void PiMax::setSensorTeaching(const matrix::Matrix& teaching){
  assert(teaching.getM() == number_sensors && teaching.getN() == 1);
  // calculate the a_teaching,
  // that belongs to the distal teaching value by the inverse model.
  a_teaching = (A.pseudoInverse() * (teaching-b)).mapP(0.95, clip);
  intern_isTeaching=true;
}
void PiMax::setMotorTeaching(const matrix::Matrix& teaching){
  assert(teaching.getM() == number_motors && teaching.getN() == 1);
  // Note: through the clipping the otherwise effectless
  //  teaching with old motor value has now an effect,
  //  namely to drive out of the saturation region.
  a_teaching= teaching.mapP(0.95,clip);
  intern_isTeaching=true;
}
matrix::Matrix standardize(const matrix::Matrix& input)
{
    auto means = apply(reduce(input, {1}, matrix::Add()), matrix::Divide(input.size()[1]));

    auto inputMeanSubtracted = broadcast(input, means, {1}, matrix::Subtract());

    auto stddevs = apply(reduce(apply(inputMeanSubtracted,
        matrix::SquareAndScale(1.0 / input.size()[1])), {1}, matrix::Add()), matrix::Sqrt());

    std::cout << stddevs.toString();

    return broadcast(inputMeanSubtracted, stddevs, {1}, matrix::Divide());
}
void InvertNChannelControllerHebbH::learnHebb(const matrix::Matrix& context_sensors, const matrix::Matrix& h_update){

  // preprocess context sensors
  Matrix c_sensors = context_sensors;
  for (int i=0;i<number_context_sensors;i++){
   if (c_sensors.val(i,0)<0.15) {
      c_sensors.val(i,0)=0; // IR's should only have positive values
    }
  }

  // adapt hebbian weights
  for (uint i=0; i<number_motors; i++){
    for (uint j=0; j<(uint)number_context_sensors; j++){
      if (i==j){ // TODO: remove (it is just for testing)
      double dp=  eps_hebb* h_update.val(i,0) * c_sensors.val(j,0) *(1 - pow(p.val(i,j),2));
      //      std::cout<<eps_hebb<<"*"<<h_update.val(i,0)<<" * "<<c_sensors.val(j,0)<<std::endl;
      p.val(i,j)+=dp;
      }
    }
  }
  /*
  // remove this !!! (just a test)
  for (int i=0; i<number_motors; i++){
    for (int j=0; j<number_context_sensors; j++){
      if ((j==0) || (j==1)){
        p.val(i,j)=-0.1;
      } else {
        p.val(i,j)=0.1;
      }
    }
  }
  */

}
/**
 * predict the update of h based on the actual context sensors
 * @param context_sensors prediction is based on these sensors
 */
matrix::Matrix InvertNChannelControllerHebbH::predictHebb(const matrix::Matrix& context_sensors){
  // preprocess context sensors
  Matrix c_sensors = context_sensors;
  for (int i=0;i<number_context_sensors;i++){
   if (c_sensors.val(i,0)<0.15) {
      c_sensors.val(i,0)=0; // IR's should only have positive values
    }
  }


  Matrix pred_h_update(number_motors,1) ;
  for (unsigned int k = 0; k < number_motors; k++) {
    pred_h_update.val(k,0)=0;
  }

  for (uint i=0; i<number_motors; i++){
    for (uint j=0; j<(uint)number_context_sensors; j++){
      pred_h_update.val(i,0)+= p.val(i,j) *  context_sensors.val(j,0);
    }
  }


  return pred_h_update;

}
matrix::Matrix sliceLayerWeights(const matrix::Matrix& weights, const RecurrentOpsHandle& handle,
    size_t index)
{
    matrix::Dimension begin;
    matrix::Dimension end;

    prnn::rnn::getWeightsRange(begin, end, handle, weights.precision(), index);

    return slice(weights, begin, end);
}
Exemple #7
0
void CuriosityLoop::makePrediction(const matrix::Matrix& s, const matrix::Matrix& m){

     matrix::Matrix sm = s.above(m);
     matrix::Matrix f;
     f.set(1,1);
     f.val(0,0) = 1;
     sm = sm.above(f);

     matrix::Matrix pwMod = predictorWeights;

     for(int i = 0; i < predictorWeights.getM(); i++){//to
	for(int j = 0; j < predictorWeights.getN(); j++){//from
	    if(pInput.val(j,0) == 1 && pOutput.val(i,0) == 1)
		   pwMod.val(i,j) = predictorWeights.val(i,j); //Transposes the weight matrix. 
	    else
		   pwMod.val(i,j) = 0; 
		 //   pwMod.val(i,j) = predictorWeights.val(i,j)*predictorMask.val(i,j);
	}
     }

     matrix::Matrix a = pwMod*sm; //Make prediction here.
     this->prediction = a; //The prediction is stored here.


	//************************UNRESTRICTED PREDICTOR CODE ****************************
//ALSO MAKE PREDICTIONS FOR THE UNRESTRICTED PREDICTOR

     matrix::Matrix uPwMod = uPredictorWeights;

     for(int i = 0; i < uPredictorWeights.getM(); i++){//to
	for(int j = 0; j < uPredictorWeights.getN(); j++){//from
	    if(uPInput.val(j,0) == 1 && uPOutput.val(i,0) == 1)
		   uPwMod.val(i,j) = uPredictorWeights.val(i,j); 
	    else
		   uPwMod.val(i,j) = 0; 
		 //   pwMod.val(i,j) = predictorWeights.val(i,j)*predictorMask.val(i,j);
	}
     }

     matrix::Matrix uA = uPwMod*sm; //Make prediction here.
     this->uPrediction = uA; //The prediction is stored here.

	//************************UNRESTRICTED PREDICTOR CODE ****************************

//	cout << predictorWeights.getM() << " " << predictorWeights.getN() << "= pw \n";
//	cout << sm.getM() << " " << sm.getN() << " = sm\n";
//	cout << pwMod.getM() << " " << pwMod.getN() << " = a\n";
//     for(int i = 0; i < prediction.getM(); i++){
//	for(int j = 0; j < pwMod.getN(); j++){
//	  cout << prediction.val(i,0) << " ";
//    }
//	 cout << " = precd\n";
//   }

};
void forwardPropRecurrent(matrix::Matrix& activations,
    matrix::Matrix& reserve,
    const matrix::Matrix& weights,
    const RecurrentOpsHandle& handle)
{
    auto scratch = prnn::rnn::getForwardPropScratch(handle, activations.precision());

    prnn::rnn::forwardPropRecurrent(matrix::DynamicView(activations),
        matrix::ConstDynamicView(copy(activations)),
        matrix::ConstDynamicView(weights),
        matrix::DynamicView(scratch),
        matrix::DynamicView(reserve),
        handle);
}
void backPropGradientsRecurrent(matrix::Matrix& dWeights,
    const matrix::Matrix& activations,
    const matrix::Matrix& outputActivations,
    const matrix::Matrix& reserve,
    const RecurrentOpsHandle& handle)
{
    auto scratch = prnn::rnn::getBackPropGradientsScratch(handle,
        activations.precision());

    prnn::rnn::backPropGradientsRecurrent(matrix::DynamicView(dWeights),
        matrix::ConstDynamicView(activations),
        matrix::ConstDynamicView(outputActivations),
        matrix::DynamicView(scratch),
        matrix::ConstDynamicView(reserve),
        handle);
}
void compare(const matrix::Matrix& predictions, const matrix::Matrix& reference)
{
    size_t samples = predictions.size()[1];

    auto differences = apply(predictions, reference, matrix::Subtract());
    auto squareDifferences = apply(differences, matrix::Square());
    auto normalizedSquareDifferences = apply(squareDifferences, matrix::Divide(samples));

    double cost = std::sqrt(reduce(normalizedSquareDifferences, {}, matrix::Add())[0]);

    std::cout << "Total RMS error was " << cost << "\n";

    if(cost < 15.0)
    {
        std::cout << "Test Passed\n";
    }
    else
    {
        std::cout << "Test Failed\n";
    }
}
Exemple #11
0
void SeMoX::setSensorTeaching(const matrix::Matrix& teaching){
  assert(teaching.getM() == number_sensors && teaching.getN() == 1);
  // calculate the y_teaching, that belongs to the distal teaching value by the inverse model.
  y_teaching = (A.pseudoInverse(0.001) * (teaching-B)).mapP(0.95, clip);
  intern_useTeaching=true;
}
void PiMax::seth(const matrix::Matrix& _h){
  assert(h.getM() == _h.getM() && h.getN() == _h.getN());
  h=_h;
}
void PiMax::setC(const matrix::Matrix& _C){
  assert(C.getM() == _C.getM() && C.getN() == _C.getN());
  C=_C;
}
void PiMax::setA(const matrix::Matrix& _A){
  assert(A.getM() == _A.getM() && A.getN() == _A.getN());
  A=_A;
}
void RandomDyn::seth(const matrix::Matrix& _h){
  assert(h.getM() == _h.getM() && h.getN() == _h.getN());
  h=_h;
}
void RandomDyn::setC(const matrix::Matrix& _C){
  assert(C.getM() == _C.getM() && C.getN() == _C.getN());
  C=_C;
}
 virtual matrix::Matrix assembleNetworkOutput(const matrix::Matrix& output) const {
   return output.rows(number_sensors, number_sensors + number_motors);
 }
Exemple #18
0
void SosAvgGrad::setA(const matrix::Matrix& _A){
  assert(A.getM() == _A.getM() && A.getN() == _A.getN());
  A=_A;
}
Exemple #19
0
double CuriosityLoop::updatePrediction(const matrix::Matrix& smHist, const matrix::Matrix& s, const matrix::Matrix& m, int phase){

        matrix::Matrix sm = s.above(m);
        matrix::Matrix f;
        f.set(1,1);
        f.val(0,0) = 1;
        sm = sm.above(f);

	//1. Go through the predictions of this predictor determining the prediction errors at each dimension.
	matrix::Matrix error;
	error.set(smHist.getM(), 1);

	prediction_error = 0;
	for(int i = 0; i < prediction.getM(); i++){
	 if(pOutput.val(i,0) == 1){ 
	  error.val(i,0) = prediction.val(i,0) - sm.val(i,0);
	  prediction_error = prediction_error + pow(error.val(i,0),2);
	//  cout << error << "predictionError\n";
	 }
	 else{
	//  cout << "This dimension is not predicted, and does not count towards the error\n";
	  error.val(i,0) = 0;
	  //prediction_error = prediction_error + error.val(i,0);
	 }
	}
	parent_error.val(phase,0) = prediction_error; 

	//2. Change the weights by the delta rule.
	for(int i = 0; i < prediction.getM(); i++){//to

		for(int j = 0; j < predictorWeights.getN(); j++){//from

//			predictorWeights.val(i,j) = predictorWeights.val(i,j) - 0.00001*error.val(i,0)*smHist.val(j,0);
			predictorWeights.val(i,j) = predictorWeights.val(i,j) - 0.0001*error.val(i,0)*smHist.val(j,0);

			if(predictorWeights.val(i,j) > 10)
				predictorWeights.val(i,j)  = 10; 
			else if(predictorWeights.val(i,j)  < -10)
				predictorWeights.val(i,j) = -10; 
			
		}

	}
	prediction_error_time_average = 0.9999*prediction_error_time_average + (1-0.9999)*prediction_error;  

	//Update the fitness of this predictor based on the instantaneous reduction / increase in prediction error. 
	this->fitness = 0.1 + 100*(prediction_error_time_average - old_prediction_error_time_average);
        old_prediction_error_time_average = prediction_error_time_average; 

	//cout << fitness << " "; 
 	
	//Improve the method of determining this gradient later! 


	//UPDATE THE UNRESTRICTED PREDICTOR NOW AS WELL, ALWAYS... 
	//1. Go through the predictions of this UNRESTRICTED predictor determining the prediction errors at each dimension.
	matrix::Matrix uError;
	uError.set(smHist.getM(), 1);

	uPrediction_error = 0;
	for(int i = 0; i < uPrediction.getM(); i++){
	 if(uPOutput.val(i,0) == 1){ 
	  uError.val(i,0) = uPrediction.val(i,0) - sm.val(i,0);
	  uPrediction_error = uPrediction_error + pow(uError.val(i,0),2);
	//  cout << error << "predictionError\n";
	 }
	 else{
	 // cout << "This dimension is not predicted, and does not count towards the error\n";
	  uError.val(i,0) = 0;
	  //prediction_error = prediction_error + error.val(i,0);
	 }

	}
	//cout << "phase = " << phase << "\n";  
	offspring_error.val(phase,0) = uPrediction_error; 
	//2. Change the weights by the delta rule.
	for(int i = 0; i < uPrediction.getM(); i++){

		for(int j = 0; j < uPredictorWeights.getN(); j++){

			uPredictorWeights.val(i,j) = uPredictorWeights.val(i,j) - 0.0001*uError.val(i,0)*smHist.val(j,0);

			if(uPredictorWeights.val(i,j) > 10)
				uPredictorWeights.val(i,j)  = 10; 
			else if(uPredictorWeights.val(i,j)  < -10)
				uPredictorWeights.val(i,j) = -10; 
			
		}

	}
	 
	//************************UNRESTRICTED PREDICTOR CODE ****************************
	


	return this->fitness; 
};
Exemple #20
0
 virtual void seth(const matrix::Matrix& _h){
   assert(h.getM() == _h.getM() && h.getN() == _h.getN());
   h=_h;
 }
Exemple #21
0
 virtual void setC(const matrix::Matrix& _C){
   assert(C.getM() == _C.getM() && C.getN() == _C.getN());
   C=_C;
 }
Exemple #22
0
void SosAvgGrad::setS(const matrix::Matrix& _S){
  assert(S.getM() == _S.getM() && S.getN() == _S.getN());
  S=_S;
}
Exemple #23
0
  RationalVector<C2> operator*
  (const RationalVector<C2>& v,const matrix::Matrix<C1>& M)
{
  return RationalVector<C2>(M.right_prod(v.numerator()),v.denominator());
}
Exemple #24
0
void SosAvgGrad::setC(const matrix::Matrix& _C){
  assert(C.getM() == _C.getM() && C.getN() == _C.getN());
  C=_C;
}
 static void keepMatrixTraceUp(matrix::Matrix& m){
   int l = std::min((short unsigned int)2,std::min(m.getM(), m.getN()));
   for(int i=0; i<l; i++){
     if(m.val(i,i)<0.8) m.val(i,i)+=0.001;
   }
 }