Math::Quaternion<double> create_quaternion_from_large_real_component(const Math::Matrix4d& matrix) { Math::Quaternion<double> result; result.w() = 0.5 * std::sqrt(matrix_trace(matrix)); result.x() = 0.25 *(matrix(2,1) - matrix(1,2))/result.w(); result.y() = 0.25 *(matrix(0,2) - matrix(2,0))/result.w(); result.z() = 0.25 *(matrix(1,0) - matrix(0,1))/result.w(); return result; }
TEST_F(QuaternionTest, multiplying_quaternions_with_only_real_part_gives_a_quaternion_with_only_the_real_parts_multiplied_and_no_imaginary_part) { Math::Quaternion<double> left; Math::Quaternion<double> right; left.w() = create_random_scalar(); right.w() = create_random_scalar(); auto res = left * right; EXPECT_EQ(left.w() * right.w(), res.w()); EXPECT_EQ(0, res.x()); EXPECT_EQ(0, res.y()); EXPECT_EQ(0, res.z()); }
TEST_F(QuaternionTest, default_quaternion_is_identity_quaternion) { const Math::Quaternion<double> quat; EXPECT_EQ(1, quat.w()); EXPECT_EQ(0, quat.x()); EXPECT_EQ(0, quat.y()); EXPECT_EQ(0, quat.z()); }
void OnlineRotHec::addMeasurement( const Math::Quaternion& q, const Math::Quaternion& r ) { // make sure the signs of both w's are equal const double nq = q.w() < 0 ? -1 : 1; const double nr = r.w() < 0 ? -1 : 1; Math::ErrorVector< double, 3 > kalmanMeasurement; kalmanMeasurement.value( 0 ) = r.x() * nr - q.x() * nq; kalmanMeasurement.value( 1 ) = r.y() * nr - q.y() * nq; kalmanMeasurement.value( 2 ) = r.z() * nr - q.z() * nq; kalmanMeasurement.covariance = Math::Matrix< double, 3, 3 >::identity(); // do the filter update Math::Matrix< double, 3, 3 > h; skewMatrix( h, Math::Vector< double, 3 >( q.x() * nq + r.x() * nr, q.y() * nq + r.y() * nr, q.z() * nq + r.z() * nr ) ); Tracking::kalmanMeasurementUpdate< 3, 3 >( m_state, Math::Function::LinearFunction< 3, 3, double >( h ), kalmanMeasurement, 0, m_state.value.size() ); }
Math::Quaternion<double> create_quaternion_from_small_real_component(const Math::Matrix4d& matrix) { Math::Quaternion<double> result; result.w() = 0.5 * std::sqrt(matrix_trace(matrix)); result.x() = 0.5 * std::sqrt(matrix(0,0) - matrix(1,1) - matrix(2,2) + matrix(3,3)); result.y() = 0.5 * std::sqrt(-matrix(0,0) + matrix(1,1) - matrix(2,2) + matrix(3,3)); result.z() = 0.5 * std::sqrt(-matrix(0,0) - matrix(1,1) + matrix(2,2) + matrix(3,3)); return result; }
Math::Matrix4d make_matrix_from_quaternion(const Math::Quaternion<double>& quat) { Math::Matrix4d matrix; const auto s = 2.0 / quaternion_norm(quat); matrix(0,0) -= s *(quat.y() * quat.y() + quat.z() * quat.z()); matrix(0,1) += s *(quat.x() * quat.y() - quat.w() * quat.z()); matrix(0,2) += s *(quat.x() * quat.z() + quat.w() * quat.y()); matrix(1,0) += s *(quat.x() * quat.y() + quat.w() * quat.z()); matrix(1,1) -= s *(quat.x() * quat.x() + quat.z() * quat.z()); matrix(1,2) += s *(quat.y() * quat.z() - quat.w() * quat.x()); matrix(2,0) += s *(quat.x() * quat.z() - quat.w() * quat.y()); matrix(2,1) += s *(quat.y() * quat.z() + quat.w() * quat.x()); matrix(2,2) -= s *(quat.x() * quat.x() + quat.y() * quat.y()); return matrix; }
void EMIHead::lookAt(bool entering, const Math::Vector3d &point, float rate, const Math::Matrix4 &matrix) { if (!_cost->_emiSkel || !_cost->_emiSkel->_obj) return; if (_jointName.empty()) return; Joint *joint = _cost->_emiSkel->_obj->getJointNamed(_jointName); if (!joint) return; Math::Quaternion lookAtQuat; // Note: Identity if not looking at anything. if (entering) { Math::Matrix4 jointToWorld = _cost->getOwner()->getFinalMatrix() * joint->_finalMatrix; Math::Vector3d jointWorldPos = jointToWorld.getPosition(); Math::Matrix4 worldToJoint = jointToWorld; worldToJoint.invertAffineOrthonormal(); Math::Vector3d targetDir = (point + _offset) - jointWorldPos; targetDir.normalize(); const Math::Vector3d worldUp(0, 1, 0); Math::Vector3d frontDir = Math::Vector3d(worldToJoint(0, 1), worldToJoint(1, 1), worldToJoint(2, 1)); // Look straight ahead. (+Y) Math::Vector3d modelFront(0, 0, 1); Math::Vector3d modelUp(0, 1, 0); joint->_absMatrix.inverseRotate(&modelFront); joint->_absMatrix.inverseRotate(&modelUp); // Generate a world-space look at matrix. Math::Matrix4 lookAtTM; lookAtTM.setToIdentity(); if (Math::Vector3d::dotProduct(targetDir, worldUp) >= 0.98f) // Avoid singularity if trying to look straight up. lookAtTM.buildFromTargetDir(modelFront, targetDir, modelUp, -frontDir); // Instead of orienting head towards scene up, orient head towards character "back", else if (Math::Vector3d::dotProduct(targetDir, worldUp) <= -0.98f) // Avoid singularity if trying to look straight down. lookAtTM.buildFromTargetDir(modelFront, targetDir, modelUp, frontDir); // Instead of orienting head towards scene down, orient head towards character "front", else lookAtTM.buildFromTargetDir(modelFront, targetDir, modelUp, worldUp); // Convert from world-space to joint-space. lookAtTM = worldToJoint * lookAtTM; // Apply angle limits. Math::Angle p, y, r; lookAtTM.getXYZ(&y, &p, &r, Math::EO_ZXY); y.clampDegrees(_yawRange); p.clampDegrees(_minPitch, _maxPitch); r.clampDegrees(30.0f); lookAtTM.buildFromXYZ(y, p, r, Math::EO_ZXY); lookAtQuat.fromMatrix(lookAtTM.getRotation()); } if (_headRot != lookAtQuat) { Math::Quaternion diff = _headRot.inverse() * lookAtQuat; float angle = 2 * acos(diff.w()); if (diff.w() < 0.0f) { angle = 2 * (float)M_PI - angle; } float turnAmount = g_grim->getPerSecond(rate * ((float)M_PI / 180.0f)); if (turnAmount < angle) _headRot = _headRot.slerpQuat(lookAtQuat, turnAmount / angle); else _headRot = lookAtQuat; } if (_headRot != Math::Quaternion()) { // If not identity.. joint->_animMatrix = joint->_animMatrix * _headRot.toMatrix(); joint->_animQuat = joint->_animQuat * _headRot; _cost->_emiSkel->_obj->commitAnim(); } }