/*! * \brief Recombine individuals by weighted mean to generate a new individual. * \param inIndivPool Parents being recombined. * \param ioContext Evolutionary context. * \return Children generated by recombination. */ Individual::Handle Beagle::ES::RecombinationWeightedOp::recombine(Individual::Bag& inIndivPool, Context& ioContext) { Beagle_StackTraceBeginM(); // Compute recombination weights. std::vector<double> lWeights(inIndivPool.size()); for(unsigned int i=0; i<lWeights.size(); ++i) { lWeights[i] = std::log(double(lWeights.size()+1)); lWeights[i] -= std::log(double(i+1)); } // Recombine parents to generate new individual. const Factory& lFactory = ioContext.getSystem().getFactory(); Individual::Alloc::Handle lIndivAlloc = castHandleT<Individual::Alloc>(lFactory.getConceptAllocator("Individual")); Genotype::Alloc::Handle lGenotypeAlloc = castHandleT<Genotype::Alloc>(lFactory.getConceptAllocator("Genotype")); Individual::Handle lChildIndiv = castHandleT<Individual>(lIndivAlloc->allocate()); std::vector< std::vector<double> > lCountGenoSum; for(unsigned int i=0; i<inIndivPool.size(); ++i) { const unsigned int lPoolISize = inIndivPool[i]->size(); const unsigned int lChildSize = lChildIndiv->size(); if(lPoolISize > lChildSize) { lCountGenoSum.resize(lPoolISize); lChildIndiv->resize(lPoolISize); for(unsigned int j=lChildSize; j<lPoolISize; ++j) { (*lChildIndiv)[j] = castHandleT<Genotype>(lGenotypeAlloc->allocate()); } } for(unsigned int j=0; j<lPoolISize; ++j) { FltVec::FloatVector::Handle lChildGenoJ = castHandleT<FltVec::FloatVector>((*lChildIndiv)[j]); FltVec::FloatVector::Handle lPoolIGenoJ = castHandleT<FltVec::FloatVector>((*inIndivPool[i])[j]); const unsigned int lPoolIGenoJSize = lPoolIGenoJ->size(); if(lPoolIGenoJSize > lChildGenoJ->size()) { lChildGenoJ->resize(lPoolIGenoJSize,0.0); lCountGenoSum[j].resize(lPoolIGenoJSize,0); } for(unsigned int k=0; k<lPoolIGenoJSize; ++k) { (*lChildGenoJ)[k] += (lWeights[i] * (*lPoolIGenoJ)[k]); lCountGenoSum[j][k] += lWeights[i]; } } } for(unsigned int i=0; i<lChildIndiv->size(); ++i) { FltVec::FloatVector::Handle lChildGenoI = castHandleT<FltVec::FloatVector>((*lChildIndiv)[i]); for(unsigned int j=0; j<lChildGenoI->size(); ++j) { (*lChildGenoI)[j] /= lCountGenoSum[i][j]; } } Beagle_LogDebugM(ioContext.getSystem().getLogger(), *lChildIndiv); return lChildIndiv; Beagle_StackTraceEndM(); }
/*! * \brief Select inN first individuals. * \param inN Number of individuals to select. * \param ioPool Pool from which the individuals are choosen. * \param ioContext Evolutionary context. * \param outSelections Vector of unsigned ints that say how often an individual was selected. * * The output of this method is via outSelection. It produces a * vector the same size as ioPool, where each index says how many * times an individual was selected. If this is not the desired * output, consider using the method convertToList(). */ void SelectFirstOp::selectNIndividuals(unsigned int inN, Individual::Bag& ioPool, Context& ioContext, std::vector<unsigned int>& outSelections) { Beagle_StackTraceBeginM(); const unsigned int lDivNP = inN / ioPool.size(); const unsigned int lModNP = inN % ioPool.size(); outSelections.resize(ioPool.size()); for(unsigned int i=0; i<ioPool.size(); ++i) { outSelections[i] = (i<lModNP) ? lDivNP+1 : lDivNP; } Beagle_StackTraceEndM("void SelectFirstOp::selectNIndividuals(unsigned int,Individual::Bag&,Context&,std::vector<unsigned int>&)"); }
/*! * \brief Apply the operation on a deme in the given context. * \param ioDeme Reference to the deme on which the operation takes place. * \param ioContext Evolutionary context of the operation. */ void GenerationalOp::operate(Deme& ioDeme, Context& ioContext) { Beagle_StackTraceBeginM(); Beagle_NonNullPointerAssertM(getRootNode()); Beagle_NonNullPointerAssertM(mElitismKeepSize); Beagle_ValidateParameterM(mElitismKeepSize->getWrappedValue() <= ioDeme.size(), "ec.elite.keepsize", "The elistism keepsize must be less than the deme size!"); Beagle_LogTraceM( ioContext.getSystem().getLogger(), "Processing using generational replacement strategy the " << uint2ordinal(ioContext.getDemeIndex()+1) << " deme" ); Beagle_LogTraceM(ioContext.getSystem().getLogger(), (*this)); RouletteT<unsigned int> lRoulette; buildRoulette(lRoulette, ioContext); Individual::Bag lOffsprings; const Factory& lFactory = ioContext.getSystem().getFactory(); if(mElitismKeepSize->getWrappedValue() > 0) { History::Handle lHistory = castHandleT<History>(ioContext.getSystem().haveComponent("History")); std::make_heap(ioDeme.begin(), ioDeme.end(), IsLessPointerPredicate()); for(unsigned int i=0; i<mElitismKeepSize->getWrappedValue(); ++i) { std::string lIndividualType = ioDeme[0]->getType(); Individual::Alloc::Handle lIndividualAlloc = castHandleT<Individual::Alloc>(lFactory.getAllocator(lIndividualType)); Individual::Handle lEliteIndiv = castHandleT<Individual>(lIndividualAlloc->allocate()); lEliteIndiv->copy(*ioDeme[0], ioContext.getSystem()); lOffsprings.push_back(lEliteIndiv); if(lHistory != NULL) { HistoryID::Handle lHID = castHandleT<HistoryID>(ioDeme[0]->getMember("HistoryID")); std::vector<HistoryID> lParent; if(lHID != NULL) lParent.push_back(*lHID); lHistory->allocateNewID(*lEliteIndiv); lHistory->trace(ioContext, lParent, lEliteIndiv, getName(), "elitism"); } std::pop_heap(ioDeme.begin(), (ioDeme.end()-i), IsLessPointerPredicate()); } } for(unsigned int i=mElitismKeepSize->getWrappedValue(); i<ioDeme.size(); ++i) { unsigned int lIndexBreeder = lRoulette.select(ioContext.getSystem().getRandomizer()); BreederNode::Handle lSelectedBreeder=getRootNode(); for(unsigned int j=0; j<lIndexBreeder; ++j) lSelectedBreeder=lSelectedBreeder->getNextSibling(); Beagle_NonNullPointerAssertM(lSelectedBreeder); Beagle_NonNullPointerAssertM(lSelectedBreeder->getBreederOp()); Individual::Handle lBredIndiv = lSelectedBreeder->getBreederOp()->breed(ioDeme, lSelectedBreeder->getFirstChild(), ioContext); Beagle_NonNullPointerAssertM(lBredIndiv); lOffsprings.push_back(lBredIndiv); } for(unsigned int j=0; j<lOffsprings.size(); ++j) ioDeme[j] = lOffsprings[j]; Beagle_StackTraceEndM(); }
/*! * \brief Select an individual using the tournament selection method. * \param ioPool Individual pool to use for selection. * \param ioContext Context of the evolution. * \return Index of the choosen individual in the pool. */ unsigned int SelectTournamentOp::selectOneIndividual(Individual::Bag& ioPool, Context& ioContext) { Beagle_StackTraceBeginM(); Beagle_ValidateParameterM(mNumberParticipants->getWrappedValue() > 0, "ec.sel.tournsize", ">0"); unsigned int lChoosenIndividual = ioContext.getSystem().getRandomizer().rollInteger(0,((unsigned int)ioPool.size())-1); Beagle_LogDebugM( ioContext.getSystem().getLogger(), std::string("Starting by choosing the ")+ uint2ordinal(lChoosenIndividual+1)+" individual" ); for(unsigned int j=1; j<mNumberParticipants->getWrappedValue(); j++) { unsigned int lTriedIndividual = ioContext.getSystem().getRandomizer().rollInteger(0,((unsigned int)ioPool.size())-1); if(ioPool[lChoosenIndividual]->isLess(*ioPool[lTriedIndividual])) { lChoosenIndividual = lTriedIndividual; Beagle_LogDebugM( ioContext.getSystem().getLogger(), std::string("Trying the ")+uint2ordinal(lTriedIndividual+1)+ " individual -> choosing it" ); } else { Beagle_LogDebugM( ioContext.getSystem().getLogger(), std::string("Trying the ")+uint2ordinal(lTriedIndividual+1)+ " individual -> the previously choosen one is better" ); } } Beagle_LogDebugM( ioContext.getSystem().getLogger(), "Selecting the " << uint2ordinal(lChoosenIndividual+1) << " individual" ); Beagle_LogDebugM(ioContext.getSystem().getLogger(), *ioPool[lChoosenIndividual]); return lChoosenIndividual; Beagle_StackTraceEndM(); }
/*! * \brief Select best individual of a pool of individuals. * \param ioPool Pool of individuals to use for selection. * \param ioContext Evolutionary context. */ unsigned int SelectBestOp::selectIndividual(Individual::Bag& ioPool, Context& ioContext) { Beagle_StackTraceBeginM(); unsigned int lBestIndex = 0; for(unsigned int i=1; i<ioPool.size(); ++i) { if(ioPool[lBestIndex]->isLess(*ioPool[i])) { lBestIndex = i; } } return lBestIndex; Beagle_StackTraceEndM("unsigned int SelectBestOp::selectIndividual(Individual::Bag&,Context&)"); }
/*! * \brief Evaluate niche count of an individual over a pool of individuals. * \param inEvalIndividual Individual for which we need to evaluate crowding distance. * \param inIndividualPool Pool of individuals to evaluate distance on. * \return Niche count value. */ float NPGA2Op::evalNicheCount(const Individual& inEvalIndividual, const Individual::Bag& inIndividualPool) const { Beagle_StackTraceBeginM(); double lNicheCount = 0.; const Fitness::Handle lEvalFitness = inEvalIndividual.getFitness(); for(unsigned int i=0; i<inIndividualPool.size(); ++i) { float lDistance = lEvalFitness->getDistance(*inIndividualPool[i]->getFitness()); if(lDistance < mNicheRadius->getWrappedValue()) { lNicheCount += (1.0 - (lDistance / mNicheRadius->getWrappedValue())); } } return lNicheCount; Beagle_StackTraceEndM(); }
/*! * \brief Add individuals to the bag such that the total equals getIndisPerGroup(). * \param ioIndividuals Bag of individuals to evaluate. * \param ioContexts Bag of evolutionary context. * \return The number of individuals added to the bag. * * The new individuals are chosen from the current deme. */ unsigned int EvaluationMultipleOp::enlargeGroup(Individual::Bag& ioIndividuals, Context::Bag& ioContexts) { Beagle_StackTraceBeginM(); Context& lContext = castObjectT<Context&>(*(ioContexts[0])); // Calculate the number of individuals to add unsigned int lNumToAdd = mIndisPerGroup - ioIndividuals.size(); Beagle_LogVerboseM( lContext.getSystem().getLogger(), std::string("Adding ")+uint2str(lNumToAdd)+std::string(" individuals to the group (for padding)") ); // Resize the bags unsigned int lIndisCounter = ioIndividuals.size(); ioIndividuals.resize(mIndisPerGroup); ioContexts.resize(mIndisPerGroup); // Loop through all the individuals in the deme Deme& lDeme = lContext.getDeme(); std::vector<unsigned int> lSelectableIndis; lSelectableIndis.resize(lDeme.size()); unsigned int lSelectableIndisCounter = 0; for (unsigned int i=0; i<lDeme.size(); i++) { // Loop through all the individuals in the bag bool lAdd = true; for(unsigned int j=0; j<ioIndividuals.size(); j++) { if(lDeme[i] == ioIndividuals[j]) { lAdd = false; break; } } // If the individual is not already in the bag, add it as an option if(lAdd) { lSelectableIndis[lSelectableIndisCounter] = i; lSelectableIndisCounter++; } } // Check there are sufficient individuals to choose if(lSelectableIndis.size() < lNumToAdd) { throw Beagle_RunTimeExceptionM("There are insufficient individuals in the deme to perform evaluation"); } // Add individuals for(unsigned int i=0; i<lNumToAdd; i++) { unsigned int lIndex = lContext.getSystem().getRandomizer().rollInteger(0,lSelectableIndisCounter-1); unsigned int lIndiIndex = lSelectableIndis[lIndex]; Beagle_LogVerboseM( lContext.getSystem().getLogger(), std::string("Adding ")+uint2ordinal(lIndiIndex+1)+ std::string(" individual to the group (for padding)") ); Beagle_AssertM(lIndiIndex < lDeme.size()); ioIndividuals[lIndisCounter] = lDeme[ lIndiIndex ]; Context::Alloc::Handle lContextAlloc = castHandleT<Context::Alloc>(lContext.getSystem().getFactory().getConceptAllocator("Context")); ioContexts[lIndisCounter] = castHandleT<Context>(lContextAlloc->clone(*(ioContexts[0]))); ioContexts[lIndisCounter]->setIndividualHandle( ioIndividuals[lIndisCounter] ); ioContexts[lIndisCounter]->setIndividualIndex( lIndiIndex ); lIndisCounter++; } Beagle_AssertM( lIndisCounter==ioIndividuals.size() ); return lNumToAdd; Beagle_StackTraceEndM(); }
/*! * \brief Apply the evaluation process on the invalid individuals of the deme. * \param ioDeme Deme to process. * \param ioContext Context of the evolution. */ void EvaluationMultipleOp::operate(Deme& ioDeme, Context& ioContext) { Beagle_StackTraceBeginM(); Beagle_LogTraceM( ioContext.getSystem().getLogger(), "Evaluating the fitness of the individuals in the " << uint2ordinal(ioContext.getDemeIndex()+1) << " deme" ); Beagle_AssertM( ioDeme.size()!=0 ); // Prepare stats prepareStats(ioDeme,ioContext); // Generate a vector of indicies into the population std::vector<unsigned int> lEvalVector; for(unsigned int i=0; i<ioDeme.size(); i++) { if((ioDeme[i]->getFitness() == NULL) || (ioDeme[i]->getFitness()->isValid() == false)) { lEvalVector.push_back(i); Beagle_LogDebugM( ioContext.getSystem().getLogger(), "Added " << uint2ordinal(i+1) << " individual for evaluation." ); } } std::random_shuffle(lEvalVector.begin(), lEvalVector.end(), ioContext.getSystem().getRandomizer()); Beagle_LogDebugM( ioContext.getSystem().getLogger(), "There are " << lEvalVector.size() << " individuals to be evaluated." ); History::Handle lHistory = castHandleT<History>(ioContext.getSystem().haveComponent("History")); while ( !lEvalVector.empty() ) { // Put individuals and context into bags. Individual::Bag lIndividuals; Context::Bag lContexts; lIndividuals.resize( mIndisPerGroup ); lContexts.resize( mIndisPerGroup ); unsigned int lIndiCounter =0; for (unsigned int i=0; i<mIndisPerGroup; i++) { // Set individual lIndividuals[i] = ioDeme[lEvalVector.back()]; lIndiCounter++; // Set context Context::Alloc::Handle lContextAlloc = castHandleT<Context::Alloc>(ioContext.getSystem().getFactory().getConceptAllocator("Context")); Context::Handle lContext = castHandleT<Context>(lContextAlloc->clone(ioContext)); lContext->setIndividualIndex( lEvalVector.back() ); lContext->setIndividualHandle( ioDeme[lEvalVector.back()] ); lContexts[i] = lContext; // Remove this index from the evaluation vector lEvalVector.pop_back(); if(lEvalVector.empty()) { lIndividuals.resize( lIndiCounter ); lContexts.resize( lIndiCounter ); break; } } // Evaluate individuals std::ostringstream lOSS; lOSS << "Evaluating the fitness of the "; for(unsigned int i=0; i<lIndiCounter; i++) { // Add to message if (i==lIndiCounter-1) lOSS << " and "; lOSS << uint2ordinal(lContexts[i]->getIndividualIndex()+1); if (i<lIndiCounter-2) lOSS << ", "; } lOSS << " individuals"; Beagle_LogVerboseM( ioContext.getSystem().getLogger(), lOSS.str() ); Fitness::Bag::Handle lFitnessBag = evaluateIndividuals(lIndividuals, lContexts); // Assign fitnesses for (unsigned int i=0; i<lIndiCounter; i++) { Beagle_LogDebugM( ioContext.getSystem().getLogger(), "Considering fitness of the " << uint2ordinal(lContexts[i]->getIndividualIndex()+1) << " individual" ); Beagle_AssertM( i < lFitnessBag->size() ); Fitness::Handle lFitness = lFitnessBag->at(i); Beagle_NonNullPointerAssertM( lFitness ); lIndividuals[i]->setFitness( lFitness ); lIndividuals[i]->getFitness()->setValid(); if(lHistory != NULL) { lHistory->allocateID(*lIndividuals[i]); lHistory->trace(ioContext, std::vector<HistoryID>(), lIndividuals[i], getName(), "evaluation"); } Beagle_LogVerboseM( ioContext.getSystem().getLogger(), *lIndividuals[i]->getFitness() ); } // Update stats updateStats(lIndividuals.size(),ioContext); } updateHallOfFameWithDeme(ioDeme,ioContext); Beagle_StackTraceEndM(); }
/*! * \brief Evaluate the fitness of the given bag of individuals. * \param ioIndividuals Bag of individuals to evaluate. * \param ioContexts Bag of evolutionary context. * \return Handle to a bag of fitness values, one for each individual. */ Fitness::Bag::Handle EvaluationMultipleOp::evaluateIndividuals(Individual::Bag& ioIndividuals, Context::Bag& ioContexts) { Beagle_StackTraceBeginM(); Beagle_AssertM(ioIndividuals.size()==ioContexts.size()); Beagle_AssertM(ioIndividuals.size()!=0); Context& lContext = castObjectT<Context&>(*(ioContexts[0])); // Check if sufficient individuals are in the bag Beagle_AssertM( ioIndividuals.size() <= mIndisPerGroup ); unsigned int lNumToIgnore = 0; if (ioIndividuals.size() != mIndisPerGroup) { lNumToIgnore = enlargeGroup(ioIndividuals, ioContexts); } // Create bag of null-fitnesses Fitness::Bag::Handle lFitnessBagAll = new Fitness::Bag; lFitnessBagAll->resize( ioIndividuals.size() ); Beagle_NonNullPointerAssertM( lFitnessBagAll ); // Set up cases if (mCases == NULL) setupCases(ioIndividuals.size(),lContext); Case::Bag::Handle lCases = pruneIgnorableCases(lNumToIgnore); // Call evaluateCase for each case for (unsigned int i=0; i<lCases->size(); i++) { Beagle_LogVerboseM( lContext.getSystem().getLogger(), std::string("Evaluating the ")+uint2ordinal(i+1)+std::string(" case") ); Case& lCase = *(lCases->at(i)); Beagle_AssertM( lCase.mIndices.size() == mIndisPerCase ); // Setup bags of individuals and contexts Individual::Bag lIndividuals; Context::Bag lContexts; lIndividuals.resize( mIndisPerCase ); lContexts.resize( mIndisPerCase ); for (unsigned int j=0; j<mIndisPerCase; j++) { unsigned int lIndex = lCase.mIndices[j]; lIndividuals[j] = ioIndividuals[ lIndex ]; lContexts[j] = ioContexts[ lIndex ]; } // Log individual's details std::ostringstream lOSS; for (unsigned int j=0; j<lIndividuals.size(); j++) { if (j!=0) lOSS << ", "; lOSS << uint2ordinal(lContexts[j]->getIndividualIndex()+1); } Beagle_LogDebugM( lContext.getSystem().getLogger(), uint2ordinal(i+1) << " case: " << lOSS.str() ); // Call evalutateCase() Fitness::Bag::Handle lFitnessBagCase = evaluateCase(lIndividuals, lContexts); // Log resulting fitnesses Beagle_NonNullPointerAssertM( lFitnessBagCase ); Beagle_LogDebugM( lContext.getSystem().getLogger(), "Evaluation of the case is complete. The fitnesses are as follows:" ); for (unsigned int j=0; j<mIndisPerCase; j++) { Beagle_NonNullPointerAssertM( lFitnessBagCase->at(j) ); Beagle_LogDebugM( lContext.getSystem().getLogger(), std::string("Fitness of the ")+ uint2ordinal(ioContexts[lCase.mIndices[j]]->getIndividualIndex()+1)+ std::string(" individual") ); Beagle_LogDebugM(lContext.getSystem().getLogger(), *(*lFitnessBagCase)[j]); // Need to assign fitness values from case to lFitnessBagAll unsigned int lIndex = lCase.mIndices[j]; Beagle_LogDebugM( lContext.getSystem().getLogger(), "Setting fitness for lFitnessBagAll at index " << uint2str(lIndex) ); Beagle_AssertM(lIndex < lFitnessBagAll->size()); if (lFitnessBagAll->at(lIndex)==NULL) { (*lFitnessBagAll)[lIndex] = lFitnessBagCase->at(j); } else { combineFitnesses(lFitnessBagAll->at(lIndex), lFitnessBagCase->at(j) ); Beagle_LogDebugM( lContext.getSystem().getLogger(), "Fitness of the " << uint2ordinal(ioContexts[lIndex]->getIndividualIndex()+1) << " individual has been combined to" ); Beagle_LogDebugM(lContext.getSystem().getLogger(), *(*lFitnessBagAll)[lIndex]); } } } Beagle_LogDebugM( lContext.getSystem().getLogger(), "Evaluation of all cases is complete. Fitnesses are as follows:" ); for (unsigned int i=0; i<ioIndividuals.size(); i++) { if (i>=mIndisPerGroup-lNumToIgnore) { // Nullify ignorable individuals' fitness scores Beagle_LogDebugM( lContext.getSystem().getLogger(), "Ignoring fitness of the " << uint2ordinal(ioContexts[i]->getIndividualIndex()+1) << " individual" ); (*lFitnessBagAll)[i] = NULL; continue; } Beagle_NonNullPointerAssertM( lFitnessBagAll->at(i) ); Beagle_LogDebugM( lContext.getSystem().getLogger(), "Fitness of the " << uint2ordinal(ioContexts[i]->getIndividualIndex()+1) << " individual" ); Beagle_LogDebugM(lContext.getSystem().getLogger(), *(*lFitnessBagAll)[i]); } return lFitnessBagAll; Beagle_StackTraceEndM(); }
/*! * \brief Select inN best individuals. * \param inN Number of individuals to select. * \param ioPool Pool from which the individuals are choosen. * \param ioContext Evolutionary context. * \param outSelections Vector of unsigned ints that say how often an individual was selected. * * The output of this method is via outSelection. It produces a * vector the same size as ioPool, where each index says how many * times an individual was selected. If this is not the desired * output, consider using the method convertToList(). */ void SelectBestOp::selectNIndividuals(unsigned int inN, Individual::Bag& ioPool, Context& ioContext, std::vector<unsigned int>& outSelections) { Beagle_StackTraceBeginM(); // Check that we're not selecting all the individuals if((inN%ioPool.size()) == 0) { Beagle_LogBasicM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", std::string("Warning! Selecting the best ")+uint2str(inN)+" individuals from a pool size of "+ uint2str(ioPool.size())+" (during SelectBestOp) means that every individual will be selected "+ uint2str(inN/ioPool.size())+" times, thus applying no selective pressure." ); } // Copy the pool, pairing indices and handles to individuals Beagle_LogDebugM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", "Copying pool's individuals and pairing them to their indices" ); typedef std::vector< std::pair< unsigned int, Individual::Handle > > lTempPoolType; lTempPoolType lTempPool; lTempPool.resize(ioPool.size()); unsigned int lIndex = 0; for(lTempPoolType::iterator lItr=lTempPool.begin(); lItr!=lTempPool.end(); ++lItr) { lItr->first = lIndex; lItr->second = ioPool[lIndex++]; } Beagle_AssertM(ioPool.size() == lTempPool.size()); // Sort population if(inN > ioPool.size()) { Beagle_LogBasicM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", std::string("Warning sorting entire copy of pool because number to select (")+uint2str(inN)+ ") is greater than size of pool ("+uint2str(ioPool.size())+")" ); std::sort(lTempPool.begin(),lTempPool.end(), TempPoolPredicate()); } else { Beagle_LogDebugM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", std::string("Partial sorting top ")+uint2str(inN)+" individuals in copy of pool" ); std::partial_sort(lTempPool.begin(), lTempPool.begin()+inN, lTempPool.end(), TempPoolPredicate()); } // Write to the selection table Beagle_LogDebugM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", "Writing selection table" ); outSelections.clear(); outSelections.resize(lTempPool.size()); for (unsigned int i=0; i<inN; i++) { unsigned int lSelection = lTempPool[i%lTempPool.size()].first; Beagle_LogDebugM( ioContext.getSystem().getLogger(), "selection", "Beagle::SelectBestOp", std::string("Selecting ")+uint2ordinal(i+1)+" best ("+uint2ordinal(lSelection+1)+" individual)" ); ++(outSelections[lSelection]); } Beagle_StackTraceEndM("void SelectBestOp::selectNIndividuals(unsigned int,Individual::Bag&,Context&,std::vector<unsigned int>&)"); }
/*! * \brief Do fast non-dominated sort and evaluate Pareto fronts of data up to given size. * \param outParetoFronts Pareto fronts from the fast ND sort. * \param inSortStop Number of individuals on the Pareto fronts needed to stop the sort. * \param inIndividualPool Pool of individuals to get next Pareto front of. * \param ioContext Evolutionary context. */ void EMO::NSGA2Op::sortFastND(NSGA2Op::Fronts& outParetoFronts, unsigned int inSortStop, const Individual::Bag& inIndividualPool, Context& ioContext) const { Beagle_StackTraceBeginM(); outParetoFronts.clear(); if(inSortStop == 0) return; outParetoFronts.resize(1); unsigned int lParetoSorted = 0; // N: Number of dominating individuals std::vector<unsigned int> lN(inIndividualPool.size(), 0); // S: Set of dominated individuals Fronts lS(inIndividualPool.size()); // First pass to get first Pareto front and domination sets for(unsigned int i=0; i<inIndividualPool.size(); ++i) { Fitness::Handle lFitI = inIndividualPool[i]->getFitness(); for(unsigned int j=(i+1); j<inIndividualPool.size(); ++j) { Fitness::Handle lFitJ = inIndividualPool[j]->getFitness(); if(lFitJ->isDominated(*lFitI)) { lS[i].push_back(j); // Add index j to dominated set of i ++lN[j]; // Increment domination counter of j } else if(lFitI->isDominated(*lFitJ)) { lS[j].push_back(i); // Add index i to dominated set of j ++lN[i]; // Increment domination counter of i } } if(lN[i] == 0) { // If i is non-dominated outParetoFronts.back().push_back(i); ++lParetoSorted; } } Beagle_LogVerboseM( ioContext.getSystem().getLogger(), uint2ordinal(1)+std::string(" Pareto front consists of ")+ uint2str(outParetoFronts.back().size())+" individuals" ); // Continue ranking until individual pool is empty or stop criterion reach while((lParetoSorted < inIndividualPool.size()) && (lParetoSorted < inSortStop)) { unsigned int lIndexLastFront = outParetoFronts.size() - 1; outParetoFronts.resize(outParetoFronts.size() + 1); for(unsigned int k=0; k<outParetoFronts[lIndexLastFront].size(); ++k) { unsigned int lIndexPk = outParetoFronts[lIndexLastFront][k]; for(unsigned int l=0; l<lS[lIndexPk].size(); ++l) { unsigned int lIndexSl = lS[lIndexPk][l]; if(--lN[lIndexSl] == 0) { outParetoFronts.back().push_back(lIndexSl); ++lParetoSorted; } } } Beagle_LogVerboseM( ioContext.getSystem().getLogger(), uint2ordinal(outParetoFronts.size())+std::string(" Pareto front consists of ")+ uint2str(outParetoFronts.back().size())+" individuals" ); } Beagle_StackTraceEndM(); }
/*! * \brief Recombine individuals by averaging to generate a new individual. * \param inIndivPool Parents being recombined. * \param ioContext Evolutionary context. * \return Children generated by recombination. */ Individual::Handle Beagle::GA::RecombinationESVecOp::recombine(Individual::Bag& inIndivPool, Context& ioContext) { Beagle_StackTraceBeginM(); // Recombine parents to generate new individual. const Factory& lFactory = ioContext.getSystem().getFactory(); Individual::Alloc::Handle lIndivAlloc = castHandleT<Individual::Alloc>(lFactory.getConceptAllocator("Individual")); Genotype::Alloc::Handle lGenotypeAlloc = castHandleT<Genotype::Alloc>(lFactory.getConceptAllocator("Genotype")); Individual::Handle lChildIndiv = castHandleT<Individual>(lIndivAlloc->allocate()); std::vector< std::vector<unsigned int> > lCountGenoSum; for(unsigned int i=0; i<inIndivPool.size(); ++i) { const unsigned int lPoolISize = inIndivPool[i]->size(); const unsigned int lChildSize = lChildIndiv->size(); if(lPoolISize > lChildSize) { lCountGenoSum.resize(lPoolISize); lChildIndiv->resize(lPoolISize); for(unsigned int j=lChildSize; j<lPoolISize; ++j) { (*lChildIndiv)[j] = castHandleT<Genotype>(lGenotypeAlloc->allocate()); } } for(unsigned int j=0; j<lPoolISize; ++j) { GA::ESVector::Handle lChildGenoJ = castHandleT<GA::ESVector>((*lChildIndiv)[j]); GA::ESVector::Handle lPoolIGenoJ = castHandleT<GA::ESVector>((*inIndivPool[i])[j]); const unsigned int lPoolIGenoJSize = lPoolIGenoJ->size(); if(lPoolIGenoJSize > lChildGenoJ->size()) { lChildGenoJ->resize(lPoolIGenoJSize,0.0); lCountGenoSum[j].resize(lPoolIGenoJSize,0); } for(unsigned int k=0; k<lPoolIGenoJSize; ++k) { (*lChildGenoJ)[k].mValue += (*lPoolIGenoJ)[k].mValue; (*lChildGenoJ)[k].mStrategy += (*lPoolIGenoJ)[k].mStrategy; ++lCountGenoSum[j][k]; } } } for(unsigned int i=0; i<lChildIndiv->size(); ++i) { GA::ESVector::Handle lChildGenoI = castHandleT<GA::ESVector>((*lChildIndiv)[i]); for(unsigned int j=0; j<lChildGenoI->size(); ++j) { (*lChildGenoI)[j].mValue /= double(lCountGenoSum[i][j]); (*lChildGenoI)[j].mStrategy /= double(lCountGenoSum[i][j]); } } Beagle_LogDebugM( ioContext.getSystem().getLogger(), "crossover", "Beagle::GA::RecombinationESVecOp", "Individual generated by recombination" ); Beagle_LogObjectDebugM( ioContext.getSystem().getLogger(), "crossover", "Beagle::GA::RecombinationESVecOp", *lChildIndiv ); return lChildIndiv; Beagle_StackTraceEndM("Individual::Handle Beagle::GA::RecombinationESVecOp::recombine(Individual::Bag& inIndivPool,Context& ioContext)"); }
/*! * \brief Apply the recombination operation on a breeding pool, returning a recombined individual. * \param inBreedingPool Breeding pool to use for the recombination operation. * \param inChild Node handle associated to child node in the breeder tree. * \param ioContext Evolutionary context of the recombination operation. * \return Recombined individual. */ Individual::Handle RecombinationOp::breed(Individual::Bag& inBreedingPool, BreederNode::Handle inChild, Context& ioContext) { Beagle_StackTraceBeginM(); // Generate parents for recombination. Individual::Bag::Handle lParents = new Individual::Bag; if(inChild == NULL) { const unsigned int lNbGenerated = (mNumberRecomb->getWrappedValue()==0) ? inBreedingPool.size() : minOf<unsigned int>(inBreedingPool.size(), mNumberRecomb->getWrappedValue()); if(lNbGenerated == inBreedingPool.size()) (*lParents) = inBreedingPool; else { std::vector<unsigned int> lIndices(inBreedingPool.size()); for(unsigned int i=0; i<lIndices.size(); ++i) lIndices[i] = i; std::random_shuffle(lIndices.begin(), lIndices.end(), ioContext.getSystem().getRandomizer()); for(unsigned int i=0; i<lNbGenerated; ++i) { lParents->push_back(inBreedingPool[lIndices[i]]); } } } else { Beagle_NonNullPointerAssertM(inChild->getBreederOp()); const unsigned int lNbGenerated = (mNumberRecomb->getWrappedValue()==0) ? inBreedingPool.size() : minOf<unsigned int>(inBreedingPool.size(), mNumberRecomb->getWrappedValue()); for(unsigned int i=0; i<lNbGenerated; ++i) { Individual::Handle lIndiv = inChild->getBreederOp()->breed(inBreedingPool, inChild->getFirstChild(), ioContext); lParents->push_back(lIndiv); } } // Log parents selected for recombination. Beagle_LogVerboseM( ioContext.getSystem().getLogger(), std::string("Recombining ")+uint2str(lParents->size())+std::string(" individuals together") ); // Do recombination operation on parent and get the resulting child. Individual::Handle lChildIndiv = recombine(*lParents, ioContext); if(lChildIndiv->getFitness() != NULL) { lChildIndiv->getFitness()->setInvalid(); } // Log information to history, if it is used. History::Handle lHistory = castHandleT<History>(ioContext.getSystem().haveComponent("History")); if(lHistory != NULL) { std::vector<HistoryID> lParentNames; for(unsigned int i=0; i<lParents->size(); ++i) { HistoryID::Handle lHID = castHandleT<HistoryID>(lParents->at(i)->getMember("HistoryID")); if(lHID != NULL) lParentNames.push_back(*lHID); } lHistory->incrementHistoryVar(*lChildIndiv); lHistory->trace(ioContext, lParentNames, lChildIndiv, getName(), "recombination"); } return lChildIndiv; Beagle_StackTraceEndM(); }