Exemple #1
0
void Regression::write(cv::InputArray array)
{
    write() << "kind" << array.kind();
    write() << "type" << array.type();
    if (isVector(array))
    {
        int total = (int)array.total();
        int idx = regRNG.uniform(0, total);
        write() << "len" << total;
        write() << "idx" << idx;

        cv::Mat m = array.getMat(idx);

        if (m.total() * m.channels() < 26) //5x5 or smaller
            write() << "val" << m;
        else
            write(m);
    }
    else
    {
        if (array.total() * array.channels() < 26) //5x5 or smaller
            write() << "val" << array.getMat();
        else
            write(array.getMat());
    }
}
Exemple #2
0
void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err)
{
    int expected_kind = (int)node["kind"];
    int expected_type = (int)node["type"];
    ASSERT_EQ(expected_kind, array.kind()) << "  Argument \"" << node.name() << "\" has unexpected kind";
    ASSERT_EQ(expected_type, array.type()) << "  Argument \"" << node.name() << "\" has unexpected type";

    cv::FileNode valnode = node["val"];
    if (isVector(array))
    {
        int expected_length = (int)node["len"];
        ASSERT_EQ(expected_length, (int)array.total()) << "  Vector \"" << node.name() << "\" has unexpected length";
        int idx = node["idx"];

        cv::Mat actual = array.getMat(idx);

        if (valnode.isNone())
        {
            ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels())
                    << "  \"" << node.name() << "[" <<  idx << "]\" has unexpected number of elements";
            verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err);
        }
        else
        {
            cv::Mat expected;
            valnode >> expected;

            if(expected.empty())
            {
                ASSERT_TRUE(actual.empty())
                    << "  expected empty " << node.name() << "[" <<  idx<< "]";
            }
            else
            {
                ASSERT_EQ(expected.size(), actual.size())
                        << "  " << node.name() << "[" <<  idx<< "] has unexpected size";

                cv::Mat diff;
                cv::absdiff(expected, actual, diff);

                if (err == ERROR_ABSOLUTE)
                {
                    if (!cv::checkRange(diff, true, 0, 0, eps))
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        double max;
                        cv::minMaxIdx(diff.reshape(1), 0, &max);

                        FAIL() << "  Absolute difference (=" << max << ") between argument \""
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps;
                    }
                }
                else if (err == ERROR_RELATIVE)
                {
                    double maxv, maxa;
                    int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
                    if (violations > 0)
                    {
                        FAIL() << "  Relative difference (" << maxv << " of " << maxa << " allowed) between argument \""
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps << " in " << violations << " points";
                    }
                }
            }
        }
    }
    else
    {
        if (valnode.isNone())
Exemple #3
0
bool Regression::isVector(cv::InputArray a)
{
    return a.kind() == cv::_InputArray::STD_VECTOR_MAT || a.kind() == cv::_InputArray::STD_VECTOR_VECTOR;
}