords()[idx] = uv;
			
		}
	}

	mTex.bind();
	gl::draw( mTriMesh ); 
	mTex.unbind();
	
	mParams.draw();	
}
void Fluid2DParticlesApp::touchesMoved( TouchEvent event )
{
    float s = 10;

    const std::vector<TouchEvent::Touch>& touches = event.getTouches();
    for( std::vector<TouchEvent::Touch>::const_iterator cit = touches.begin(); cit != touches.end(); ++cit ) {
        if( mTouchColors.find( cit->getId() ) == mTouchColors.end() )
            continue;
        vec2 prevPos = cit->getPrevPos();
        vec2 pos = cit->getPos();
        float x = (pos.x/(float)getWindowWidth())*mFluid2D.resX();
        float y = (pos.y/(float)getWindowHeight())*mFluid2D.resY();
        vec2 dv = pos - prevPos;
        mFluid2D.splatVelocity( x, y, mVelScale*dv );
        mFluid2D.splatRgb( x, y, mRgbScale*mTouchColors[cit->getId()] );
        if( mFluid2D.isBuoyancyEnabled() ) {
            mFluid2D.splatDensity( x, y, mDenScale );
        }
        for( int i = 0; i < 5; ++i ) {
            vec2 partPos = pos + vec2( Rand::randFloat( -s, s ), Rand::randFloat( -s, s ) );
            float life = Rand::randFloat( 3.0f, 6.0f );
            mParticles.append( Particle( partPos, life, mTouchColors[cit->getId()] ) );
        }

    }
}
void Fluid2DBasicApp::draw()
{
	// clear out the window with black
	gl::clear( Color( 0, 0, 0 ) ); 

	Channel32f chan( mFluid2D.resX(), mFluid2D.resY(), mFluid2D.resX()*sizeof(float), 1, const_cast<float*>( mFluid2D.density().data() ) );

	if( ! mTex ) {
		mTex = gl::Texture( chan );
	} else {
		mTex.update( chan );
	}
	gl::color( Color( 1, 1, 1 ) );
	gl::draw( mTex, getWindowBounds() );

	mParams.draw();
}
Exemple #5
0
void Fluid2DRGBApp::draw()
{
	// clear out the window with black
	gl::clear( Color( 0, 0, 0 ) ); 

	//RenderFluidRgb( mFluid2D, getWindowBounds() );
	float* data = const_cast<float*>( (float*)mFluid2D.rgb().data() );
	Surface32f surf( data, mFluid2D.resX(), mFluid2D.resY(), mFluid2D.resX()*sizeof(Colorf), SurfaceChannelOrder::RGB );
	
	if ( ! mTex ) {
		mTex = gl::Texture::create( surf );
	} else {
		mTex->update( surf );
	}
	gl::draw( mTex, getWindowBounds() );
	
	mParams.draw();
}
void Fluid2DCamAppApp::mouseDrag( MouseEvent event )
{
	float x = (event.getX()/(float)getWindowWidth())*mFluid2D.resX();
	float y = (event.getY()/(float)getWindowHeight())*mFluid2D.resY();	
	
	if( event.isLeftDown() ) {
		Vec2f dv = event.getPos() - mPrevPos;
		mFluid2D.splatVelocity( x, y, mVelScale*dv );
		mFluid2D.splatDensity( x, y, mDenScale );
	}

	mPrevPos = event.getPos();
}
void Fluid2DBasicApp::touchesMoved( TouchEvent event )
{
	const std::vector<TouchEvent::Touch>& touches = event.getTouches();
	for( std::vector<TouchEvent::Touch>::const_iterator cit = touches.begin(); cit != touches.end(); ++cit ) {
		Vec2f prevPos = cit->getPrevPos();
		Vec2f pos = cit->getPos();
		float x = (pos.x/(float)getWindowWidth())*mFluid2D.resX();
		float y = (pos.y/(float)getWindowHeight())*mFluid2D.resY();	
		Vec2f dv = pos - prevPos;
		mFluid2D.splatVelocity( x, y, mVelScale*dv );
		mFluid2D.splatDensity( x, y, mDenScale );
	}
}
void Fluid2DParticlesApp::setup()
{
    glEnable( GL_TEXTURE_2D );
    gl::enableAlphaBlending();
    gl::enableAdditiveBlending();

    mRgbScale = 50;
    mDenScale = 50;

    mFluid2D.set( 192, 192 );
    mFluid2D.setDensityDissipation( 0.99f );
    mFluid2D.setRgbDissipation( 0.99f );
    mVelScale = 3.0f*std::max( mFluid2D.resX(), mFluid2D.resY() );

    mParams = params::InterfaceGl( "Params", ivec2( 300, 400 ) );
    mParams.addParam( "Stam Step", mFluid2D.stamStepAddr() );
    mParams.addSeparator();
    mParams.addParam( "Velocity Input Scale", &mVelScale, "min=0 max=10000 step=1" );
    mParams.addParam( "Density Input Scale", &mDenScale, "min=0 max=1000 step=1" );
    mParams.addParam( "Rgb Input Scale", &mRgbScale, "min=0 max=1000 step=1" );
    mParams.addSeparator();
    mParams.addParam( "Velocity Dissipation", mFluid2D.velocityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
    mParams.addParam( "Density Dissipation", mFluid2D.densityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
    mParams.addParam( "Rgb Dissipation", mFluid2D.rgbDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
    mParams.addSeparator();
    mParams.addParam( "Velocity Viscosity", mFluid2D.velocityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
    mParams.addParam( "Density Viscosity", mFluid2D.densityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
    mParams.addParam( "Rgb Viscosity", mFluid2D.rgbViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
    mParams.addSeparator();
    mParams.addSeparator();
    mParams.addParam( "Vorticity Confinement", mFluid2D.enableVorticityConfinementAddr() );
    mParams.addSeparator();
    std::vector<std::string> boundaries;
    boundaries.push_back( "None" );
    boundaries.push_back( "Wall" );
    boundaries.push_back( "Wrap" );
    mParams.addParam( "Boundary Type", boundaries, mFluid2D.boundaryTypeAddr() );
    mParams.addSeparator();
    mParams.addParam( "Enable Buoyancy", mFluid2D.enableBuoyancyAddr() );
    mParams.addParam( "Buoyancy Scale", mFluid2D.buoyancyScaleAddr(), "min=0 max=100 step=0.001" );
    mParams.addParam( "Vorticity Scale", mFluid2D.vorticityScaleAddr(), "min=0 max=1 step=0.001" );

    mFluid2D.setDt( 0.1f );
    mFluid2D.enableDensity();
    mFluid2D.enableRgb();
    mFluid2D.enableVorticityConfinement();

    mParticles.setup( getWindowBounds(), &mFluid2D );
}
void Fluid2DTextureApp::mouseDrag( MouseEvent event )
{
	float x = (event.getX()/(float)getWindowWidth())*mFluid2D.resX();
	float y = (event.getY()/(float)getWindowHeight())*mFluid2D.resY();	
	
	if( event.isLeftDown() ) {
		vec2 dv = vec2( event.getPos() ) - mPrevPos;
		mFluid2D.splatVelocity( x, y, mVelScale*dv );
		if( mFluid2D.isBuoyancyEnabled() ) {
			mFluid2D.splatDensity( x, y, mDenScale );
		}
	}
	
	mPrevPos = event.getPos();
}
void Fluid2DParticleSoupApp::mouseDrag( MouseEvent event )
{
	float x = (event.getX()/(float)getWindowWidth())*mFluid2D.resX();
	float y = (event.getY()/(float)getWindowHeight())*mFluid2D.resY();	
	
	if( event.isLeftDown() ) {
		Vec2f dv = event.getPos() - mPrevPos;
		mFluid2D.splatVelocity( x, y, mVelScale*dv );
		mFluid2D.splatRgb( x, y, mRgbScale*mColor );
		if( mFluid2D.isBuoyancyEnabled() ) {
			mFluid2D.splatDensity( x, y, mDenScale );
		}
	}
	
	mPrevPos = event.getPos();
}
void Fluid2DParticleSoupApp::touchesMoved( TouchEvent event )
{
	const std::vector<TouchEvent::Touch>& touches = event.getTouches();
	for( std::vector<TouchEvent::Touch>::const_iterator cit = touches.begin(); cit != touches.end(); ++cit ) {
		vec2 prevPos = cit->getPrevPos();
		vec2 pos = cit->getPos();
		float x = (pos.x/(float)getWindowWidth())*mFluid2D.resX();
		float y = (pos.y/(float)getWindowHeight())*mFluid2D.resY();	
		vec2 dv = pos - prevPos;
		mFluid2D.splatVelocity( x, y, mVelScale*dv );
		mFluid2D.splatRgb( x, y, mRgbScale*mColor );
		if( mFluid2D.isBuoyancyEnabled() ) {
			mFluid2D.splatDensity( x, y, mDenScale );
		}
	}
}
void Fluid2DParticleSoupApp::setup()
{
	glEnable( GL_TEXTURE_2D );

	mDenScale = 50;
	mRgbScale = 40;

	mFluid2D.set( 192, 192 );
   	mFluid2D.setDensityDissipation( 0.99f );
	mFluid2D.setRgbDissipation( 0.99f ); 
	mVelScale = 3.0f*std::max( mFluid2D.resX(), mFluid2D.resY() );
	
	mParams = params::InterfaceGl( "Params", Vec2i( 300, 400 ) );
	mParams.addParam( "Stam Step", mFluid2D.stamStepAddr() );
	mParams.addSeparator();
	mParams.addParam( "Velocity Input Scale", &mVelScale, "min=0 max=10000 step=1" );
	mParams.addParam( "Density Input Scale", &mDenScale, "min=0 max=1000 step=1" );
	mParams.addParam( "Rgb Input Scale", &mRgbScale, "min=0 max=1000 step=1" );
	mParams.addSeparator();
	mParams.addParam( "Velocity Dissipation", mFluid2D.velocityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
	mParams.addParam( "Density Dissipation", mFluid2D.densityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
	mParams.addParam( "Rgb Dissipation", mFluid2D.rgbDissipationAddr(), "min=0.0001 max=1 step=0.0001" );     
	mParams.addSeparator();
	mParams.addParam( "Velocity Viscosity", mFluid2D.velocityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addParam( "Density Viscosity", mFluid2D.densityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addParam( "Rgb Viscosity", mFluid2D.rgbViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addSeparator();
	mParams.addParam( "Vorticity Confinement", mFluid2D.enableVorticityConfinementAddr() );
	mParams.addSeparator();
	std::vector<std::string> boundaries;
	boundaries.push_back( "None" ); boundaries.push_back( "Wall" ); boundaries.push_back( "Wrap" );
	mParams.addParam( "Boundary Type", boundaries, mFluid2D.boundaryTypeAddr() );
	mParams.addSeparator();
	mParams.addParam( "Enable Buoyancy", mFluid2D.enableBuoyancyAddr() );
	mParams.addParam( "Buoyancy Scale", mFluid2D.buoyancyScaleAddr(), "min=0 max=100 step=0.001" );
	mParams.addParam( "Vorticity Scale", mFluid2D.vorticityScaleAddr(), "min=0 max=1 step=0.001" );
	
	mFluid2D.setRgbDissipation( 0.9930f );
	mFluid2D.enableDensity();
	mFluid2D.enableRgb();
	mFluid2D.enableVorticityConfinement();
	mFluid2D.initSimData();

	mParticleSoup.setup( &mFluid2D );

	mColor = Colorf( 0.98f, 0.7f, 0.4f );
}
void Fluid2DParticlesApp::mouseDrag( MouseEvent event )
{
    float x = (event.getX()/(float)getWindowWidth())*mFluid2D.resX();
    float y = (event.getY()/(float)getWindowHeight())*mFluid2D.resY();
    float s = 10;

    if( event.isLeftDown() ) {
        vec2 dv = vec2( event.getPos() ) - mPrevPos;
        mFluid2D.splatVelocity( x, y, mVelScale*dv );
        mFluid2D.splatRgb( x, y, mRgbScale*mColor );
        if( mFluid2D.isBuoyancyEnabled() ) {
            mFluid2D.splatDensity( x, y, mDenScale );
        }
        //
        for( int i = 0; i < 10; ++i ) {
            vec2 partPos = vec2( event.getPos() ) + vec2( Rand::randFloat( -s, s ), Rand::randFloat( -s, s ) );
            float life = Rand::randFloat( 2.0f, 4.0f );
            mParticles.append( Particle( partPos, life, mColor ) );
        }
    }

    mPrevPos = event.getPos();
}
void Fluid2DTextureApp::setup()
{
	mFrameRate = 0.0f;

	mTex = gl::Texture::create( loadImage( loadResource( RES_IMAGE ) ) );

	mFluid2D.enableTexCoord();
	mFluid2D.setTexCoordViscosity( 1.0f );

	mDenScale = 50;

	mFluid2D.set( 192, 192 );
   	mFluid2D.setDensityDissipation( 0.99f );
	mVelScale = 0.50f*std::max( mFluid2D.resX(), mFluid2D.resY() );
    
	mParams = params::InterfaceGl( "Params", ivec2( 300, 400 ) );
	mParams.addParam( "Stam Step", mFluid2D.stamStepAddr() );
	mParams.addSeparator();
	mParams.addParam( "Velocity Input Scale", &mVelScale, "min=0 max=10000 step=1" );
	mParams.addParam( "Density Input Scale", &mDenScale, "min=0 max=1000 step=1" );
	mParams.addSeparator();
	mParams.addParam( "Velocity Dissipation", mFluid2D.velocityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
	mParams.addParam( "Density Dissipation", mFluid2D.densityDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
	mParams.addParam( "TexCoord Dissipation", mFluid2D.texCoordDissipationAddr(), "min=0.0001 max=1 step=0.0001" );
	mParams.addSeparator();
	mParams.addParam( "Velocity Viscosity", mFluid2D.velocityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addParam( "Density Viscosity", mFluid2D.densityViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addParam( "TexCoord Viscosity", mFluid2D.texCoordViscosityAddr(), "min=0.000001 max=10 step=0.000001" );
	mParams.addSeparator();
	//mParams.addParam( "Vorticity Confinement", mFluid2D.enableVorticityConfinementAddr() );
	//mParams.addSeparator();
	std::vector<std::string> boundaries;
	boundaries.push_back( "None" ); boundaries.push_back( "Wall" ); boundaries.push_back( "Wrap" );
	mParams.addParam( "Boundary Type", boundaries, mFluid2D.boundaryTypeAddr() );
	mParams.addSeparator();
	mParams.addParam( "Enable Buoyancy", mFluid2D.enableBuoyancyAddr() );
	mParams.addParam( "Buoyancy Scale", mFluid2D.buoyancyScaleAddr(), "min=0 max=100 step=0.001" );
	mParams.addParam( "Vorticity Scale", mFluid2D.vorticityScaleAddr(), "min=0 max=1 step=0.001" );
	
	mTriMesh = ci::TriMesh::create( TriMesh::Format().positions(2).texCoords0(2) );

	// Points and texture coordinates
	for( int j = 0; j < mFluid2D.resY(); ++j ) {
		for( int i = 0; i < mFluid2D.resX(); ++i ) {
			mTriMesh->appendPosition( vec2( 0.0f, 0.0f ) );
			mTriMesh->appendTexCoord0( vec2( 0.0f, 0.0f ) );
		}
	}
	// Triangles
	for( int j = 0; j < mFluid2D.resY() - 1; ++j ) {
		for( int i = 0; i < mFluid2D.resX() - 1; ++i ) {
			int idx0 = (j + 0)*mFluid2D.resX() + (i + 0 );
			int idx1 = (j + 1)*mFluid2D.resX() + (i + 0 );
			int idx2 = (j + 1)*mFluid2D.resX() + (i + 1 );
			int idx3 = (j + 0)*mFluid2D.resX() + (i + 1 );
			mTriMesh->appendTriangle( idx0, idx1, idx2 );
			mTriMesh->appendTriangle( idx0, idx2, idx3 );
		}
	}
	
	//console() << mFluid2D << std::endl;
}