void setZero(Eigen::MatrixBase<Derived>& cov, const T& type) { cov.setZero(); }
// typename DerivedA::Scalar void pseudo_inverse_svd(const Eigen::MatrixBase<DerivedA>& M, Eigen::MatrixBase<OutputMatrixType>& Minv, typename DerivedA::Scalar epsilon = 1e-6)//std::numeric_limits<typename DerivedA::Scalar>::epsilon()) { // CONTROLIT_INFO << "Method called!\n epsilon = " << epsilon << ", M = \n" << M; // Ensure matrix Minv has the correct size. Its size should be equal to M.transpose(). assert_msg(M.rows() == Minv.cols(), "Minv has invalid number of columns. Expected " << M.rows() << " got " << Minv.cols()); assert_msg(M.cols() == Minv.rows(), "Minv has invalid number of rows. Expected " << M.cols() << " got " << Minv.rows()); // According to Eigen documentation, "If the input matrix has inf or nan coefficients, the result of the // computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time." Eigen::JacobiSVD<DerivedA> svd = M.jacobiSvd(Eigen::ComputeFullU | Eigen::ComputeFullV); // Get the max singular value typename DerivedA::Scalar maxSingularValue = svd.singularValues().array().abs().maxCoeff(); // Use Minv to temporarily hold sigma Minv.setZero(); typename DerivedA::Scalar tolerance = 0; // Only compute sigma if the max singular value is greater than zero. if (maxSingularValue > epsilon) { tolerance = epsilon * std::max(M.cols(), M.rows()) * maxSingularValue; // For each singular value of matrix M's SVD decomposition, check if it is greater than // the tolerance value. If it is, save 1/(singular value) in the sigma vector. // Otherwise save zero in the sigma vector. DerivedA sigmaVector = DerivedA( (svd.singularValues().array().abs() > tolerance).select(svd.singularValues().array().inverse(), 0) ); // DerivedA zeroSVs = DerivedA( (svd.singularValues().array().abs() <= tolerance).select(svd.singularValues().array().inverse(), 0) ); // CONTROLIT_INFO << "epsilon: " << epsilon << ", std::max(M.cols(), M.rows()): " << std::max(M.cols(), M.rows()) << ", maxSingularValue: " << maxSingularValue << ", tolerance: " << tolerance; // CONTROLIT_INFO << "sigmaVector = " << sigmaVector.transpose(); // CONTROLIT_INFO << "zeroSigmaVector : "<< zeroSVs.transpose(); Minv.block(0, 0, sigmaVector.rows(), sigmaVector.rows()) = sigmaVector.asDiagonal(); } // Double check to make sure the matrices have the correct dimensions assert_msg(svd.matrixV().cols() == Minv.rows(), "Matrix dimension mismatch, svd.matrixV().cols() = " << svd.matrixV().cols() << ", Minv.rows() = " << Minv.rows() << "."); assert_msg(Minv.cols() == svd.matrixU().adjoint().rows(), "Matrix dimension mismatch, Minv.cols() = " << Minv.cols() << ", svd.matrixU().adjoint().rows() = " << svd.matrixU().adjoint().rows() << "."); Minv = svd.matrixV() * Minv * svd.matrixU().adjoint(); // take the transpose of matrix U // CONTROLIT_INFO << "Done method call! Minv = " << Minv; // typename DerivedA::Scalar errorNorm = std::abs((M * Minv - DerivedA::Identity(M.rows(), Minv.cols())).norm()); // if (tolerance != 0 && errorNorm > tolerance * 10) // { // CONTROLIT_WARN << "Problems computing pseudoinverse. Perhaps the tolerance is too high?\n" // << " - epsilon: " << epsilon << "\n" // << " - tolerance: " << tolerance << "\n" // << " - maxSingularValue: " << maxSingularValue << "\n" // << " - errorNorm: " << errorNorm << "\n" // << " - M:\n" << M << "\n" // << " - Minv:\n" << Minv; // } // return errorNorm; }
void clear(Eigen::MatrixBase<T> &x) { x.setZero(); }