Exemple #1
0
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
                                         unsigned char* StartFunction,
                                         unsigned char* EndFunction) const {
  assert(MMI && "MachineModuleInfo not registered!");

  // Map all labels and get rid of any dead landing pads.
  MMI->TidyLandingPads(JCE->getLabelLocations());

  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
  if (PadInfos.empty()) return 0;

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());
  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);
  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);

  // Negative type ids index into FilterIds, positive type ids index into
  // TypeInfos.  The value written for a positive type id is just the type
  // id itself.  For a negative type id, however, the value written is the
  // (negative) byte offset of the corresponding FilterIds entry.  The byte
  // offset is usually equal to the type id, because the FilterIds entries
  // are written using a variable width encoding which outputs one byte per
  // entry as long as the value written is not too large, but can differ.
  // This kind of complication does not occur for positive type ids because
  // type infos are output using a fixed width encoding.
  // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
  SmallVector<int, 16> FilterOffsets;
  FilterOffsets.reserve(FilterIds.size());
  int Offset = -1;
  for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
    E = FilterIds.end(); I != E; ++I) {
    FilterOffsets.push_back(Offset);
    Offset -= MCAsmInfo::getULEB128Size(*I);
  }

  // Compute the actions table and gather the first action index for each
  // landing pad site.
  SmallVector<ActionEntry, 32> Actions;
  SmallVector<unsigned, 64> FirstActions;
  FirstActions.reserve(LandingPads.size());

  int FirstAction = 0;
  unsigned SizeActions = 0;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LP = LandingPads[i];
    const std::vector<int> &TypeIds = LP->TypeIds;
    const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
    unsigned SizeSiteActions = 0;

    if (NumShared < TypeIds.size()) {
      unsigned SizeAction = 0;
      ActionEntry *PrevAction = 0;

      if (NumShared) {
        const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
        assert(Actions.size());
        PrevAction = &Actions.back();
        SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) +
          MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
        for (unsigned j = NumShared; j != SizePrevIds; ++j) {
          SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID);
          SizeAction += -PrevAction->NextAction;
          PrevAction = PrevAction->Previous;
        }
      }

      // Compute the actions.
      for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
        int TypeID = TypeIds[I];
        assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
        int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
        unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);

        int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
        SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
        SizeSiteActions += SizeAction;

        ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
        Actions.push_back(Action);

        PrevAction = &Actions.back();
      }

      // Record the first action of the landing pad site.
      FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    } // else identical - re-use previous FirstAction

    FirstActions.push_back(FirstAction);

    // Compute this sites contribution to size.
    SizeActions += SizeSiteActions;
  }

  // Compute the call-site table.  Entries must be ordered by address.
  SmallVector<CallSiteEntry, 64> CallSites;

  RangeMapType PadMap;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }

  bool MayThrow = false;
  MCSymbol *LastLabel = 0;
  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
        I != E; ++I) {
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
          MI != E; ++MI) {
      if (!MI->isLabel()) {
        MayThrow |= MI->getDesc().isCall();
        continue;
      }

      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
      assert(BeginLabel && "Invalid label!");

      if (BeginLabel == LastLabel)
        MayThrow = false;

      RangeMapType::iterator L = PadMap.find(BeginLabel);

      if (L == PadMap.end())
        continue;

      PadRange P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];

      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
              "Inconsistent landing pad map!");

      // If some instruction between the previous try-range and this one may
      // throw, create a call-site entry with no landing pad for the region
      // between the try-ranges.
      if (MayThrow) {
        CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
        CallSites.push_back(Site);
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      CallSiteEntry Site = {BeginLabel, LastLabel,
        LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};

      assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
              "Invalid landing pad!");

      // Try to merge with the previous call-site.
      if (CallSites.size()) {
        CallSiteEntry &Prev = CallSites.back();
        if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
          // Extend the range of the previous entry.
          Prev.EndLabel = Site.EndLabel;
          continue;
        }
      }

      // Otherwise, create a new call-site.
      CallSites.push_back(Site);
    }
  }
  // If some instruction between the previous try-range and the end of the
  // function may throw, create a call-site entry with no landing pad for the
  // region following the try-range.
  if (MayThrow) {
    CallSiteEntry Site = {LastLabel, 0, 0, 0};
    CallSites.push_back(Site);
  }

  // Final tallies.
  unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
                                            sizeof(int32_t) + // Site length.
                                            sizeof(int32_t)); // Landing pad.
  for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
    SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action);

  unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();

  unsigned TypeOffset = sizeof(int8_t) + // Call site format
                        // Call-site table length
                        MCAsmInfo::getULEB128Size(SizeSites) + 
                        SizeSites + SizeActions + SizeTypes;

  // Begin the exception table.
  JCE->emitAlignmentWithFill(4, 0);
  // Asm->EOL("Padding");

  unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue();

  // Emit the header.
  JCE->emitByte(dwarf::DW_EH_PE_omit);
  // Asm->EOL("LPStart format (DW_EH_PE_omit)");
  JCE->emitByte(dwarf::DW_EH_PE_absptr);
  // Asm->EOL("TType format (DW_EH_PE_absptr)");
  JCE->emitULEB128Bytes(TypeOffset);
  // Asm->EOL("TType base offset");
  JCE->emitByte(dwarf::DW_EH_PE_udata4);
  // Asm->EOL("Call site format (DW_EH_PE_udata4)");
  JCE->emitULEB128Bytes(SizeSites);
  // Asm->EOL("Call-site table length");

  // Emit the landing pad site information.
  for (unsigned i = 0; i < CallSites.size(); ++i) {
    CallSiteEntry &S = CallSites[i];
    intptr_t BeginLabelPtr = 0;
    intptr_t EndLabelPtr = 0;

    if (!S.BeginLabel) {
      BeginLabelPtr = (intptr_t)StartFunction;
      JCE->emitInt32(0);
    } else {
      BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel);
      JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
    }

    // Asm->EOL("Region start");

    if (!S.EndLabel)
      EndLabelPtr = (intptr_t)EndFunction;
    else
      EndLabelPtr = JCE->getLabelAddress(S.EndLabel);

    JCE->emitInt32(EndLabelPtr - BeginLabelPtr);
    //Asm->EOL("Region length");

    if (!S.PadLabel) {
      JCE->emitInt32(0);
    } else {
      unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel);
      JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
    }
    // Asm->EOL("Landing pad");

    JCE->emitULEB128Bytes(S.Action);
    // Asm->EOL("Action");
  }

  // Emit the actions.
  for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
    ActionEntry &Action = Actions[I];

    JCE->emitSLEB128Bytes(Action.ValueForTypeID);
    //Asm->EOL("TypeInfo index");
    JCE->emitSLEB128Bytes(Action.NextAction);
    //Asm->EOL("Next action");
  }

  // Emit the type ids.
  for (unsigned M = TypeInfos.size(); M; --M) {
    const GlobalVariable *GV = TypeInfos[M - 1];
    
    if (GV) {
      if (TD->getPointerSize() == sizeof(int32_t))
        JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
      else
        JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
    } else {
      if (TD->getPointerSize() == sizeof(int32_t))
        JCE->emitInt32(0);
      else
        JCE->emitInt64(0);
    }
    // Asm->EOL("TypeInfo");
  }

  // Emit the filter typeids.
  for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
    unsigned TypeID = FilterIds[j];
    JCE->emitULEB128Bytes(TypeID);
    //Asm->EOL("Filter TypeInfo index");
  }

  JCE->emitAlignmentWithFill(4, 0);

  return DwarfExceptionTable;
}
/// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
/// has a try-range containing the call, a non-zero landing pad, and an
/// appropriate action.  The entry for an ordinary call has a try-range
/// containing the call and zero for the landing pad and the action.  Calls
/// marked 'nounwind' have no entry and must not be contained in the try-range
/// of any entry - they form gaps in the table.  Entries must be ordered by
/// try-range address.
void DwarfException::
ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
                     const RangeMapType &PadMap,
                     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
                     const SmallVectorImpl<unsigned> &FirstActions) {
  // The end label of the previous invoke or nounwind try-range.
  MCSymbol *LastLabel = 0;

  // Whether there is a potentially throwing instruction (currently this means
  // an ordinary call) between the end of the previous try-range and now.
  bool SawPotentiallyThrowing = false;

  // Whether the last CallSite entry was for an invoke.
  bool PreviousIsInvoke = false;

  // Visit all instructions in order of address.
  for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
       I != E; ++I) {
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
         MI != E; ++MI) {
      if (!MI->isLabel()) {
        if (MI->isCall())
          SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
        continue;
      }

      // End of the previous try-range?
      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
      if (BeginLabel == LastLabel)
        SawPotentiallyThrowing = false;

      // Beginning of a new try-range?
      RangeMapType::const_iterator L = PadMap.find(BeginLabel);
      if (L == PadMap.end())
        // Nope, it was just some random label.
        continue;

      const PadRange &P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
             "Inconsistent landing pad map!");

      // For Dwarf exception handling (SjLj handling doesn't use this). If some
      // instruction between the previous try-range and this one may throw,
      // create a call-site entry with no landing pad for the region between the
      // try-ranges.
      if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
        CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
        CallSites.push_back(Site);
        PreviousIsInvoke = false;
      }

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      assert(BeginLabel && LastLabel && "Invalid landing pad!");

      if (!LandingPad->LandingPadLabel) {
        // Create a gap.
        PreviousIsInvoke = false;
      } else {
        // This try-range is for an invoke.
        CallSiteEntry Site = {
          BeginLabel,
          LastLabel,
          LandingPad->LandingPadLabel,
          FirstActions[P.PadIndex]
        };

        // Try to merge with the previous call-site. SJLJ doesn't do this
        if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
          CallSiteEntry &Prev = CallSites.back();
          if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
            // Extend the range of the previous entry.
            Prev.EndLabel = Site.EndLabel;
            continue;
          }
        }

        // Otherwise, create a new call-site.
        if (Asm->MAI->isExceptionHandlingDwarf())
          CallSites.push_back(Site);
        else {
          // SjLj EH must maintain the call sites in the order assigned
          // to them by the SjLjPrepare pass.
          unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
          if (CallSites.size() < SiteNo)
            CallSites.resize(SiteNo);
          CallSites[SiteNo - 1] = Site;
        }
        PreviousIsInvoke = true;
      }
    }
  }

  // If some instruction between the previous try-range and the end of the
  // function may throw, create a call-site entry with no landing pad for the
  // region following the try-range.
  if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    CallSiteEntry Site = { LastLabel, 0, 0, 0 };
    CallSites.push_back(Site);
  }
}
/// PrepareMonoLSDA - Collect information needed by EmitMonoLSDA
///
///   This function collects information available only during EndFunction which is needed
/// by EmitMonoLSDA and stores it into EHFrameInfo. It is the same as the
/// beginning of EmitExceptionTable.
///
void DwarfMonoException::PrepareMonoLSDA(FunctionEHFrameInfo *EHFrameInfo) {
  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
  const MachineFunction *MF = Asm->MF;

  // Sort the landing pads in order of their type ids.  This is used to fold
  // duplicate actions.
  SmallVector<const LandingPadInfo *, 64> LandingPads;
  LandingPads.reserve(PadInfos.size());

  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    LandingPads.push_back(&PadInfos[i]);

  std::sort(LandingPads.begin(), LandingPads.end(),
          [](const LandingPadInfo *L,
			 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });

  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
  // by try-range labels when lowered).  Ordinary calls do not, so appropriate
  // try-ranges for them need be deduced when using DWARF exception handling.
  RangeMapType PadMap;
  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    const LandingPadInfo *LandingPad = LandingPads[i];
    for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
      MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
      assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
      PadRange P = { i, j };
      PadMap[BeginLabel] = P;
    }
  }

  // Compute the call-site table.
  SmallVector<MonoCallSiteEntry, 64> CallSites;

  MCSymbol *LastLabel = 0;
  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
        I != E; ++I) {
    for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
          MI != E; ++MI) {
      if (!MI->isLabel()) {
        continue;
      }

      MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
      assert(BeginLabel && "Invalid label!");

      RangeMapType::iterator L = PadMap.find(BeginLabel);

      if (L == PadMap.end())
        continue;

      PadRange P = L->second;
      const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];

      assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
              "Inconsistent landing pad map!");

      // Mono emits one landing pad for each CLR exception clause,
      // and the type info contains the clause index
      assert (LandingPad->TypeIds.size() == 1);
      assert (LandingPad->LandingPadLabel);

      LastLabel = LandingPad->EndLabels[P.RangeIndex];
      MonoCallSiteEntry Site = {BeginLabel, LastLabel,
							LandingPad->LandingPadLabel, LandingPad->TypeIds [0]};

      assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
              "Invalid landing pad!");

	  // FIXME: This doesn't work because it includes ranges outside clauses
#if 0
      // Try to merge with the previous call-site.
      if (CallSites.size()) {
        MonoCallSiteEntry &Prev = CallSites.back();
        if (Site.PadLabel == Prev.PadLabel && Site.TypeID == Prev.TypeID) {
          // Extend the range of the previous entry.
          Prev.EndLabel = Site.EndLabel;
          continue;
        }
      }
#endif

      // Otherwise, create a new call-site.
      CallSites.push_back(Site);
    }
  }

  //
  // Compute a mapping from method names to their AOT method index
  //
  if (FuncIndexes.size () == 0) {
    const Module *m = MMI->getModule ();
    NamedMDNode *indexes = m->getNamedMetadata ("mono.function_indexes");
	if (indexes) {
      for (unsigned int i = 0; i < indexes->getNumOperands (); ++i) {
        MDNode *n = indexes->getOperand (i);
        MDString *s = (MDString*)n->getOperand (0);
        ConstantInt *idx = (ConstantInt*)n->getOperand (1);
        FuncIndexes.GetOrCreateValue (s->getString (), (int)idx->getLimitedValue () + 1);
      }
    }
  }

  MonoEHFrameInfo *MonoEH = &EHFrameInfo->MonoEH;

  // Save information for EmitMonoLSDA
  MonoEH->MF = Asm->MF;
  MonoEH->FunctionNumber = Asm->getFunctionNumber();
  MonoEH->CallSites.insert(MonoEH->CallSites.begin(), CallSites.begin(), CallSites.end());
  MonoEH->TypeInfos = TypeInfos;
  MonoEH->PadInfos = PadInfos;
  MonoEH->MonoMethodIdx = FuncIndexes.lookup (Asm->MF->getFunction ()->getName ()) - 1;
  //outs()<<"A:"<<Asm->MF->getFunction()->getName() << " " << MonoEH->MonoMethodIdx << "\n";

  int ThisSlot = Asm->MF->getMonoInfo()->getThisStackSlot();

  if (ThisSlot != -1) {
    unsigned FrameReg;
    MonoEH->ThisOffset = Asm->MF->getTarget ().getSubtargetImpl ()->getFrameLowering ()->getFrameIndexReference (*Asm->MF, ThisSlot, FrameReg);
    MonoEH->FrameReg = Asm->MF->getTarget ().getSubtargetImpl ()->getRegisterInfo ()->getDwarfRegNum (FrameReg, true);
  } else {
    MonoEH->FrameReg = -1;
  }
}