void PrintLatex::print_2geomcurve(SVGOStringStream &os, Geom::Curve const &c) { using Geom::X; using Geom::Y; if( is_straight_curve(c) ) { os << "\\lineto(" << c.finalPoint()[X] << "," << c.finalPoint()[Y] << ")\n"; } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) { std::vector<Geom::Point> points = cubic_bezier->points(); os << "\\curveto(" << points[1][X] << "," << points[1][Y] << ")(" << points[2][X] << "," << points[2][Y] << ")(" << points[3][X] << "," << points[3][Y] << ")\n"; } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { print_2geomcurve(os, *iter); } } }
static void geom_curve_bbox_wind_distance(Geom::Curve const & c, Geom::Affine const &m, Geom::Point const &pt, Geom::Rect *bbox, int *wind, Geom::Coord *dist, Geom::Coord tolerance, Geom::Rect const *viewbox, Geom::Point &p0) // pass p0 through as it represents the last endpoint added (the finalPoint of last curve) { if( is_straight_curve(c) ) { Geom::Point pe = c.finalPoint() * m; if (bbox) { bbox->expandTo(pe); } if (dist || wind) { if (wind) { // we need to pick fill, so do what we're told geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } else { // only stroke is being picked; skip this segment if it's totally outside the viewbox Geom::Rect swept(p0, pe); if (!viewbox || swept.intersects(*viewbox)) geom_line_wind_distance (p0[X], p0[Y], pe[X], pe[Y], pt, wind, dist); } } p0 = pe; } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c)) { Geom::Point p1 = (*cubic_bezier)[1] * m; Geom::Point p2 = (*cubic_bezier)[2] * m; Geom::Point p3 = (*cubic_bezier)[3] * m; // get approximate bbox from handles (convex hull property of beziers): Geom::Rect swept(p0, p3); swept.expandTo(p1); swept.expandTo(p2); if (!viewbox || swept.intersects(*viewbox)) { // we see this segment, so do full processing geom_cubic_bbox_wind_distance ( p0[X], p0[Y], p1[X], p1[Y], p2[X], p2[Y], p3[X], p3[Y], pt, bbox, wind, dist, tolerance); } else { if (wind) { // if we need fill, we can just pretend it's a straight line geom_line_wind_distance (p0[X], p0[Y], p3[X], p3[Y], pt, wind, dist); } else { // otherwise, skip it completely } } p0 = p3; } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); //recurse to convert the new path resulting from the sbasis to svgd for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { geom_curve_bbox_wind_distance(*iter, m, pt, bbox, wind, dist, tolerance, viewbox, p0); } } }
void tangents_old(Geom::Point tang[2], Geom::Curve const& incoming, Geom::Curve const& outgoing) { Geom::Point tang1 = Geom::unitTangentAt(reverse(incoming.toSBasis()), 0.); Geom::Point tang2 = outgoing.unitTangentAt(0.); tang[0] = tang1, tang[1] = tang2; }
/* * Can be called recursively. * If optimize_stroke == false, the view Rect is not used. */ static void feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke) { if( is_straight_curve(c) ) { Geom::Point end_tr = c.finalPoint() * trans; if (!optimize_stroke) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { Geom::Rect swept(c.initialPoint()*trans, end_tr); if (swept.intersects(view)) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { cairo_move_to(cr, end_tr[0], end_tr[1]); } } } else if(Geom::QuadraticBezier const *quadratic_bezier = dynamic_cast<Geom::QuadraticBezier const*>(&c)) { std::vector<Geom::Point> points = quadratic_bezier->points(); points[0] *= trans; points[1] *= trans; points[2] *= trans; Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]); Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]); if (!optimize_stroke) { cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]); } else { Geom::Rect swept(points[0], points[2]); swept.expandTo(points[1]); if (swept.intersects(view)) { cairo_curve_to(cr, b1[0], b1[1], b2[0], b2[1], points[2][0], points[2][1]); } else { cairo_move_to(cr, points[2][0], points[2][1]); } } } else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const*>(&c)) { std::vector<Geom::Point> points = cubic_bezier->points(); //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes points[1] *= trans; points[2] *= trans; points[3] *= trans; if (!optimize_stroke) { cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]); } else { points[0] *= trans; // didn't transform this point yet Geom::Rect swept(points[0], points[3]); swept.expandTo(points[1]); swept.expandTo(points[2]); if (swept.intersects(view)) { cairo_curve_to(cr, points[1][0], points[1][1], points[2][0], points[2][1], points[3][0], points[3][1]); } else { cairo_move_to(cr, points[3][0], points[3][1]); } } } // else if(Geom::SVGEllipticalArc const *svg_elliptical_arc = dynamic_cast<Geom::SVGEllipticalArc *>(c)) { // //TODO: get at the innards and spit them out to cairo // } else { //this case handles sbasis as well as all other curve types Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); //recurse to convert the new path resulting from the sbasis to svgd for(Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke); } } }
/* * Can be called recursively. * If optimize_stroke == false, the view Rect is not used. */ static void feed_curve_to_cairo(cairo_t *cr, Geom::Curve const &c, Geom::Affine const & trans, Geom::Rect view, bool optimize_stroke) { using Geom::X; using Geom::Y; unsigned order = 0; if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) { order = b->order(); } // handle the three typical curve cases switch (order) { case 1: { Geom::Point end_tr = c.finalPoint() * trans; if (!optimize_stroke) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { Geom::Rect swept(c.initialPoint()*trans, end_tr); if (swept.intersects(view)) { cairo_line_to(cr, end_tr[0], end_tr[1]); } else { cairo_move_to(cr, end_tr[0], end_tr[1]); } } } break; case 2: { Geom::QuadraticBezier const *quadratic_bezier = static_cast<Geom::QuadraticBezier const*>(&c); std::vector<Geom::Point> points = quadratic_bezier->controlPoints(); points[0] *= trans; points[1] *= trans; points[2] *= trans; // degree-elevate to cubic Bezier, since Cairo doesn't do quadratic Beziers Geom::Point b1 = points[0] + (2./3) * (points[1] - points[0]); Geom::Point b2 = b1 + (1./3) * (points[2] - points[0]); if (!optimize_stroke) { cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]); } else { Geom::Rect swept(points[0], points[2]); swept.expandTo(points[1]); if (swept.intersects(view)) { cairo_curve_to(cr, b1[X], b1[Y], b2[X], b2[Y], points[2][X], points[2][Y]); } else { cairo_move_to(cr, points[2][X], points[2][Y]); } } } break; case 3: { Geom::CubicBezier const *cubic_bezier = static_cast<Geom::CubicBezier const*>(&c); std::vector<Geom::Point> points = cubic_bezier->controlPoints(); //points[0] *= trans; // don't do this one here for fun: it is only needed for optimized strokes points[1] *= trans; points[2] *= trans; points[3] *= trans; if (!optimize_stroke) { cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]); } else { points[0] *= trans; // didn't transform this point yet Geom::Rect swept(points[0], points[3]); swept.expandTo(points[1]); swept.expandTo(points[2]); if (swept.intersects(view)) { cairo_curve_to(cr, points[1][X], points[1][Y], points[2][X], points[2][Y], points[3][X], points[3][Y]); } else { cairo_move_to(cr, points[3][X], points[3][Y]); } } } break; default: { if (Geom::EllipticalArc const *a = dynamic_cast<Geom::EllipticalArc const*>(&c)) { //if (!optimize_stroke || a->boundsFast().intersects(view)) { Geom::Affine xform = a->unitCircleTransform() * trans; Geom::Point ang(a->initialAngle().radians(), a->finalAngle().radians()); // Apply the transformation to the current context cairo_matrix_t cm; cm.xx = xform[0]; cm.xy = xform[2]; cm.x0 = xform[4]; cm.yx = xform[1]; cm.yy = xform[3]; cm.y0 = xform[5]; cairo_save(cr); cairo_transform(cr, &cm); // Draw the circle if (a->sweep()) { cairo_arc(cr, 0, 0, 1, ang[0], ang[1]); } else { cairo_arc_negative(cr, 0, 0, 1, ang[0], ang[1]); } // Revert the current context cairo_restore(cr); //} else { // Geom::Point f = a->finalPoint() * trans; // cairo_move_to(cr, f[X], f[Y]); //} } else { // handles sbasis as well as all other curve types // this is very slow Geom::Path sbasis_path = Geom::cubicbezierpath_from_sbasis(c.toSBasis(), 0.1); // recurse to convert the new path resulting from the sbasis to svgd for (Geom::Path::iterator iter = sbasis_path.begin(); iter != sbasis_path.end(); ++iter) { feed_curve_to_cairo(cr, *iter, trans, view, optimize_stroke); } } } break; } }