Exemple #1
0
// Check the assumptions we made.
void CheckInserter::checkFeatures(Module &M) {
  // Assume no function name starts with Loom.
  for (Module::iterator F = M.begin(); F != M.end(); ++F) {
    assert(!F->getName().startswith("Loom") &&
           "Loom update engine seems already instrumented");
  }
  // We do not support the situation where some important functions are called
  // via a function pointer, e.g. pthread_create, pthread_join and fork.
  for (Module::iterator F = M.begin(); F != M.end(); ++F) {
    if (F->getName() == "pthread_create" ||
        F->getName() == "pthread_join" ||
        F->getName() == "fork") {
      for (Value::use_iterator UI = F->use_begin(); UI != F->use_end(); ++UI) {
        User *Usr = *UI;
        assert(isa<CallInst>(Usr) || isa<InvokeInst>(Usr));
        CallSite CS(cast<Instruction>(Usr));
        for (unsigned i = 0; i < CS.arg_size(); ++i)
          assert(CS.getArgument(i) != F);
      }
    }
  }
  // pthread_cancel provides another way of terminating a thread, which we have
  // not supported yet.
  assert(M.getFunction("pthread_cancel") == NULL);
}
Exemple #2
0
void MemoryInstrumenter::checkFeatures(Module &M) {
    // Check whether any memory allocation function can
    // potentially be pointed by function pointers.
    // Also, all intrinsic functions will be called directly,
    // i.e. not via function pointers.
    for (Module::iterator F = M.begin(); F != M.end(); ++F) {
        if (DynAAUtils::IsMalloc(F) || F->isIntrinsic()) {
            for (Value::use_iterator UI = F->use_begin(); UI != F->use_end(); ++UI) {
                User *Usr = *UI;
                assert(isa<CallInst>(Usr) || isa<InvokeInst>(Usr));
                CallSite CS(cast<Instruction>(Usr));
                for (unsigned i = 0; i < CS.arg_size(); ++i)
                    assert(CS.getArgument(i) != F);
            }
        }
    }

    // Check whether memory allocation functions are captured.
    for (Module::iterator F = M.begin(); F != M.end(); ++F) {
        // 0 is the return, 1 is the first parameter.
        if (F->isDeclaration() && F->doesNotAlias(0) && !DynAAUtils::IsMalloc(F)) {
            errs().changeColor(raw_ostream::RED);
            errs() << F->getName() << "'s return value is marked noalias, ";
            errs() << "but the function is not treated as malloc.\n";
            errs().resetColor();
        }
    }

    // Global variables shouldn't be of the array type.
    for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
            GI != E; ++GI) {
        assert(!GI->getType()->isArrayTy());
    }
    // A function parameter or an instruction can be an array, but we don't
    // instrument such constructs for now. Issue a warning on such cases.
    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
        for (Function::arg_iterator AI = F->arg_begin(); AI != F->arg_end(); ++AI) {
            if (AI->getType()->isArrayTy()) {
                errs().changeColor(raw_ostream::RED);
                errs() << F->getName() << ":" << *AI << " is an array\n";
                errs().resetColor();
            }
        }
    }
    for (Module::iterator F = M.begin(); F != M.end(); ++F) {
        for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
            for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) {
                if (Ins->getType()->isArrayTy()) {
                    errs().changeColor(raw_ostream::RED);
                    errs() << F->getName() << ":" << *Ins << " is an array\n";
                    errs().resetColor();
                }
            }
        }
    }
}
void MemoryInstrumenter::checkFeatures(Module &M) {
  // Check whether any memory allocation function can
  // potentially be pointed by function pointers.
  // Also, all intrinsic functions will be called directly,
  // i.e. not via function pointers.
  for (Module::iterator F = M.begin(); F != M.end(); ++F) {
    if (DynAAUtils::IsMalloc(F) || F->isIntrinsic()) {
      for (Value::use_iterator UI = F->use_begin(); UI != F->use_end(); ++UI) {
        User *Usr = *UI;
        assert(isa<CallInst>(Usr) || isa<InvokeInst>(Usr));
        CallSite CS(cast<Instruction>(Usr));
        for (unsigned i = 0; i < CS.arg_size(); ++i)
          assert(CS.getArgument(i) != F);
      }
    }
  }

  // Check whether memory allocation functions are captured.
  for (Module::iterator F = M.begin(); F != M.end(); ++F) {
    // 0 is the return, 1 is the first parameter.
    if (F->isDeclaration() && F->doesNotAlias(0) && !DynAAUtils::IsMalloc(F)) {
      errs().changeColor(raw_ostream::RED);
      errs() << F->getName() << "'s return value is marked noalias, ";
      errs() << "but the function is not treated as malloc.\n";
      errs().resetColor();
    }
  }

  // Sequential types except pointer types shouldn't be used as the type of
  // an instruction, a function parameter, or a global variable.
  for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
       GI != E; ++GI) {
    if (isa<SequentialType>(GI->getType()))
      assert(GI->getType()->isPointerTy());
  }
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
    for (Function::arg_iterator AI = F->arg_begin(); AI != F->arg_end(); ++AI) {
      if (isa<SequentialType>(AI->getType()))
        assert(AI->getType()->isPointerTy());
    }
  }
  for (Module::iterator F = M.begin(); F != M.end(); ++F) {
    for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
      for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) {
        if (isa<SequentialType>(Ins->getType()))
          assert(Ins->getType()->isPointerTy());
      }
    }
  }

  // We don't support multi-process programs for now.
  if (!HookFork)
    assert(M.getFunction("fork") == NULL);
}
Exemple #4
0
//
// Method: runOnModule()
//
// Description:
//  Entry point for this LLVM pass.  Search for functions which could be called
//  indirectly and create clones for them which are only called by direct
//  calls.
//
// Inputs:
//  M - A reference to the LLVM module to transform.
//
// Outputs:
//  M - The transformed LLVM module.
//
// Return value:
//  true  - The module was modified.
//  false - The module was not modified.
//
bool
IndClone::runOnModule(Module& M) {
  // Set of functions to clone
  std::vector<Function*> toClone;

  //
  // Check all of the functions in the module.  If the function could be called
  // by an indirect function call, add it to our worklist of functions to
  // clone.
  //
  for (Module::iterator I = M.begin(); I != M.end(); ++I) {
    // Flag whether the function should be cloned
    bool pleaseCloneTheFunction = false;

    //
    // Only clone functions which are defined and cannot be replaced by another
    // function by the linker.
    //
    if (!I->isDeclaration() && !I->mayBeOverridden()) {
      for (Value::use_iterator ui = I->use_begin(), ue = I->use_end();
          ui != ue; ++ui) {
        if (!isa<CallInst>(*ui) && !isa<InvokeInst>(*ui)) {
          if(!ui->use_empty())
          //
          // If this function is used for anything other than a direct function
          // call, then we want to clone it.
          //
          pleaseCloneTheFunction = true;
        } else {
          //
          // This is a call instruction, but hold up ranger!  We need to make
          // sure that the function isn't passed as an argument to *another*
          // function.  That would make the function usable in an indirect
          // function call.
          //
          for (unsigned index = 1; index < ui->getNumOperands(); ++index) {
            if (ui->getOperand(index)->stripPointerCasts() == I) {
              pleaseCloneTheFunction = true;
              break;
            }
          }
        }

        //
        // If we've discovered that the function could be used by an indirect
        // call site, schedule it for cloning.
        //
        if (pleaseCloneTheFunction) {
          toClone.push_back(I);
          break;
        }
      }
    }
  }

  //
  // Update the statistics on the number of functions we'll be cloning.
  // We only update the statistic if we want to clone one or more functions;
  // due to the magic of how statistics work, avoiding assignment prevents it
  // from needlessly showing up.
  //
  if (toClone.size())
    numCloned += toClone.size();

  //
  // Go through the worklist and clone each function.  After cloning a
  // function, change all direct calls to use the clone instead of using the
  // original function.
  //
  for (unsigned index = 0; index < toClone.size(); ++index) {
    //
    // Clone the function and give it a name indicating that it is a clone to
    // be used for direct function calls.
    //
    Function * Original = toClone[index];
    Function* DirectF = CloneFunction(Original);
    DirectF->setName(Original->getName() + "_DIRECT");

    //
    // Make the clone internal; external code can use the original function.
    //
    DirectF->setLinkage(GlobalValue::InternalLinkage);

    //
    // Link the cloned function into the set of functions belonging to the
    // module.
    //
    Original->getParent()->getFunctionList().push_back(DirectF);

    //
    // Find all uses of the function that use it as a direct call.  Change
    // them to use the clone.
    //
    for (Value::use_iterator ui = Original->use_begin(),
                             ue = Original->use_end();
        ui != ue; ) {
      CallInst *CI = dyn_cast<CallInst>(*ui);
      ui++;
      if (CI) {
        if (CI->getCalledFunction() == Original) {
          ++numReplaced;
          CI->setCalledFunction(DirectF);
        }
      }
    }
  }
  
  //
  // Assume that we've cloned at least one function.
  //
  return true;
}
Exemple #5
0
//
// Method: runOnModule()
//
// Description:
//  Entry point for this LLVM pass.
//  Search for all call sites to casted functions.
//  Check if they only differ in an argument type
//  Cast the argument, and call the original function
//
// Inputs:
//  M - A reference to the LLVM module to transform
//
// Outputs:
//  M - The transformed LLVM module.
//
// Return value:
//  true  - The module was modified.
//  false - The module was not modified.
//
bool ArgCast::runOnModule(Module& M) {

  std::vector<CallInst*> worklist;
  for (Module::iterator I = M.begin(); I != M.end(); ++I) {
    if (I->mayBeOverridden())
      continue;
    // Find all uses of this function
    for(Value::use_iterator ui = I->use_begin(), ue = I->use_end(); ui != ue; ) {
      // check if is ever casted to a different function type
      ConstantExpr *CE = dyn_cast<ConstantExpr>(*ui++);
      if(!CE)
        continue;
      if (CE->getOpcode() != Instruction::BitCast)
        continue;
      if(CE->getOperand(0) != I)
        continue;
      const PointerType *PTy = dyn_cast<PointerType>(CE->getType());
      if (!PTy)
        continue;
      const Type *ETy = PTy->getElementType();
      const FunctionType *FTy  = dyn_cast<FunctionType>(ETy); 
      if(!FTy)
        continue;
      // casting to a varargs funtion
      // or function with same number of arguments
      // possibly varying types of arguments
      
      if(FTy->getNumParams() != I->arg_size() && !FTy->isVarArg())
        continue;
      for(Value::use_iterator uii = CE->use_begin(),
          uee = CE->use_end(); uii != uee; ++uii) {
        // Find all uses of the casted value, and check if it is 
        // used in a Call Instruction
        if (CallInst* CI = dyn_cast<CallInst>(*uii)) {
          // Check that it is the called value, and not an argument
          if(CI->getCalledValue() != CE) 
            continue;
          // Check that the number of arguments passed, and expected
          // by the function are the same.
          if(!I->isVarArg()) {
            if(CI->getNumOperands() != I->arg_size() + 1)
              continue;
          } else {
            if(CI->getNumOperands() < I->arg_size() + 1)
              continue;
          }
          // If so, add to worklist
          worklist.push_back(CI);
        }
      }
    }
  }

  // Proces the worklist of potential call sites to transform
  while(!worklist.empty()) {
    CallInst *CI = worklist.back();
    worklist.pop_back();
    // Get the called Function
    Function *F = cast<Function>(CI->getCalledValue()->stripPointerCasts());
    const FunctionType *FTy = F->getFunctionType();

    SmallVector<Value*, 8> Args;
    unsigned i =0;
    for(i =0; i< FTy->getNumParams(); ++i) {
      Type *ArgType = CI->getOperand(i+1)->getType();
      Type *FormalType = FTy->getParamType(i);
      // If the types for this argument match, just add it to the
      // parameter list. No cast needs to be inserted.
      if(ArgType == FormalType) {
        Args.push_back(CI->getOperand(i+1));
      }
      else if(ArgType->isPointerTy() && FormalType->isPointerTy()) {
        CastInst *CastI = CastInst::CreatePointerCast(CI->getOperand(i+1), 
                                                      FormalType, "", CI);
        Args.push_back(CastI);
      } else if (ArgType->isIntegerTy() && FormalType->isIntegerTy()) {
        unsigned SrcBits = ArgType->getScalarSizeInBits();
        unsigned DstBits = FormalType->getScalarSizeInBits();
        if(SrcBits > DstBits) {
          CastInst *CastI = CastInst::CreateIntegerCast(CI->getOperand(i+1), 
                                                        FormalType, true, "", CI);
          Args.push_back(CastI);
        } else {
          if (F->getAttributes().hasAttribute(i+1, Attribute::SExt)) {
            CastInst *CastI = CastInst::CreateIntegerCast(CI->getOperand(i+1), 
                                                          FormalType, true, "", CI);
            Args.push_back(CastI);
          } else if (F->getAttributes().hasAttribute(i+1, Attribute::ZExt)) {
            CastInst *CastI = CastInst::CreateIntegerCast(CI->getOperand(i+1), 
                                                          FormalType, false, "", CI);
            Args.push_back(CastI);
          } else {
            // Use ZExt in default case.
            // Derived from InstCombine. Also, the only reason this should happen
            // is mismatched prototypes.
            // Seen in case of integer constants which get interpreted as i32, 
            // even if being used as i64.
            // TODO: is this correct?
            CastInst *CastI = CastInst::CreateIntegerCast(CI->getOperand(i+1), 
                                                          FormalType, false, "", CI);
            Args.push_back(CastI);
          } 
        } 
      } else {
        DEBUG(ArgType->dump());
        DEBUG(FormalType->dump());
        break;
      }
    }

    // If we found an argument we could not cast, try the next instruction
    if(i != FTy->getNumParams()) {
      continue;
    }

    if(FTy->isVarArg()) {
      for(; i< CI->getNumOperands() - 1 ;i++) {
        Args.push_back(CI->getOperand(i+1));
      }
    }

    // else replace the call instruction
    CallInst *CINew = CallInst::Create(F, Args, "", CI);
    CINew->setCallingConv(CI->getCallingConv());
    CINew->setAttributes(CI->getAttributes());
    if(!CI->use_empty()) {
      CastInst *RetCast;
      if(CI->getType() != CINew->getType()) {
        if(CI->getType()->isPointerTy() && CINew->getType()->isPointerTy())
          RetCast = CastInst::CreatePointerCast(CINew, CI->getType(), "", CI);
        else if(CI->getType()->isIntOrIntVectorTy() && CINew->getType()->isIntOrIntVectorTy())
          RetCast = CastInst::CreateIntegerCast(CINew, CI->getType(), false, "", CI);
        else if(CI->getType()->isIntOrIntVectorTy() && CINew->getType()->isPointerTy())
          RetCast = CastInst::CreatePointerCast(CINew, CI->getType(), "", CI);
        else if(CI->getType()->isPointerTy() && CINew->getType()->isIntOrIntVectorTy()) 
          RetCast = new IntToPtrInst(CINew, CI->getType(), "", CI);
        else {
          // TODO: I'm not sure what right behavior is here, but this case should be handled.
          assert(0 && "Unexpected type conversion in call!");
          abort();
        }
        CI->replaceAllUsesWith(RetCast);
      } else {
        CI->replaceAllUsesWith(CINew);
      }
    }

    // Debug printing
    DEBUG(errs() << "ARGCAST:");
    DEBUG(errs() << "ERASE:");
    DEBUG(CI->dump());
    DEBUG(errs() << "ARGCAST:");
    DEBUG(errs() << "ADDED:");
    DEBUG(CINew->dump());

    CI->eraseFromParent();
    numChanged++;
  }
  return true;
}