void RotatingRaySensor::prepareFinalPointcloud(){
   // Copies current full pointcloud to pointcloud_full.
   poseMutex.lock();
   Eigen::Affine3d current_pose2 = current_pose;
   Eigen::Affine3d rot;
   rot.setIdentity();
   rot.rotate(config.transf_sensor_rot_to_sensor);
   poseMutex.unlock();
   std::list<utils::Vector>::iterator it = fromCloud->begin();
   pointcloud_full.clear();
   pointcloud_full.reserve(fromCloud->size());
   base::Vector3d vec_local;
   for(int i=0; it != fromCloud->end(); it++, i++) {
     // Transforms the pointcloud back from world to current node (see receiveDate()).
     // In addition 'transf_sensor_rot_to_sensor' is applied which describes
     // the orientation of the sensor in the unturned sensor frame.
     vec_local = rot * current_pose2.inverse() * (*it);
     pointcloud_full.push_back(vec_local);
   }
   //LOG_DEBUG("[RotatingRaySensor::prepareFinalPointcloud]: Pointcloud size: %d", pointcloud_full.size());
   fromCloud->clear();
 }
TEST(TFEigenConversions, eigen_tf_transform)
{
  tf::Transform t;
  Eigen::Affine3d k;
  Eigen::Quaterniond kq;
  kq.coeffs()(0) = gen_rand(-1.0,1.0);
  kq.coeffs()(1) = gen_rand(-1.0,1.0);
  kq.coeffs()(2) = gen_rand(-1.0,1.0);
  kq.coeffs()(3) = gen_rand(-1.0,1.0);
  kq.normalize();
  k.translate(Eigen::Vector3d(gen_rand(-10,10),gen_rand(-10,10),gen_rand(-10,10)));
  k.rotate(kq);

  transformEigenToTF(k,t);
  for(int i=0; i < 3; i++)
  {
    ASSERT_NEAR(t.getOrigin()[i],k.matrix()(i,3),1e-6);
    for(int j=0; j < 3; j++)
    {      
      ASSERT_NEAR(t.getBasis()[i][j],k.matrix()(i,j),1e-6);
    }
  }
}
Exemple #3
0
icp_result sac_icp(PointCloudT::Ptr object, PointCloudT::Ptr scene, Eigen::Affine3d seed_pose) {
  /* Apply ICP at many different offsets and orientations to seek a more accurate pose estimate */
  // This is good, allow configurable distance-offset
  Eigen::Vector3d offsets[] = {
    Eigen::Vector3d(0., 0., 0. ),
    Eigen::Vector3d(-0.06, 0, 0),
    Eigen::Vector3d(0, -0.06, 0),
    Eigen::Vector3d(0, 0, -0.06),
    Eigen::Vector3d(0.06, 0, 0 ),
    Eigen::Vector3d(0, 0.06, 0 ),
    Eigen::Vector3d(0, 0, 0.06 )
  };

  // -> Do this better (try 45 deg increments, try auto-generating)
  orientation orientations[] = {
    {Eigen::Vector3d::UnitZ(), 0.0},
    {Eigen::Vector3d::UnitZ(), M_PI / 5},
    {Eigen::Vector3d::UnitZ(), 2 * M_PI / 5},
    {Eigen::Vector3d::UnitZ(), 3 * M_PI / 5},
    {Eigen::Vector3d::UnitZ(), 4 * M_PI / 5},
    {Eigen::Vector3d::UnitZ(), M_PI},

    {Eigen::Vector3d::UnitX(), M_PI / 5},
    {Eigen::Vector3d::UnitX(), 2 * M_PI / 5},
    {Eigen::Vector3d::UnitX(), 3 * M_PI / 5},
    {Eigen::Vector3d::UnitX(), 4 * M_PI / 5},
    {Eigen::Vector3d::UnitX(), M_PI},

    {Eigen::Vector3d::UnitY(), M_PI / 5},
    {Eigen::Vector3d::UnitY(), 2 * M_PI / 5},
    {Eigen::Vector3d::UnitY(), 3 * M_PI / 5},
    {Eigen::Vector3d::UnitY(), 4 * M_PI / 5},
    {Eigen::Vector3d::UnitY(), M_PI},
  };

  // void affine_cloud(Eigen::Vector3f axis, float theta, Eigen::Vector3f translation, pcl::PointCloud<pcl::PointXYZ>& input_cloud, 
  // pcl::PointCloud<pcl::PointXYZ>& destination_cloud) {
  pcl::PointCloud<pcl::PointXYZ>::Ptr xyz_scene(new pcl::PointCloud<pcl::PointXYZ>);
  pcl::copyPointCloud(*scene, *xyz_scene); // Try this with pointNormals (Can we do this?)

  pcl::visualization::PCLVisualizer viewer ("Point Cloud Visualization ENHANCED!");
  viewer.setSize (1280, 1024);  // Visualiser window size
  viewer.registerKeyboardCallback (&keyboardEventOccurred, (void*) NULL);

  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> scene_color_h(xyz_scene, 255, 0, 0);

  viewer.addPointCloud(xyz_scene, scene_color_h, "scene");
  pcl::PointCloud<pcl::PointXYZ>::Ptr affined_cloud(new pcl::PointCloud<pcl::PointXYZ>);
  viewer.addPointCloud(affined_cloud, "object");

  // Should be using .reset() instead of new, right? I duno
  // Eigen::Affine3d initial_transform;
  // Eigen::Affine3d transform;
  Eigen::Matrix3d seed_rotation = seed_pose.linear();
  Eigen::Vector3d seed_translation = seed_pose.translation();

  for (int k = 0; k < 7; k++) {
    for (int j = 0; j < 16; j++) {
      pcl::console::print_highlight ("At %i %i\n", k, j);

      affined_cloud.reset(new pcl::PointCloud<pcl::PointXYZ>);
      pcl::copyPointCloud(*object, *affined_cloud);

      Eigen::Matrix3d rotation = seed_rotation * (Eigen::AngleAxisd(orientations[j].theta, orientations[j].axis));
      Eigen::Vector3d translation = seed_translation + offsets[k];

      Eigen::Affine3d transform = Eigen::Affine3d::Identity();
      transform.rotate(rotation);
      transform.translation() = translation;
      pcl::transformPointCloud(*affined_cloud, *affined_cloud, transform);

      // affine_cloud(orientations[j].axis, orientations[j].theta, offsets[k], *affined_cloud, *affined_cloud);
      /*icp_result result = */apply_icp(affined_cloud, xyz_scene, 20, 0.01);
      // /*icp_result result = */apply_icp(affined_cloud, xyz_scene, 40, 0.01);
      // icp_result result = apply_icp(affined_cloud, xyz_scene, 40, 0.005);


      // affine_cloud(result.affine, *affined_cloud, *affined_cloud);

      viewer.updatePointCloud(affined_cloud, "object");
      viewer.updatePointCloud(xyz_scene, scene_color_h, "scene");
      next_iteration = false;

      // visualize(affined_cloud, xyz_scene, "Post-icp");
      while(next_iteration == false) {
        viewer.spinOnce();
      };
    }
  }
}
Exemple #4
0
// Usage: ./Volumetricd.exe ../../data/monkey.obj 256 4 2 90
int main(int argc, char **argv)
{
	if (argc < 6)
	{
		std::cerr << "Missing parameters. Abort." 
			<< std::endl
			<< "Usage:  ./Volumetricd.exe ../../data/monkey.obj 256 8 2 90"
			<< std::endl;
		return EXIT_FAILURE;
	}
	Timer timer;
	const std::string filepath = argv[1];
	const int vol_size = atoi(argv[2]);
	const int vx_size = atoi(argv[3]);
	const int cloud_count = atoi(argv[4]);
	const int rot_interval = atoi(argv[5]);

	std::pair<std::vector<double>, std::vector<double>> depth_buffer;

	//
	// Projection and Modelview Matrices
	//
	Eigen::Matrix4d K = perspective_matrix(fov_y, aspect_ratio, near_plane, far_plane);
	std::pair<Eigen::Matrix4d, Eigen::Matrix4d>	T(Eigen::Matrix4d::Identity(), Eigen::Matrix4d::Identity());


	//
	// Creating volume
	//
	Eigen::Vector3d voxel_size(vx_size, vx_size, vx_size);
	Eigen::Vector3d volume_size(vol_size, vol_size, vol_size);
	Eigen::Vector3d voxel_count(volume_size.x() / voxel_size.x(), volume_size.y() / voxel_size.y(), volume_size.z() / voxel_size.z());
	//
	Eigen::Affine3d grid_affine = Eigen::Affine3d::Identity();
	grid_affine.translate(Eigen::Vector3d(0, 0, -256));
	grid_affine.scale(Eigen::Vector3d(1, 1, -1));	// z is negative inside of screen


	Grid grid(volume_size, voxel_size, grid_affine.matrix());


	//
	// Importing .obj
	//
	timer.start();
	std::vector<Eigen::Vector3d> points3DOrig, pointsTmp;
	import_obj(filepath, points3DOrig);
	timer.print_interval("Importing monkey    : ");
	std::cout << "Monkey point count  : " << points3DOrig.size() << std::endl;

	// 
	// Translating and rotating monkey point cloud 
	std::pair<std::vector<Eigen::Vector3d>, std::vector<Eigen::Vector3d>> cloud;
	//
	Eigen::Affine3d rotate = Eigen::Affine3d::Identity();
	Eigen::Affine3d translate = Eigen::Affine3d::Identity();
	translate.translate(Eigen::Vector3d(0, 0, -256));


	// 
	// Compute first cloud
	//
	for (Eigen::Vector3d p3d : points3DOrig)
	{
		Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
		rot /= rot.w();
		cloud.first.push_back(rot.head<3>());
	}
	//
	// Update grid with first cloud
	//
	timer.start();
	create_depth_buffer<double>(depth_buffer.first, cloud.first, K, Eigen::Matrix4d::Identity(), far_plane);
	timer.print_interval("CPU compute depth   : ");

	timer.start();
	update_volume(grid, depth_buffer.first, K, T.first);
	timer.print_interval("CPU Update volume   : ");

	//
	// Compute next clouds
	Eigen::Matrix4d cloud_mat = Eigen::Matrix4d::Identity();
	Timer iter_timer;
	for (int i = 1; i < cloud_count; ++i)
	{
		std::cout << std::endl << i << " : " << i * rot_interval << std::endl;
		iter_timer.start();

		// Rotation matrix
		rotate = Eigen::Affine3d::Identity();
		rotate.rotate(Eigen::AngleAxisd(DegToRad(i * rot_interval), Eigen::Vector3d::UnitY()));

		cloud.second.clear();
		for (Eigen::Vector3d p3d : points3DOrig)
		{
			Eigen::Vector4d rot = translate.matrix() * rotate.matrix() * p3d.homogeneous();
			rot /= rot.w();
			cloud.second.push_back(rot.head<3>());
		}

		//export_obj("../../data/cloud_cpu_2.obj", cloud.second);

		timer.start();
		create_depth_buffer<double>(depth_buffer.second, cloud.second, K, Eigen::Matrix4d::Identity(), far_plane);
		timer.print_interval("Compute depth buffer: ");

		//export_depth_buffer("../../data/cpu_depth_buffer_2.obj", depth_buffer.second);

		timer.start();
		Eigen::Matrix4d icp_mat;
		ComputeRigidTransform(cloud.first, cloud.second, icp_mat);
		timer.print_interval("Compute rigid transf: ");

		//std::cout << std::fixed << std::endl << "icp_mat " << std::endl << icp_mat << std::endl;

		// accumulate matrix
		cloud_mat = cloud_mat * icp_mat;

		//std::cout << std::fixed << std::endl << "cloud_mat " << std::endl << cloud_mat << std::endl;

		timer.start();
		//update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		update_volume(grid, depth_buffer.second, K, cloud_mat.inverse());
		timer.print_interval("Update volume       : ");


		// copy second point cloud to first
		cloud.first = cloud.second;
		//depth_buffer.first = depth_buffer.second;

		iter_timer.print_interval("Iteration time      : ");
	}


	//std::cout << "------- // --------" << std::endl;
	//for (int i = 0; i <  grid.data.size(); ++i)
	//{
	//	const Eigen::Vector3d& point = grid.data[i].point;

	//	std::cout << point.transpose() << "\t\t" << grid.data[i].tsdf << " " << grid.data[i].weight << std::endl;
	//}
	//std::cout << "------- // --------" << std::endl;

//	timer.start();
//	export_volume("../../data/grid_volume_cpu.obj", grid.data);
//	timer.print_interval("Exporting volume    : ");
//	return 0;


	QApplication app(argc, argv);

	//
	// setup opengl viewer
	// 
	GLModelViewer glwidget;
	glwidget.resize(640, 480);
	glwidget.setPerspective(60.0f, 0.1f, 10240.0f);
	glwidget.move(320, 0);
	glwidget.setWindowTitle("Point Cloud");
	glwidget.setWeelSpeed(0.1f);
	glwidget.setDistance(-0.5f);
	glwidget.show();

	
	Eigen::Matrix4d to_origin = Eigen::Matrix4d::Identity();
	to_origin.col(3) << -(volume_size.x() / 2.0), -(volume_size.y() / 2.0), -(volume_size.z() / 2.0), 1.0;	// set translate


	std::vector<Eigen::Vector4f> vertices, colors;

	int i = 0;
	for (int z = 0; z <= volume_size.z(); z += voxel_size.z())
	{
		for (int y = 0; y <= volume_size.y(); y += voxel_size.y())
		{
			for (int x = 0; x <= volume_size.x(); x += voxel_size.x(), i++)
			{
				const float tsdf = grid.data.at(i).tsdf;

				//Eigen::Vector4d p = grid_affine.matrix() * to_origin * Eigen::Vector4d(x, y, z, 1);
				Eigen::Vector4d p = to_origin * Eigen::Vector4d(x, y, z, 1);
				p /= p.w();

				if (tsdf > 0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(0, 1, 0, 1));
				}
				else if (tsdf < -0.1)
				{
					vertices.push_back(p.cast<float>());
					colors.push_back(Eigen::Vector4f(1, 0, 0, 1));
				}
			}
		}
	}




	//
	// setup model
	// 
	std::shared_ptr<GLModel> model(new GLModel);
	model->initGL();
	model->setVertices(&vertices[0][0], vertices.size(), 4);
	model->setColors(&colors[0][0], colors.size(), 4);
	glwidget.addModel(model);


	//
	// setup kinect shader program
	// 
	std::shared_ptr<GLShaderProgram> kinectShaderProgram(new GLShaderProgram);
	if (kinectShaderProgram->build("color.vert", "color.frag"))
		model->setShaderProgram(kinectShaderProgram);

	return app.exec();
}
Exemple #5
0
void smurf::Robot::loadFromSmurf(const std::string& path)
{
    configmaps::ConfigMap map;

    // parse joints from model
    boost::filesystem::path filepath(path);
    model = smurf_parser::parseFile(&map, filepath.parent_path().generic_string(), filepath.filename().generic_string(), true);
    
    //first we need to create all Frames
    for (configmaps::ConfigVector::iterator it = map["frames"].begin(); it != map["frames"].end(); ++it) 
    {
        configmaps::ConfigMap &fr(it->children);

        Frame *frame = new Frame(fr["name"]);
        availableFrames.push_back(frame);
        //std::cout << "Adding additional frame " << frame->getName() << std::endl;
    }
    
    for(std::pair<std::string, boost::shared_ptr<urdf::Link>> link: model->links_)
    {
        Frame *frame = new Frame(link.first);
        for(boost::shared_ptr<urdf::Visual> visual : link.second->visual_array)
        {
            frame->addVisual(*visual);
        }
        availableFrames.push_back(frame);
        

        //std::cout << "Adding link frame " << frame->getName() << std::endl;
    }

    for(std::pair<std::string, boost::shared_ptr<urdf::Joint> > jointIt: model->joints_)
    {
        boost::shared_ptr<urdf::Joint> joint = jointIt.second;
        //std::cout << "Adding joint " << joint->name << std::endl;
        
        Frame *source = getFrameByName(joint->parent_link_name);
        Frame *target = getFrameByName(joint->child_link_name);

        //TODO this might not be set in some cases, perhaps force a check
        configmaps::ConfigMap annotations;
        for(configmaps::ConfigItem &cv : map["joints"])
        {
            if(static_cast<std::string>(cv.children["name"]) == joint->name)
            {
                annotations = cv.children;
            }
        }
        switch(joint->type)
        {
            case urdf::Joint::FIXED:
            {
                const urdf::Pose &tr(joint->parent_to_joint_origin_transform);     
                StaticTransformation *transform = new StaticTransformation(source, target,
                                                                           Eigen::Quaterniond(tr.rotation.w, tr.rotation.x, tr.rotation.y, tr.rotation.z),
                                                                           Eigen::Vector3d(tr.position.x, tr.position.y, tr.position.z));              
                staticTransforms.push_back(transform);
            }
            break;
            case urdf::Joint::FLOATING:
            {
                DynamicTransformation *transform = new DynamicTransformation(source, target, checkGet(annotations, "provider"), checkGet(annotations, "port"));
                dynamicTransforms.push_back(transform);
                Eigen::Vector3d axis(joint->axis.x, joint->axis.y, joint->axis.z);
                Eigen::Affine3d sourceToAxis(Eigen::Affine3d::Identity());
                sourceToAxis.translation() = axis;
                base::JointLimitRange limits;
                const urdf::Pose parentToOrigin(joint->parent_to_joint_origin_transform);
                Eigen::Quaterniond rot(parentToOrigin.rotation.w, parentToOrigin.rotation.x, parentToOrigin.rotation.y, parentToOrigin.rotation.z);
                Eigen::Vector3d trans(parentToOrigin.position.x, parentToOrigin.position.y, parentToOrigin.position.z);
                Eigen::Affine3d parentToOriginAff;
                parentToOriginAff.setIdentity();
                parentToOriginAff.rotate(rot);
                parentToOriginAff.translation() = trans;
                Joint *smurfJoint = new Joint (source, target, checkGet(annotations, "provider"), checkGet(annotations, "port"), checkGet(annotations, "driver"), limits, sourceToAxis, parentToOriginAff, joint); 
                joints.push_back(smurfJoint);
            }
            break;
            case urdf::Joint::REVOLUTE:
            case urdf::Joint::CONTINUOUS:
            case urdf::Joint::PRISMATIC:
            {
                base::JointState minState;
                minState.position = joint->limits->lower;
                minState.effort = 0;
                minState.speed = 0;
                
                base::JointState maxState;
                maxState.position = joint->limits->upper;
                maxState.effort = joint->limits->effort;
                maxState.speed = joint->limits->velocity;
                
                base::JointLimitRange limits;
                limits.min = minState;
                limits.max = maxState;
                
                Eigen::Vector3d axis(joint->axis.x, joint->axis.y, joint->axis.z);
                Eigen::Affine3d sourceToAxis(Eigen::Affine3d::Identity());
                sourceToAxis.translation() = axis;
                
                DynamicTransformation *transform = NULL;
                Joint *smurfJoint;
                // push the correspondent smurf::joint 
                const urdf::Pose parentToOrigin(joint->parent_to_joint_origin_transform);
                Eigen::Quaterniond rot(parentToOrigin.rotation.w, parentToOrigin.rotation.x, parentToOrigin.rotation.y, parentToOrigin.rotation.z);
                Eigen::Vector3d trans(parentToOrigin.position.x, parentToOrigin.position.y, parentToOrigin.position.z);
                Eigen::Affine3d parentToOriginAff;
                parentToOriginAff.setIdentity();
                parentToOriginAff.rotate(rot);
                parentToOriginAff.translation() = trans;
                if(joint->type == urdf::Joint::REVOLUTE || joint->type == urdf::Joint::CONTINUOUS)
                {
                    transform = new RotationalJoint(source, target, checkGet(annotations, "provider"), checkGet(annotations, "port"), checkGet(annotations, "driver"), limits, sourceToAxis, axis, parentToOriginAff, joint);
                    smurfJoint = (Joint *)transform;
                }
                else
                {
                    transform = new TranslationalJoint(source, target, checkGet(annotations, "provider"), checkGet(annotations, "port"), checkGet(annotations, "driver"), limits, sourceToAxis, axis, parentToOriginAff, joint);
                    smurfJoint = (Joint *)transform;
                }
                dynamicTransforms.push_back(transform);
                joints.push_back(smurfJoint);
            }
            break;
            default:
                throw std::runtime_error("Smurf: Error, got unhandles Joint type");
        }
    }

    
    // parse sensors from map
    for (configmaps::ConfigVector::iterator it = map["sensors"].begin(); it != map["sensors"].end(); ++it) 
    {
        configmaps::ConfigMap sensorMap = it->children;
        smurf::Sensor *sensor = new Sensor(sensorMap["name"], sensorMap["type"], sensorMap["taskInstanceName"], getFrameByName(sensorMap["link"]));
        sensors.push_back(sensor);
    }
}