Exemple #1
0
void laplace2d() {
  double nx = 31;
  double ny = 31;
  double c = 1;
  double dx = 2/(nx-1);
  double dy = 2/(ny-1);
  double linorm_target = .01;
  double linorm = 1;
  
  // Make an output folder
  std::string dir = "step9/";
  
  Eigen::ArrayXd x; // Array containing our x values
  x.setLinSpaced(nx,0,2); // Array is linearly spaced values from 0 to 2
  
  Eigen::ArrayXd y; // Array containing our x values
  y.setLinSpaced(ny,0,1);
  
  // Arrays containing our calculated values
  Eigen::ArrayXXd p;
  Eigen::ArrayXXd pn;
  
  // Initial Conditions
  p.setZero(ny,nx);
  pn.setZero(ny,nx);
  
  //Set Boundary Conditions
  p.block(0,0,ny,1) = Eigen::ArrayXXd::Constant(ny,1,0);
  p.block(0,nx-1,ny,1) = y.block(0,0,ny,1);
  p.block(0,0,1,nx) = p.block(1,0,1,nx);
  p.block(ny-1,0,1,nx) = p.block(ny-2,0,1,nx);

  while(linorm>linorm_target)
  {
    pn << p;
    p.block(1,1,ny-2,nx-2) = (pow(dy,2)*(pn.block(2,1,ny-2,nx-2)+pn.block(0,1,ny-2,nx-2))+pow(dx,2)*(pn.block(1,2,ny-2,nx-2)+pn.block(1,0,ny-2,nx-2)))/(2*(pow(dx,2)+pow(dy,2)));
    p(0,0) = (pow(dy,2)*(pn(1,0)+pn(ny-1,0))+pow(dx,2)*(pn(0,1)+pn(0,nx-1)))/(2*(pow(dx,2)+pow(dy,2)));
    p(ny-1,nx-1) = (pow(dy,2)*(pn(0,nx-1)+pn(ny-2,nx-1))+pow(dx,2)*(pn(ny-1,0)+pn(ny-1,nx-2)))/(2*(pow(dx,2)+pow(dy,2)));
    
    //Set Boundary Conditions
    p.block(0,0,ny,1) = Eigen::ArrayXXd::Constant(ny,1,0);
    p.block(0,nx-1,ny,1) = y.block(0,0,ny,1);
    p.block(0,0,1,nx) = p.block(1,0,1,nx);
    p.block(ny-1,0,1,nx) = p.block(ny-2,0,1,nx);
   
    linorm = (p.cwiseAbs()-pn.cwiseAbs()).sum()/(pn.cwiseAbs()).sum();
    
  }
  
  ofstream writexdata((dir + "output.dat").c_str(), ios::out | ios::trunc);
  writexdata << p << endl;
  writexdata.close();
}
Exemple #2
0
void channelns() {
  double nx = 41;
  double ny = 41;
  double nt = 10;
  double nit = 50;
  double c  = 1;
  double dx = 2/(nx-1);
  double dy = 2/(ny-1);
  
  double rho = 1;
  double nu =.1;
  double F = 1;
  double dt = .01;
  
  std::string dir = "step11/";
  
  Eigen::ArrayXd x; // Array containing our x values
  x.setLinSpaced(nx,0,2); // Array is linearly spaced values from 0 to 2
  
  Eigen::ArrayXd y; // Array containing our x values
  y.setLinSpaced(ny,0,2);
  
  Eigen::ArrayXXd X;
  Eigen::ArrayXXd Y;
  
  X = x.transpose().replicate(nx,1); // Need to transpose this because the type we declared, ArrayXd, is row-major (and we need column-major for a proper meshgrid)
  Y = y.replicate(1,ny);
  
  Eigen::ArrayXXd u;
  u.setZero(ny,nx);
  Eigen::ArrayXXd un;
  un.setZero(ny,nx);
  Eigen::ArrayXXd v;
  v.setZero(ny,nx);
  Eigen::ArrayXXd vn;
  vn.setZero(ny,nx);
  Eigen::ArrayXXd b; 
  b.setZero(ny,nx);
  Eigen::ArrayXXd p;
  p.setZero(ny,nx);
  Eigen::ArrayXXd pn;
  pn.setZero(ny,nx);
  
  
}
            /**
             * Compute maximum dissolution and evaporation ratios at
             * average hydrocarbon pressure.
             *
             * Uses the pressure value computed by averagePressure()
             * and must therefore be called *after* that method.
             */
            void
            calcRmax()
            {
                Rmax_.setZero();

                const PhaseUsage& pu = props_.phaseUsage();

                if (Details::PhaseUsed::oil(pu) &&
                    Details::PhaseUsed::gas(pu))
                {
                    const Eigen::ArrayXXd::Index
                        io = Details::PhasePos::oil(pu),
                        ig = Details::PhasePos::gas(pu);

                    // Note: Intentionally does not take capillary
                    // pressure into account.  This facility uses the
                    // average *hydrocarbon* pressure rather than
                    // average phase pressure.
                    typedef BlackoilPropsAdInterface::ADB ADB;
                    Rmax_.col(io) = props_.rsSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
                    Rmax_.col(ig) = props_.rvSat(ADB::constant(p_avg_), ADB::constant(T_avg_), repcells_).value();
                }
            }