void WorldDownloadManager::findExtraCubesForBoundingBox(const Eigen::Vector3f& current_cube_min, const Eigen::Vector3f& current_cube_max,const Eigen::Vector3f& bbox_min,const Eigen::Vector3f& bbox_max,Vector3fVector& cubes_centers, bool& extract_current) { const Eigen::Vector3f & cube_size = current_cube_max - current_cube_min; cubes_centers.clear(); extract_current = false; const Eigen::Vector3f relative_act_bbox_min = bbox_min - current_cube_min; const Eigen::Vector3f relative_act_bbox_max = bbox_max - current_cube_min; const Eigen::Vector3i num_cubes_plus = Eigen::Vector3f(floor3f(Eigen::Vector3f(relative_act_bbox_max.array() / cube_size.array()) - (Eigen::Vector3f::Ones() * 0.0001))).cast<int>(); const Eigen::Vector3i num_cubes_minus = Eigen::Vector3f(floor3f(Eigen::Vector3f(relative_act_bbox_min.array() / cube_size.array()) + (Eigen::Vector3f::Ones() * 0.0001))).cast<int>(); for (int z = num_cubes_minus.z(); z <= num_cubes_plus.z(); z++) for (int y = num_cubes_minus.y(); y <= num_cubes_plus.y(); y++) for (int x = num_cubes_minus.x(); x <= num_cubes_plus.x(); x++) { const Eigen::Vector3i cube_index(x,y,z); if ((cube_index.array() == Eigen::Vector3i::Zero().array()).all()) { extract_current = true; continue; } const Eigen::Vector3f relative_cube_origin = cube_index.cast<float>().array() * cube_size.array(); const Eigen::Vector3f cube_center = relative_cube_origin + current_cube_min + (cube_size * 0.5); cubes_centers.push_back(cube_center); } }
HashedId::HashedId(const Eigen::Vector3i&pos,const int&edgeLen,const int&no) { _id[0]=edgeLen; _id[1]=pos.x(); _id[2]=pos.y(); _id[3]=pos.z(); _no=no; }
void CollisionSpace::propagatePositive( std::vector<std::vector<CollisionSpaceCell*> >& bucket_queue) { double max_distance_sq = getMaxtDistSq(); // now process the queue: cout << "process the Queue : " << bucket_queue.size() << endl; for (unsigned int i = 0; i < bucket_queue.size(); ++i) { std::vector<CollisionSpaceCell*>::iterator list_it = bucket_queue[i].begin(); while (list_it != bucket_queue[i].end()) { CollisionSpaceCell* vptr = *list_it; // TODO: no idea why this happens if (vptr == NULL) { continue; } // Get the cell location in grid Eigen::Vector3i loc = getCellCoord(vptr); int D = i; if (D > 1) D = 1; // avoid a possible segfault situation: if (vptr->m_UpdateDirection < 0 || vptr->m_UpdateDirection > 26) { cout << "Invalid update direction detected: " << vptr->m_UpdateDirection << endl; ++list_it; continue; } // select the neighborhood list based on the update direction: std::vector<std::vector<int> >& neighborhood = m_Neighborhoods[D][vptr->m_UpdateDirection]; // Look in the neighbouring cells and update distance for (unsigned int n = 0; n < neighborhood.size(); n++) { Eigen::Vector3i direction; direction.x() = neighborhood[n][0]; direction.y() = neighborhood[n][1]; direction.z() = neighborhood[n][2]; Eigen::Vector3i neigh_loc = loc + direction; CollisionSpaceCell* neighbour = getCellSpaceCell(neigh_loc); if (!neighbour) continue; double new_distance_sq_float = (vptr->m_ClosestPoint - neigh_loc).squaredNorm(); int new_distance_sq = new_distance_sq_float; if (new_distance_sq > max_distance_sq) { cout << "new_distance_sq : " << new_distance_sq << endl; continue; } if (new_distance_sq < neighbour->m_DistanceSquare) { neighbour->m_DistanceSquare = new_distance_sq; neighbour->m_ClosestPoint = vptr->m_ClosestPoint; neighbour->m_UpdateDirection = getDirectionNumber(direction[0], direction[1], direction[2]); // and put it in the queue bucket_queue[new_distance_sq].push_back(neighbour); } } ++list_it; } bucket_queue[i].clear(); } }
vtkVolume * VTKDialog::cubeVolume(Cube *cube) { qDebug() << "Cube dimensions: " << cube->dimensions().x() << cube->dimensions().y() << cube->dimensions().z(); qDebug() << "min/max:" << cube->minValue() << cube->maxValue(); qDebug() << cube->data()->size(); vtkNew<vtkImageData> data; data->SetNumberOfScalarComponents(1); Eigen::Vector3i dim = cube->dimensions(); data->SetExtent(0, dim.x()-1, 0, dim.y()-1, 0, dim.z()-1); data->SetOrigin(cube->min().x(), cube->min().y(), cube->min().z()); data->SetSpacing(cube->spacing().data()); data->SetScalarTypeToDouble(); data->AllocateScalars(); data->Update(); double *dataPtr = static_cast<double *>(data->GetScalarPointer()); std::vector<double> *cubePtr = cube->data(); for (int i = 0; i < dim.x(); ++i) for (int j = 0; j < dim.y(); ++j) for (int k = 0; k < dim.z(); ++k) { dataPtr[(k * dim.y() + j) * dim.x() + i] = (*cubePtr)[(i * dim.y() + j) * dim.z() + k]; } double range[2]; data->Update(); range[0] = data->GetScalarRange()[0]; range[1] = data->GetScalarRange()[1]; // a->GetRange(range); qDebug() << "ImageData range: " << range[0] << range[1]; vtkNew<vtkImageShiftScale> t; t->SetInput(data.GetPointer()); t->SetShift(-range[0]); double magnitude = range[1] - range[0]; if(magnitude == 0.0) { magnitude = 1.0; } t->SetScale(255.0/magnitude); t->SetOutputScalarTypeToDouble(); qDebug() << "magnitude: " << magnitude; t->Update(); vtkNew<vtkSmartVolumeMapper> volumeMapper; vtkNew<vtkVolumeProperty> volumeProperty; vtkVolume *volume = vtkVolume::New(); volumeMapper->SetBlendModeToComposite(); // volumeMapper->SetBlendModeToComposite(); // composite first volumeMapper->SetInputConnection(t->GetOutputPort()); volumeProperty->ShadeOff(); volumeProperty->SetInterpolationTypeToLinear(); vtkNew<vtkPiecewiseFunction> compositeOpacity; vtkNew<vtkColorTransferFunction> color; if (cube->cubeType() == Cube::MO) { compositeOpacity->AddPoint( 0.00, 0.0); compositeOpacity->AddPoint( 63.75, 0.5); compositeOpacity->AddPoint(127.50, 0.0); compositeOpacity->AddPoint(192.25, 0.5); compositeOpacity->AddPoint(255.00, 0.0); color->AddRGBPoint( 0.00, 0.0, 0.0, 0.0); color->AddRGBPoint( 63.75, 1.0, 0.0, 0.0); color->AddRGBPoint(127.50, 0.0, 0.2, 0.0); color->AddRGBPoint(191.25, 0.0, 0.0, 1.0); color->AddRGBPoint(255.00, 0.0, 0.0, 0.0); } else { compositeOpacity->AddPoint( 0.00, 0.00); compositeOpacity->AddPoint( 1.75, 0.30); compositeOpacity->AddPoint( 2.50, 0.50); compositeOpacity->AddPoint(192.25, 0.85); compositeOpacity->AddPoint(255.00, 0.90); color->AddRGBPoint( 0.00, 0.0, 0.0, 1.0); color->AddRGBPoint( 63.75, 0.0, 0.0, 0.8); color->AddRGBPoint(127.50, 0.0, 0.0, 0.5); color->AddRGBPoint(191.25, 0.0, 0.0, 0.2); color->AddRGBPoint(255.00, 0.0, 0.0, 0.0); } volumeProperty->SetScalarOpacity(compositeOpacity.GetPointer()); // composite first. volumeProperty->SetColor(color.GetPointer()); volume->SetMapper(volumeMapper.GetPointer()); volume->SetProperty(volumeProperty.GetPointer()); return volume; }