static void GEMM(Teuchos::ETransp transA, Teuchos::ETransp transB, Scalar alpha, Kokkos::View<Scalar***,Kokkos::LayoutLeft,Kokkos::DefaultExecutionSpace> A, Kokkos::View<Scalar***,Kokkos::LayoutLeft,Kokkos::DefaultExecutionSpace> B, Scalar beta, Kokkos::View<Scalar***,Kokkos::LayoutLeft,Kokkos::DefaultExecutionSpace> C){ const int m = static_cast<int> (C.dimension_1()), n = static_cast<int> (C.dimension_2 ()), k = (transA == Teuchos::NO_TRANS ? A.dimension_2 () : A.dimension_1 ()); // printf("m:%d,n:%d,k:%d",m,n,k); Kokkos::parallel_for(C.dimension(0),blasOpenMPBatchLeft<Scalar>(A,B,C,m,n,k,transA,transB,alpha,beta)); }
KOKKOS_INLINE_FUNCTION void operator() (int i) const { double tmp = 0.0; for(int j = 0; j < idx.dimension_1(); j++) { const double val = src(idx(i,j)); tmp += val*val + 0.5*(idx.dimension_0()*val -idx.dimension_1()*val); } dest(i) += tmp; }
static void GEMM(Teuchos::ETransp transA, Teuchos::ETransp transB, Scalar alpha, Kokkos::View<Scalar***,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> A, Kokkos::View<Scalar***,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> B, Scalar beta, Kokkos::View<Scalar***,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> C){ const int m = static_cast<int> (C.dimension_1()), n = static_cast<int> (C.dimension_2 ()), k = (transA == Teuchos::NO_TRANS ? A.dimension_2 () : A.dimension_1 ()); Teuchos::BLAS<int,Scalar>blas; Kokkos::parallel_for(C.dimension_0(),KOKKOS_LAMBDA (const size_t i) { blas.GEMM(transB, transA, n, m, k, alpha, &B(i,0,0), n, &A(i,0,0), k, beta, &C(i,0,0), n); });
static void GEMM(Teuchos::ETransp transA, Teuchos::ETransp transB, Scalar alpha, Kokkos::View<Scalar**,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> A, Kokkos::View<Scalar**,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> B, Scalar beta, Kokkos::View<Scalar**,Kokkos::LayoutRight,Kokkos::DefaultExecutionSpace> C){ Teuchos::BLAS<int,Scalar>blas; const int m = static_cast<int> (C.dimension_0 ()), n = static_cast<int> (C.dimension_1 ()), k = (transA == Teuchos::NO_TRANS ? A.dimension_1 () : A.dimension_0 ()); blas.GEMM(transB, transA, n, m, k, alpha, B.ptr_on_device(), n, A.ptr_on_device(), k, beta, C.ptr_on_device(), n); }
TEST_F( KokkosThreads, LambdaInitialize) { Kokkos::View<unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> a( Kokkos::ViewAllocateWithoutInitializing("node views"), RUN_TIME_DIMENSION); Kokkos::parallel_for<KOKKOS_THREAD_DEVICE>( a.dimension_0() , [=](size_t i) { for (size_t x=0; x < a.dimension_1(); ++x) { a(i,x) = i; } } ); Kokkos::View<const unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> b = a; int num_error = 0; // Cannot portably call a GTEST macro in parallel // count the errors and test that they are equal to zero Kokkos::parallel_reduce<KOKKOS_THREAD_DEVICE, int /*reduction value type */>( b.dimension_0() , [](int & local_errors) // init lambda { local_errors = 0; } , [=](size_t i, int & local_errors) { // operator() lambda for (size_t x=0; x < b.dimension_1(); ++x) local_errors += i == b(i,x) ? 0 : 1; } , [](volatile int & dst_err, volatile int const& src_err) // join lambda { dst_err += src_err; } , num_errors // where to store the result ); EXPECT_EQ( 0, num_errors); }
TEST_F( KokkosThreads, SerialInitialize) { // allocate a rank 2 array witn that is RUN_TIME_DIMENSION x COMPILE_TIME_DIMENSION // View will default initialize all the values unless it is explicitly disabled, ie, // Kokkos::View<unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> a("node views", RUN_TIME_DIMENSION); // zero fills the array, but // Kokkos::View<unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> a( Kokkos::ViewAllocateWithoutInitializing("node views"), RUN_TIME_DIMENSION); // will allocate without initializing the array Kokkos::View<unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> a( Kokkos::ViewAllocateWithoutInitializing("node views"), RUN_TIME_DIMENSION); for (size_t i=0; i < a.dimension_0(); ++i) { for (size_t x=0; x < a.dimension_1(); ++x) { a(i,x) = i; } } // get a const view to the same array // this view shares the same memory as a, but cannot modify the values Kokkos::View<const unsigned*[COMPILE_TIME_DIMENSION], KOKKOS_THREAD_DEVICE> b = a; for (size_t i=0; i < b.dimension_0(); ++i) { for (size_t x=0; x < b.dimension_1(); ++x) { EXPECT_EQ(i, b(i,x)); } } }
KOKKOS_INLINE_FUNCTION void operator() ( const team_member & thread) const { int i = thread.league_rank(); // Allocate a shared array for the team. shared_1d_int count(thread.team_shmem(),data.dimension_1()); // With each team run a parallel_for with its threads Kokkos::parallel_for(Kokkos::TeamThreadRange(thread,data.dimension_1()), [=] (const int& j) { int tsum; // Run a vector loop reduction over the inner dimension of data // Count how many values are multiples of 4 // Every vector lane gets the same reduction value (tsum) back, it is broadcast to all vector lanes Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(thread,data.dimension_2()), [=] (const int& k, int & vsum) { vsum+= (data(i,j,k) % 4 == 0)?1:0; },tsum); // Make sure only one vector lane adds the reduction value to the shared array, i.e. execute // the next line only once PerThread Kokkos::single(Kokkos::PerThread(thread),[=] () { count(j) = tsum; }); }); // Wait for all threads to finish the parallel_for so that all shared memory writes are done thread.team_barrier(); // Check with one vector lane from each thread how many consecutive // data segments have the same number of values divisible by 4 // The team reduction value is again broadcast to every team member (and every vector lane) int team_sum = 0; Kokkos::parallel_reduce(Kokkos::TeamThreadRange(thread, data.dimension_1()-1), [=] (const int& j, int& thread_sum) { // It is not valid to directly add to thread_sum // Use a single function with broadcast instead // team_sum will be used as input to the operator (i.e. it is used to initialize sum) // the end value of sum will be broadcast to all vector lanes in the thread. Kokkos::single(Kokkos::PerThread(thread),[=] (int& sum) { if(count(j)==count(j+1)) sum++; },thread_sum); },team_sum); // Add with one thread and vectorlane of the team the team_sum to the global value Kokkos::single(Kokkos::PerTeam(thread),[=] () { Kokkos::atomic_add(&gsum(),team_sum); }); }
KOKKOS_INLINE_FUNCTION void operator()( size_t i ) const { if ( i < m_elem_node.dimension_0() * m_elem_node.dimension_1() ) { const size_t ielem = i / ElemNode ; const size_t inode = i % ElemNode ; unsigned elem_grid[SpaceDim] ; unsigned node_grid[SpaceDim] ; m_box_part.uses_elem_coord( ielem , elem_grid ); enum { elem_node_scale = Order == BoxElemPart::ElemLinear ? 1 : Order == BoxElemPart::ElemQuadratic ? 2 : 0 }; node_grid[0] = elem_node_scale * elem_grid[0] + m_elem_node_local[inode][0] ; node_grid[1] = elem_node_scale * elem_grid[1] + m_elem_node_local[inode][1] ; node_grid[2] = elem_node_scale * elem_grid[2] + m_elem_node_local[inode][2] ; m_elem_node(ielem,inode) = m_box_part.local_node_id( node_grid ); } if ( i < m_node_grid.dimension_0() ) { unsigned node_grid[SpaceDim] ; m_box_part.local_node_coord( i , node_grid ); m_node_grid(i,0) = node_grid[0] ; m_node_grid(i,1) = node_grid[1] ; m_node_grid(i,2) = node_grid[2] ; m_coord_map( node_grid[0] , node_grid[1] , node_grid[2] , m_node_coord(i,0) , m_node_coord(i,1) , m_node_coord(i,2) ); } if ( i < m_recv_node.dimension_0() ) { m_recv_node(i,0) = m_box_part.recv_node_rank(i); m_recv_node(i,1) = m_box_part.recv_node_count(i); } if ( i < m_send_node.dimension_0() ) { m_send_node(i,0) = m_box_part.send_node_rank(i); m_send_node(i,1) = m_box_part.send_node_count(i); } if ( i < m_send_node_id.dimension_0() ) { m_send_node_id(i) = m_box_part.send_node_id(i); } }
BoxElemFixture( const BoxElemPart::Decompose decompose , const unsigned global_size , const unsigned global_rank , const unsigned elem_nx , const unsigned elem_ny , const unsigned elem_nz , const float bubble_x = 1.1f , const float bubble_y = 1.2f , const float bubble_z = 1.3f ) : m_box_part( Order , decompose , global_size , global_rank , elem_nx , elem_ny , elem_nz ) , m_coord_map( m_box_part.global_coord_max(0) , m_box_part.global_coord_max(1) , m_box_part.global_coord_max(2) , bubble_x , bubble_y , bubble_z ) , m_node_coord( "fixture_node_coord" , m_box_part.uses_node_count() ) , m_node_grid( "fixture_node_grid" , m_box_part.uses_node_count() ) , m_elem_node( "fixture_elem_node" , m_box_part.uses_elem_count() ) , m_recv_node( "fixture_recv_node" , m_box_part.recv_node_msg_count() ) , m_send_node( "fixture_send_node" , m_box_part.send_node_msg_count() ) , m_send_node_id( "fixture_send_node_id" , m_box_part.send_node_id_count() ) { { const hex_data elem_data ; for ( unsigned i = 0 ; i < ElemNode ; ++i ) { m_elem_node_local[i][0] = elem_data.eval_map[i][0] ; m_elem_node_local[i][1] = elem_data.eval_map[i][1] ; m_elem_node_local[i][2] = elem_data.eval_map[i][2] ; m_elem_node_local[i][3] = 0 ; } } const size_t nwork = std::max( m_recv_node.dimension_0() , std::max( m_send_node.dimension_0() , std::max( m_send_node_id.dimension_0() , std::max( m_node_grid.dimension_0() , m_elem_node.dimension_0() * m_elem_node.dimension_1() )))); Kokkos::parallel_for( nwork , *this ); }
KOKKOS_INLINE_FUNCTION void operator()(const int cell) const { for(int i=0;i<Teuchos::as<int>(local_lids.dimension_1());i++) local_lids(cell,i) = global_lids(cellIds(cell),i); }
void modified_gram_schmidt( const Kokkos::View< ScalarQ ** , Kokkos::LayoutLeft , DeviceType , Management > & Q , const Kokkos::View< ScalarR ** , Kokkos::LayoutLeft , DeviceType , Management > & R , comm::Machine machine ) { const Kokkos::ALL ALL ; typedef Kokkos::View< ScalarQ * , Kokkos::LayoutLeft , DeviceType , Kokkos::MemoryUnmanaged > vector_view_type ; const typename Kokkos::View< ScalarR** , Kokkos::LayoutLeft , DeviceType >:: HostMirror hostR = Kokkos::create_mirror_view( R ); const int length = Q.dimension_0(); const int count = Q.dimension_1(); for ( int j = 0 ; j < count ; ++j ) { const vector_view_type Qj = Kokkos::subview< vector_view_type >( Q , ALL , j ); // reads += length // writes += 0 // flops += 1 + 2 * length const double norm_Qj = Kokkos::norm2( length , Qj , machine ); hostR(j,j) = norm_Qj ; // reads += length // writes += length // flops += 1 + length Kokkos::scale( length , 1.0 / norm_Qj , Qj ); for ( int k = j + 1 ; k < count ; ++k ) { const vector_view_type Qk = Kokkos::subview< vector_view_type >( Q , ALL , k ); // reads += 2 * length // writes += 0 // flops += 2 * length const double Qj_dot_Qk = Kokkos::dot( length , Qj , Qk , machine ); hostR(j,k) = Qj_dot_Qk ; // reads += 2 * length // writes += length // flops += 2 * length Kokkos::axpy( length , - Qj_dot_Qk , Qj , Qk ); } } // reads += 0 // writes += count * count Kokkos::deep_copy( R , hostR ); }
// The functor needs to define how much shared memory it requests given a team_size. size_t team_shmem_size( int team_size ) const { return shared_1d_int::shmem_size(data.dimension_1()); }