void QmitkBasicImageProcessing::StartButtonClicked()
{
  if(!m_SelectedImageNode->GetNode()) return;

  this->BusyCursorOn();

  mitk::Image::Pointer newImage;

  try
  {
    newImage = dynamic_cast<mitk::Image*>(m_SelectedImageNode->GetNode()->GetData());
  }
  catch ( std::exception &e )
  {
  QString exceptionString = "An error occured during image loading:\n";
  exceptionString.append( e.what() );
    QMessageBox::warning( NULL, "Basic Image Processing", exceptionString , QMessageBox::Ok, QMessageBox::NoButton );
    this->BusyCursorOff();
    return;
  }

  // check if input image is valid, casting does not throw exception when casting from 'NULL-Object'
  if ( (! newImage) || (newImage->IsInitialized() == false) )
  {
    this->BusyCursorOff();

    QMessageBox::warning( NULL, "Basic Image Processing", "Input image is broken or not initialized. Returning.", QMessageBox::Ok, QMessageBox::NoButton );
    return;
  }

  // check if operation is done on 4D a image time step
  if(newImage->GetDimension() > 3)
  {
    mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New();
    timeSelector->SetInput(newImage);
    timeSelector->SetTimeNr( ((QmitkSliderNavigatorWidget*)m_Controls->sliceNavigatorTime)->GetPos() );
    timeSelector->Update();
    newImage = timeSelector->GetOutput();
  }



  // check if image or vector image
  ImageType::Pointer itkImage = ImageType::New();
  VectorImageType::Pointer itkVecImage = VectorImageType::New();

  int isVectorImage = newImage->GetPixelType().GetNumberOfComponents();

  if(isVectorImage > 1)
  {
    CastToItkImage( newImage, itkVecImage );
  }
  else
  {
    CastToItkImage( newImage, itkImage );
  }

  std::stringstream nameAddition("");

  int param1 = m_Controls->sbParam1->value();
  int param2 = m_Controls->sbParam2->value();
  double dparam1 = m_Controls->dsbParam1->value();
  double dparam2 = m_Controls->dsbParam2->value();
  double dparam3 = m_Controls->dsbParam3->value();

  try{

  switch (m_SelectedAction)
  {

  case GAUSSIAN:
    {
      GaussianFilterType::Pointer gaussianFilter = GaussianFilterType::New();
      gaussianFilter->SetInput( itkImage );
      gaussianFilter->SetVariance( param1 );
      gaussianFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(gaussianFilter->GetOutput())->Clone();
      nameAddition << "_Gaussian_var_" << param1;
      std::cout << "Gaussian filtering successful." << std::endl;
      break;
    }

  case MEDIAN:
    {
      MedianFilterType::Pointer medianFilter = MedianFilterType::New();
      MedianFilterType::InputSizeType size;
      size.Fill(param1);
      medianFilter->SetRadius( size );
      medianFilter->SetInput(itkImage);
      medianFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(medianFilter->GetOutput())->Clone();
      nameAddition << "_Median_radius_" << param1;
      std::cout << "Median Filtering successful." << std::endl;
      break;
    }

  case TOTALVARIATION:
    {
      if(isVectorImage > 1)
      {
        VectorTotalVariationFilterType::Pointer TVFilter
          = VectorTotalVariationFilterType::New();
        TVFilter->SetInput( itkVecImage.GetPointer() );
        TVFilter->SetNumberIterations(param1);
        TVFilter->SetLambda(double(param2)/1000.);
        TVFilter->UpdateLargestPossibleRegion();

        newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone();
      }
      else
      {
        ImagePTypeToFloatPTypeCasterType::Pointer floatCaster = ImagePTypeToFloatPTypeCasterType::New();
        floatCaster->SetInput( itkImage );
        floatCaster->Update();
        FloatImageType::Pointer fImage = floatCaster->GetOutput();

        TotalVariationFilterType::Pointer TVFilter
          = TotalVariationFilterType::New();
        TVFilter->SetInput( fImage.GetPointer() );
        TVFilter->SetNumberIterations(param1);
        TVFilter->SetLambda(double(param2)/1000.);
        TVFilter->UpdateLargestPossibleRegion();

        newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone();
      }

      nameAddition << "_TV_Iter_" << param1 << "_L_" << param2;
      std::cout << "Total Variation Filtering successful." << std::endl;
      break;
    }

  case DILATION:
    {
      BallType binaryBall;
      binaryBall.SetRadius( param1 );
      binaryBall.CreateStructuringElement();

      DilationFilterType::Pointer dilationFilter = DilationFilterType::New();
      dilationFilter->SetInput( itkImage );
      dilationFilter->SetKernel( binaryBall );
      dilationFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(dilationFilter->GetOutput())->Clone();
      nameAddition << "_Dilated_by_" << param1;
      std::cout << "Dilation successful." << std::endl;
      break;
    }

  case EROSION:
    {
      BallType binaryBall;
      binaryBall.SetRadius( param1 );
      binaryBall.CreateStructuringElement();

      ErosionFilterType::Pointer erosionFilter = ErosionFilterType::New();
      erosionFilter->SetInput( itkImage );
      erosionFilter->SetKernel( binaryBall );
      erosionFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(erosionFilter->GetOutput())->Clone();
      nameAddition << "_Eroded_by_" << param1;
      std::cout << "Erosion successful." << std::endl;
      break;
    }

  case OPENING:
    {
      BallType binaryBall;
      binaryBall.SetRadius( param1 );
      binaryBall.CreateStructuringElement();

      OpeningFilterType::Pointer openFilter = OpeningFilterType::New();
      openFilter->SetInput( itkImage );
      openFilter->SetKernel( binaryBall );
      openFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(openFilter->GetOutput())->Clone();
      nameAddition << "_Opened_by_" << param1;
      std::cout << "Opening successful." << std::endl;
      break;
    }

  case CLOSING:
    {
      BallType binaryBall;
      binaryBall.SetRadius( param1 );
      binaryBall.CreateStructuringElement();

      ClosingFilterType::Pointer closeFilter = ClosingFilterType::New();
      closeFilter->SetInput( itkImage );
      closeFilter->SetKernel( binaryBall );
      closeFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(closeFilter->GetOutput())->Clone();
      nameAddition << "_Closed_by_" << param1;
      std::cout << "Closing successful." << std::endl;
      break;
    }

  case GRADIENT:
    {
      GradientFilterType::Pointer gradientFilter = GradientFilterType::New();
      gradientFilter->SetInput( itkImage );
      gradientFilter->SetSigma( param1 );
      gradientFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(gradientFilter->GetOutput())->Clone();
      nameAddition << "_Gradient_sigma_" << param1;
      std::cout << "Gradient calculation successful." << std::endl;
      break;
    }

  case LAPLACIAN:
    {
      // the laplace filter requires a float type image as input, we need to cast the itkImage
      // to correct type
      ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New();
      caster->SetInput( itkImage );
      caster->Update();
      FloatImageType::Pointer fImage = caster->GetOutput();

      LaplacianFilterType::Pointer laplacianFilter = LaplacianFilterType::New();
      laplacianFilter->SetInput( fImage );
      laplacianFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(laplacianFilter->GetOutput())->Clone();
      nameAddition << "_Second_Derivative";
      std::cout << "Laplacian filtering successful." << std::endl;
      break;
    }

  case SOBEL:
    {
      // the sobel filter requires a float type image as input, we need to cast the itkImage
      // to correct type
      ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New();
      caster->SetInput( itkImage );
      caster->Update();
      FloatImageType::Pointer fImage = caster->GetOutput();

      SobelFilterType::Pointer sobelFilter = SobelFilterType::New();
      sobelFilter->SetInput( fImage );
      sobelFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(sobelFilter->GetOutput())->Clone();
      nameAddition << "_Sobel";
      std::cout << "Edge Detection successful." << std::endl;
      break;
    }

  case THRESHOLD:
    {
      ThresholdFilterType::Pointer thFilter = ThresholdFilterType::New();
      thFilter->SetLowerThreshold(param1 < param2 ? param1 : param2);
      thFilter->SetUpperThreshold(param2 > param1 ? param2 : param1);
      thFilter->SetInsideValue(1);
      thFilter->SetOutsideValue(0);
      thFilter->SetInput(itkImage);
      thFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(thFilter->GetOutput())->Clone();
      nameAddition << "_Threshold";
      std::cout << "Thresholding successful." << std::endl;
      break;
    }

  case INVERSION:
    {
      InversionFilterType::Pointer invFilter = InversionFilterType::New();
      mitk::ScalarType min = newImage->GetScalarValueMin();
      mitk::ScalarType max = newImage->GetScalarValueMax();
      invFilter->SetMaximum( max + min );
      invFilter->SetInput(itkImage);
      invFilter->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(invFilter->GetOutput())->Clone();
      nameAddition << "_Inverted";
      std::cout << "Image inversion successful." << std::endl;
      break;
    }

  case DOWNSAMPLING:
    {
      ResampleImageFilterType::Pointer downsampler = ResampleImageFilterType::New();
      downsampler->SetInput( itkImage );

      NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New();
      downsampler->SetInterpolator( interpolator );

      downsampler->SetDefaultPixelValue( 0 );

      ResampleImageFilterType::SpacingType spacing = itkImage->GetSpacing();
      spacing *= (double) param1;
      downsampler->SetOutputSpacing( spacing );

      downsampler->SetOutputOrigin( itkImage->GetOrigin() );
      downsampler->SetOutputDirection( itkImage->GetDirection() );

      ResampleImageFilterType::SizeType size = itkImage->GetLargestPossibleRegion().GetSize();
      for ( int i = 0; i < 3; ++i )
      {
        size[i] /= param1;
      }
      downsampler->SetSize( size );
      downsampler->UpdateLargestPossibleRegion();

      newImage = mitk::ImportItkImage(downsampler->GetOutput())->Clone();
      nameAddition << "_Downsampled_by_" << param1;
      std::cout << "Downsampling successful." << std::endl;
      break;
    }

  case FLIPPING:
    {
      FlipImageFilterType::Pointer flipper = FlipImageFilterType::New();
      flipper->SetInput( itkImage );
      itk::FixedArray<bool, 3> flipAxes;
      for(int i=0; i<3; ++i)
      {
        if(i == param1)
        {
          flipAxes[i] = true;
        }
        else
        {
          flipAxes[i] = false;
        }
      }
      flipper->SetFlipAxes(flipAxes);
      flipper->UpdateLargestPossibleRegion();
      newImage = mitk::ImportItkImage(flipper->GetOutput())->Clone();
      std::cout << "Image flipping successful." << std::endl;
      break;
    }

  case RESAMPLING:
    {
      std::string selectedInterpolator;
      ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New();
      switch (m_SelectedInterpolation)
      {
      case LINEAR:
        {
          LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New();
          resampler->SetInterpolator(interpolator);
          selectedInterpolator = "Linear";
          break;
        }
      case NEAREST:
        {
          NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New();
          resampler->SetInterpolator(interpolator);
          selectedInterpolator = "Nearest";
          break;
        }
      default:
        {
          LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New();
          resampler->SetInterpolator(interpolator);
          selectedInterpolator = "Linear";
          break;
        }
      }
      resampler->SetInput( itkImage );
      resampler->SetOutputOrigin( itkImage->GetOrigin() );

      ImageType::SizeType input_size = itkImage->GetLargestPossibleRegion().GetSize();
      ImageType::SpacingType input_spacing = itkImage->GetSpacing();

      ImageType::SizeType output_size;
      ImageType::SpacingType output_spacing;

      output_size[0] = input_size[0] * (input_spacing[0] / dparam1);
      output_size[1] = input_size[1] * (input_spacing[1] / dparam2);
      output_size[2] = input_size[2] * (input_spacing[2] / dparam3);
      output_spacing [0] = dparam1;
      output_spacing [1] = dparam2;
      output_spacing [2] = dparam3;

      resampler->SetSize( output_size );
      resampler->SetOutputSpacing( output_spacing );
      resampler->SetOutputDirection( itkImage->GetDirection() );

      resampler->UpdateLargestPossibleRegion();

      ImageType::Pointer resampledImage = resampler->GetOutput();

      newImage = mitk::ImportItkImage( resampledImage );
      nameAddition << "_Resampled_" << selectedInterpolator;
      std::cout << "Resampling successful." << std::endl;
      break;
    }


  case RESCALE:
    {
      FloatImageType::Pointer floatImage = FloatImageType::New();
      CastToItkImage( newImage, floatImage );
      itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::Pointer filter = itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::New();
      filter->SetInput(0, floatImage);
      filter->SetOutputMinimum(dparam1);
      filter->SetOutputMaximum(dparam2);
      filter->Update();
      floatImage = filter->GetOutput();

      newImage = mitk::Image::New();
      newImage->InitializeByItk(floatImage.GetPointer());
      newImage->SetVolume(floatImage->GetBufferPointer());
      nameAddition << "_Rescaled";
      std::cout << "Rescaling successful." << std::endl;

      break;
    }

  default:
    this->BusyCursorOff();
    return;
  }
  }
  catch (...)
  {
    this->BusyCursorOff();
    QMessageBox::warning(NULL, "Warning", "Problem when applying filter operation. Check your input...");
    return;
  }

  newImage->DisconnectPipeline();

  // adjust level/window to new image
  mitk::LevelWindow levelwindow;
  levelwindow.SetAuto( newImage );
  mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New();
  levWinProp->SetLevelWindow( levelwindow );

  // compose new image name
  std::string name = m_SelectedImageNode->GetNode()->GetName();
  if (name.find(".pic.gz") == name.size() -7 )
  {
    name = name.substr(0,name.size() -7);
  }
  name.append( nameAddition.str() );

  // create final result MITK data storage node
  mitk::DataNode::Pointer result = mitk::DataNode::New();
  result->SetProperty( "levelwindow", levWinProp );
  result->SetProperty( "name", mitk::StringProperty::New( name.c_str() ) );
  result->SetData( newImage );

  // for vector images, a different mapper is needed
  if(isVectorImage > 1)
  {
    mitk::VectorImageMapper2D::Pointer mapper =
      mitk::VectorImageMapper2D::New();
    result->SetMapper(1,mapper);
  }

  // reset GUI to ease further processing
//  this->ResetOneImageOpPanel();

  // add new image to data storage and set as active to ease further processing
  GetDefaultDataStorage()->Add( result, m_SelectedImageNode->GetNode() );
  if ( m_Controls->cbHideOrig->isChecked() == true )
    m_SelectedImageNode->GetNode()->SetProperty( "visible", mitk::BoolProperty::New(false) );
  // TODO!! m_Controls->m_ImageSelector1->SetSelectedNode(result);

  // show the results
  mitk::RenderingManager::GetInstance()->RequestUpdateAll();
  this->BusyCursorOff();
}
Exemple #2
0
void segment::Execute(int first,int last,double sig_min, double sig_max, double propagation, double curvature, double advection, double rms, int iterations, double alpha, double beta, double distance){
    ifstream myfile ("/home/gustavo/temp/endocardium.txt");
    for(int i =first; i<last;i++){
        typedef   float           InternalPixelType;
        const     unsigned int    Dimension = 2;

        typedef itk::Image< InternalPixelType, Dimension >  InternalImageType;

        typedef unsigned char                            OutputPixelType;
        typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
        typedef itk::BinaryThresholdImageFilter<
                InternalImageType,
                OutputImageType    >       ThresholdingFilterType;
        ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
        thresholder->SetLowerThreshold( -1000.0 );
        thresholder->SetUpperThreshold(     0.0 );
        thresholder->SetOutsideValue(  0  );
        thresholder->SetInsideValue(  255 );

        typedef  itk::ImageFileReader< InternalImageType > ReaderType;
        typedef  itk::ImageFileWriter<  OutputImageType  > WriterType;
        ReaderType::Pointer reader = ReaderType::New();
        WriterType::Pointer writer = WriterType::New();
        //WriterType::Pointer writer_out = WriterType::New();
        stringstream ss;

        string name = "/home/gustavo/temp/cine_";
        string type = ".tif";

        ss<<name<<(i+1)<<type;

        string filename = ss.str();
        ss.str("");

        reader->SetFileName(filename);
        reader->Update();

        InternalImageType::Pointer val = reader->GetOutput();

        typedef itk::RescaleIntensityImageFilter<
                InternalImageType,
                OutputImageType >   CastFilterType;

        typedef   itk::GradientMagnitudeRecursiveGaussianImageFilter<
                InternalImageType,
                InternalImageType >  GradientFilterType;
        typedef   itk::SigmoidImageFilter<
                InternalImageType,
                InternalImageType >  SigmoidFilterType;
        GradientFilterType::Pointer  gradientMagnitude = GradientFilterType::New();
        SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();

        sigmoid->SetOutputMinimum(sig_min);
        sigmoid->SetOutputMaximum(sig_max);

        typedef  itk::FastMarchingImageFilter<
                InternalImageType,
                InternalImageType >    FastMarchingFilterType;

        FastMarchingFilterType::Pointer  fastMarching = FastMarchingFilterType::New();
        //const InternalImageType * inputImage = reader->GetOutput();
        const InternalImageType * inputImage = val;
        fastMarching->SetOutputRegion( inputImage->GetBufferedRegion() );
        fastMarching->SetOutputSpacing( inputImage->GetSpacing() );
        fastMarching->SetOutputOrigin( inputImage->GetOrigin() );
        fastMarching->SetOutputDirection( inputImage->GetDirection() );

        typedef  itk::GeodesicActiveContourLevelSetImageFilter< InternalImageType,
                InternalImageType >    GeodesicActiveContourFilterType;
        GeodesicActiveContourFilterType::Pointer geodesicActiveContour =
                GeodesicActiveContourFilterType::New();

        const double propagationScaling = propagation;
        //  Software Guide : BeginCodeSnippet
        geodesicActiveContour->SetPropagationScaling( propagationScaling );
        geodesicActiveContour->SetCurvatureScaling(curvature);
        geodesicActiveContour->SetAdvectionScaling(advection);

        geodesicActiveContour->SetMaximumRMSError(rms);
        geodesicActiveContour->SetNumberOfIterations(iterations);

        gradientMagnitude->SetInput(val);
        sigmoid->SetInput( gradientMagnitude->GetOutput() );
        geodesicActiveContour->SetInput(  fastMarching->GetOutput() );
        geodesicActiveContour->SetFeatureImage( sigmoid->GetOutput() );
        thresholder->SetInput( geodesicActiveContour->GetOutput() );
        //ImageOut = thresholder->GetOutput();
        //writer->SetInput( thresholder->GetOutput() );

        const double sigma = 0.5;
        gradientMagnitude->SetSigma(  sigma  );

        sigmoid->SetAlpha( alpha );
        sigmoid->SetBeta(  beta  );

        string line;
        int x;
        int y;

        if (myfile.is_open())
        {
            getline (myfile,line);
            string cmd = line;
            string arg;
            string::size_type pos = cmd.find(' ');
            if(cmd.npos != pos) {
                arg = cmd.substr(pos + 1);
                cmd = cmd.substr(0, pos);
            }
            x = atoi(cmd.c_str());
            y = atoi(arg.c_str());
        }

        typedef FastMarchingFilterType::NodeContainer  NodeContainer;
        typedef FastMarchingFilterType::NodeType       NodeType;
        NodeContainer::Pointer seeds = NodeContainer::New();
        InternalImageType::IndexType  seedPosition;
        seedPosition.SetElement(0,x);
        seedPosition.SetElement(1,y);
        //seedPosition.SetElement(2,(int)z);
        cout<<"X, Y = "<<x<<" "<<y<<endl;
        NodeType node;
        const double seedValue = - distance;
        node.SetValue( seedValue );
        node.SetIndex( seedPosition );

        seeds->Initialize();
        seeds->InsertElement( 0, node );

        fastMarching->SetTrialPoints(  seeds  );

        fastMarching->SetSpeedConstant( 4.0 );

        CastFilterType::Pointer caster2 = CastFilterType::New();
        CastFilterType::Pointer caster3 = CastFilterType::New();
        CastFilterType::Pointer caster4 = CastFilterType::New();
        WriterType::Pointer writer2 = WriterType::New();
        WriterType::Pointer writer3 = WriterType::New();
        WriterType::Pointer writer4 = WriterType::New();

        caster2->SetInput( gradientMagnitude->GetOutput() );
        writer2->SetInput( caster2->GetOutput() );
        writer2->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput2.tif");
        caster2->SetOutputMinimum(   0 );
        caster2->SetOutputMaximum( 255 );
        writer2->Update();
        caster3->SetInput( sigmoid->GetOutput() );
        writer3->SetInput( caster3->GetOutput() );
        writer3->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput3.tif");
        caster3->SetOutputMinimum(   0 );
        caster3->SetOutputMaximum( 255 );
        writer3->Update();
        caster4->SetInput( fastMarching->GetOutput() );
        writer4->SetInput( caster4->GetOutput() );
        writer4->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput4.tif");
        caster4->SetOutputMinimum(   0 );
        caster4->SetOutputMaximum( 255 );

        fastMarching->SetOutputSize(
                    reader->GetOutput()->GetBufferedRegion().GetSize() );
        reader->Update();

        stringstream ss2;

        string name2 = "/home/gustavo/temp/segmented_";
        string type2 = ".tif";

        if(i<9)
            ss2<<name2<<"00"<<(i+1)<<type2;
        if(i>=9 && i<99)
            ss2<<name2<<"0"<<(i+1)<<type2;
        if(i>=99)
            ss2<<name2<<(i+1)<<type2;
        string filename2 = ss2.str();
        ss2.str("");

        typedef itk::GradientMagnitudeImageFilter<OutputImageType, OutputImageType >  GradientType;
        GradientType::Pointer gradient = GradientType::New();
        gradient->SetInput(thresholder->GetOutput());
        gradient->Update();

        try
        {
            writer->SetFileName(filename2);
            writer->SetInput( gradient->GetOutput() );
            writer->Update();
        }
        catch( itk::ExceptionObject & excep )
        {
            std::cerr << "Exception caught !" << std::endl;
            std::cerr << excep << std::endl;
        }

        std::cout << std::endl;
        std::cout << "Max. no. iterations: " << geodesicActiveContour->GetNumberOfIterations() << std::endl;
        std::cout << "Max. RMS error: " << geodesicActiveContour->GetMaximumRMSError() << std::endl;
        std::cout << std::endl;
        std::cout << "No. elpased iterations: " << geodesicActiveContour->GetElapsedIterations() << std::endl;
        std::cout << "RMS change: " << geodesicActiveContour->GetRMSChange() << std::endl;
        writer4->Update();

        typedef itk::ImageFileWriter< InternalImageType > InternalWriterType;
        InternalWriterType::Pointer mapWriter = InternalWriterType::New();
        mapWriter->SetInput( fastMarching->GetOutput() );
        mapWriter->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput4.mha");
        mapWriter->Update();
        InternalWriterType::Pointer speedWriter = InternalWriterType::New();
        speedWriter->SetInput( sigmoid->GetOutput() );
        speedWriter->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput3.mha");
        speedWriter->Update();
        InternalWriterType::Pointer gradientWriter = InternalWriterType::New();
        gradientWriter->SetInput( gradientMagnitude->GetOutput() );
        gradientWriter->SetFileName("/home/gustavo/temp/GeodesicActiveContourImageFilterOutput2.mha");
        gradientWriter->Update();
    }
    myfile.close();

}
int main(int argc, const char *argv[])
{
	// Validate input parameters
	if (argc < 15) {
		std::cerr << "Missing parameters! Usage:" << std::endl;
		std::cerr << argv[0];
		std::cerr << " <Read/WriteDir> <InputImg> <OutputImg> ";
		std::cerr << "[seedX] [seedY] [seedZ] [initDist] ";
		std::cerr << "[sigma] [sigmoid K1] [sigmoid K2] ";
		std::cerr << "[propagation] [curvature] [advection] [iterations]";
		std::cerr << std::endl;
		return EXIT_FAILURE;
	}
	
	const unsigned int Dimension = 3;
	typedef float InputPixelType;
	typedef unsigned char OutputPixelType;
    typedef itk::Image< InputPixelType, Dimension > InputImageType;
	typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

    ////////////////////////////////////////////////
    // 1) Read the input image

	typedef itk::ImageFileReader< InputImageType >  ReaderType;
	ReaderType::Pointer reader = ReaderType::New();
	std::string readpath( argv[1] );
	readpath.append( argv[2] );
	reader->SetFileName( readpath );
	reader->Update();
	
    ////////////////////////////////////////////////
    // 2) Curvature anisotropic diffusion
	
	typedef itk::CurvatureAnisotropicDiffusionImageFilter< 
		InputImageType, InputImageType > SmoothingFilterType;
	SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();
	smoothing->SetTimeStep(0.04);
	smoothing->SetNumberOfIterations(5);
	smoothing->SetConductanceParameter(9.0);
	smoothing->SetInput( reader->GetOutput() );
	
    ////////////////////////////////////////////////
    // 3) Gradient magnitude recursive Gaussian
	
	const double sigma = atof(argv[8]);
	typedef itk::GradientMagnitudeRecursiveGaussianImageFilter< 
		InputImageType, InputImageType > GradientFilterType;
	GradientFilterType::Pointer gradientMagnitude = GradientFilterType::New();
	gradientMagnitude->SetSigma( sigma );
	gradientMagnitude->SetInput( smoothing->GetOutput() );
	
    ////////////////////////////////////////////////
    // 4) Sigmoid mapping
	
	const double K1 = atof(argv[9]);
	const double K2 = atof(argv[10]);
	typedef itk::SigmoidImageFilter< InputImageType, InputImageType > 
		SigmoidFilterType;
	SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();
	sigmoid->SetOutputMinimum(0.0);
	sigmoid->SetOutputMaximum(1.0);
	sigmoid->SetAlpha( (K2 - K1)/6 );
	sigmoid->SetBeta( (K1 + K2)/2 );
	sigmoid->SetInput( gradientMagnitude->GetOutput() );
	
    ////////////////////////////////////////////////
    // 5) Segmentation with geodesic active contour
	
	typedef itk::FastMarchingImageFilter< InputImageType, InputImageType > 
		FastMarchingFilterType;
	FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
	
	typedef itk::GeodesicActiveContourLevelSetImageFilter< 
		InputImageType, InputImageType > GeodesicActiveContourFilterType;
	GeodesicActiveContourFilterType::Pointer geodesicActiveContour = 
		GeodesicActiveContourFilterType::New();
	
	const double propagation = atof( argv[11] );
	const double curvature = atof( argv[12] );
	const double advection = atof( argv[13] );
	const double iterations = atoi( argv[14] );
	geodesicActiveContour->SetPropagationScaling( propagation );
	geodesicActiveContour->SetCurvatureScaling( curvature );
	geodesicActiveContour->SetAdvectionScaling( advection );
	geodesicActiveContour->SetMaximumRMSError(0.01);
	geodesicActiveContour->SetNumberOfIterations( iterations );
	
	geodesicActiveContour->SetInput( fastMarching->GetOutput() );
	geodesicActiveContour->SetFeatureImage( sigmoid->GetOutput() );
	
    ////////////////////////////////////////////////
    // 6) Binary thresholding
	
	typedef itk::BinaryThresholdImageFilter< InputImageType, OutputImageType > 
		ThresholdingFilterType;
	ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
	thresholder->SetLowerThreshold(-1000.0);
	thresholder->SetUpperThreshold(0.0);
	thresholder->SetOutsideValue(0);
	thresholder->SetInsideValue(255);
	thresholder->SetInput( geodesicActiveContour->GetOutput() );
	
    ////////////////////////////////////////////////
    // 7) Finish setting up fast marching
	
	typedef FastMarchingFilterType::NodeContainer NodeContainer;
	typedef FastMarchingFilterType::NodeType NodeType;
	
	NodeContainer::Pointer seeds = NodeContainer::New();
	InputImageType::IndexType seedPosition;
	seedPosition[0] = atoi( argv[4] );
	seedPosition[1] = atoi( argv[5] );
	seedPosition[2] = atoi( argv[6] );
	const double initialDistance = atof( argv[7] );
	const double seedValue = -initialDistance;
	NodeType node;
	node.SetValue( seedValue );
	node.SetIndex( seedPosition );
	seeds->Initialize();
	seeds->InsertElement(0, node);
	
	fastMarching->SetTrialPoints( seeds );
	fastMarching->SetSpeedConstant(1.0);
	fastMarching->SetOutputSize( reader->GetOutput()->GetBufferedRegion().GetSize() );
	fastMarching->SetOutputRegion( reader->GetOutput()->GetBufferedRegion() );
	fastMarching->SetOutputSpacing( reader->GetOutput()->GetSpacing() );
	fastMarching->SetOutputOrigin( reader->GetOutput()->GetOrigin() );
	
	////////////////////////////////////////////////
    // 7) Write output image
	
	typedef itk::ImageFileWriter< OutputImageType > WriterType;
	WriterType::Pointer writer = WriterType::New();
	std::string writepath( argv[1] );
	writepath.append( argv[3] );
	writer->SetFileName( writepath );
	writer->SetInput( thresholder->GetOutput() );
	
	try {
		writer->Update();
	}
	catch( itk::ExceptionObject &excep ) {
		std::cerr << "Exception caught!" << std::endl;
		std::cerr << excep << std::endl;
		return EXIT_FAILURE;
	}
	
	// The following writer is used to save the output of the sigmoid mapping
	typedef itk::ImageFileWriter< InputImageType > InternalWriterType;
	InternalWriterType::Pointer speedWriter = InternalWriterType::New();
	speedWriter->SetInput( sigmoid->GetOutput() );
	std::string sigmoidpath( argv[1] );
	speedWriter->SetFileName( sigmoidpath.append("SigmoidForGeodesic.mha"));
	speedWriter->Update();
	
	return 0;
}
void gradient_calc(int S_i, float* S, int i, int j, int k, float* data, int r, int s,  int t, unsigned short* output_label){
	
	//cout<<"Starting Definitions..."<<endl;	
	//define the pixel and image types	
	typedef float PixelType;
	typedef itk::Image<PixelType, 3> ImageType;
	typedef itk::CovariantVector< double, 3 > GradientPixelType;
	typedef itk::Image< GradientPixelType, 3 > GradientImageType;
	typedef itk::GradientRecursiveGaussianImageFilter<ImageType, GradientImageType> GradientFilterType;
		
	//Initialize a new image which will read the input label	
	ImageType::Pointer image = ImageType::New();
	ImageType::IndexType start;
	start[0] = 0;
	start[1] = 0; 
	start[2] = 0;
	ImageType::SizeType size;
	size[0] = k;
	size[1] = j;
	size[2] = i;
	ImageType::SpacingType spacing;
	spacing[0] = S[0]; 
	spacing[1] = S[1]; 
	spacing[2] = S[2];
	//cout<<"X_space="<<spacing[0]<<", Y_space="<<spacing[1]<<", Z_space="<<spacing[2]<<endl;
	image->SetSpacing( spacing );
	ImageType::RegionType region;
	region.SetSize( size );
	region.SetIndex( start );
	image->SetRegions( region );
	image->Allocate();

	//Create an image iterator to copy the input label into the image file
	typedef itk::ImageRegionIterator< ImageType > IteratorType;
	IteratorType it( image, image->GetRequestedRegion() );

	int count = 0;	
	while(!it.IsAtEnd()){	
		it.Set( data[ count ] );
		++it;
		count++;
	}
	
	//Calculate the vector gradient of the image
	GradientFilterType::Pointer gradientMapFilter = GradientFilterType::New();
	gradientMapFilter->SetInput( image );
	gradientMapFilter->SetSigma( 1.0 );
	gradientMapFilter->Update();

	//Creates a new image and iterator of the gradient
	GradientImageType::Pointer image2 = gradientMapFilter->GetOutput();
	typedef itk::ImageRegionConstIterator< GradientImageType > IteratorType2;
	IteratorType2 it2( image2, image2->GetRequestedRegion() );
	//ImageType::IndexType idx = it2.GetIndex();

	//Outputs the input image to test if the input worked correctly
	ImageType::RegionType region2 = image2->GetLargestPossibleRegion();

	long int count2 = 0;	
	while(!it2.IsAtEnd()){
	//while(count2 < (r * s * t - 1)){		
		float magnitude = sqrt(it2.Get()[0] * it2.Get()[0] + it2.Get()[1] * it2.Get()[1] + it2.Get()[2] * it2.Get()[2]);
		output_label[ count2 ] = magnitude ;
		count2++;
		++it2;

	}
	
}