void SE_average<3>::append(const mrpt::poses::CPose3D &p, const double weight) { m_count += weight; m_accum_x += weight * p.x(); m_accum_y += weight * p.y(); m_accum_z += weight * p.z(); m_rot_part.append(p.getRotationMatrix(), weight); }
void SE_average<3>::get_average(mrpt::poses::CPose3D &ret_mean) const { ASSERT_ABOVE_(m_count,0); ret_mean.x( m_accum_x / m_count ); ret_mean.y( m_accum_y / m_count ); ret_mean.z( m_accum_z / m_count ); const_cast<SO_average<3>*>(&m_rot_part)->enable_exception_on_undeterminate = this->enable_exception_on_undeterminate; ret_mean.setRotationMatrix( m_rot_part.get_average() ); }
// Transform all 6 components for a change of reference frame from "A" to // another frame "B" whose rotation with respect to "A" is given by `rot`. The translational part of the pose is ignored void TTwist3D::rotate(const mrpt::poses::CPose3D & rot) { const TTwist3D t = *this; const mrpt::math::CMatrixDouble33 & R = rot.getRotationMatrix(); vx=R(0,0)*t.vx+R(0,1)*t.vy+R(0,2)*t.vz; vy=R(1,0)*t.vx+R(1,1)*t.vy+R(1,2)*t.vz; vz=R(2,0)*t.vx+R(2,1)*t.vy+R(2,2)*t.vz; wx=R(0,0)*t.wx+R(0,1)*t.wy+R(0,2)*t.wz; wy=R(1,0)*t.wx+R(1,1)*t.wy+R(1,2)*t.wz; wz=R(2,0)*t.wx+R(2,1)*t.wy+R(2,2)*t.wz; }
void run_pc_filter_test( const double map2_x_off, const double map2_tim_off, const size_t expected_m1_count, const size_t expected_m2_count) { const double pts1[8][3] = { {1, 0, 0}, {1.03, 0, 0}, {1, 1, 0}, {1.01, 1.02, 0}, {0, 1, 0}, {-0.01, 1.01, 0}, {-1, 0, 0}, {-1.01, 0.02, 0}}; const mrpt::poses::CPose3D pts1_pose(0, 0, 0, 0, 0, 0); const mrpt::system::TTimeStamp pts1_tim = mrpt::system::now(); const mrpt::poses::CPose3D pts2_pose(0.5, 0, 0, 0, 0, 0); const mrpt::system::TTimeStamp pts2_tim = mrpt::system::timestampAdd(pts1_tim, 0.2 + map2_tim_off); mrpt::maps::CSimplePointsMap map1, map2; for (size_t i = 0; i < sizeof(pts1) / sizeof(pts1[0]); i++) map1.insertPoint(pts1[i][0], pts1[i][1], pts1[i][2]); for (size_t i = 0; i < sizeof(pts1) / sizeof(pts1[0]); i++) { double x, y, z; pts2_pose.inverseComposePoint( pts1[i][0], pts1[i][1], pts1[i][2], x, y, z); // Introduce optionally, 1 outlier: if (i == 1) x += map2_x_off; map2.insertPoint(x, y, z); } mrpt::maps::CPointCloudFilterByDistance pc_filter; mrpt::maps::CPointCloudFilterByDistance::TExtraFilterParams extra_params; std::vector<bool> deletion_mask; extra_params.out_deletion_mask = &deletion_mask; pc_filter.filter(&map1, pts1_tim, pts1_pose, &extra_params); EXPECT_EQ(map1.size(), expected_m1_count); pc_filter.filter(&map2, pts2_tim, pts2_pose, &extra_params); EXPECT_EQ(map2.size(), expected_m2_count); }
TPose3D::TPose3D(const mrpt::poses::CPose3D &p):x(p.x()),y(p.y()),z(p.z()),yaw(p.yaw()),pitch(p.pitch()),roll(p.roll()) {}
TPoint3D::TPoint3D(const mrpt::poses::CPose3D &p):x(p.x()),y(p.y()),z(p.z()) {}
void run_test(const mrpt::poses::CPose3D &incr) { my_srba_t rba; // Create an empty RBA problem rba.get_time_profiler().disable(); // -------------------------------------------------------------------------------- // Set parameters // -------------------------------------------------------------------------------- rba.setVerbosityLevel( 0 ); // 0: None; 1:Important only; 2:Verbose rba.parameters.srba.use_robust_kernel = false; // =========== Topology parameters =========== rba.parameters.srba.max_tree_depth = 3; rba.parameters.srba.max_optimize_depth = 3; // =========================================== // -------------------------------------------------------------------------------- // Define observations of KF #0: // -------------------------------------------------------------------------------- my_srba_t::new_kf_observations_t list_obs; my_srba_t::new_kf_observation_t obs_field; obs_field.is_fixed = false; // Landmarks have unknown relative positions (i.e. treat them as unknowns to be estimated) obs_field.is_unknown_with_init_val = false; // We don't have any guess on the initial LM position (will invoke the inverse sensor model) for (size_t i=0;i<sizeof(dummy_obs)/sizeof(dummy_obs[0]);i++) { obs_field.obs.feat_id = dummy_obs[i].landmark_id; obs_field.obs.obs_data.pt.x = dummy_obs[i].x; obs_field.obs.obs_data.pt.y = dummy_obs[i].y; obs_field.obs.obs_data.pt.z = dummy_obs[i].z; list_obs.push_back( obs_field ); } // Here happens the main stuff: create Key-frames, build structures, run optimization, etc. // ============================================================================================ my_srba_t::TNewKeyFrameInfo new_kf_info; rba.define_new_keyframe( list_obs, // Input observations for the new KF new_kf_info, // Output info true // Also run local optimization? ); // -------------------------------------------------------------------------------- // Define observations of next KF: // -------------------------------------------------------------------------------- list_obs.clear(); for (size_t i=0;i<sizeof(dummy_obs)/sizeof(dummy_obs[0]);i++) { obs_field.obs.feat_id = dummy_obs[i].landmark_id; obs_field.obs.obs_data.pt.x = dummy_obs[i].x; obs_field.obs.obs_data.pt.y = dummy_obs[i].y; obs_field.obs.obs_data.pt.z = dummy_obs[i].z; if (INVERSE_INCR) incr.inverseComposePoint( obs_field.obs.obs_data.pt.x, obs_field.obs.obs_data.pt.y, obs_field.obs.obs_data.pt.z, obs_field.obs.obs_data.pt.x, obs_field.obs.obs_data.pt.y, obs_field.obs.obs_data.pt.z); else incr.composePoint(obs_field.obs.obs_data.pt, obs_field.obs.obs_data.pt); list_obs.push_back( obs_field ); } // Here happens the main stuff: create Key-frames, build structures, run optimization, etc. // ============================================================================================ rba.define_new_keyframe( list_obs, // Input observations for the new KF new_kf_info, // Output info true // Also run local optimization? ); mrpt::poses::CPose3D estIncr = rba.get_k2k_edges()[0].inv_pose; if (INVERSE_INCR) estIncr.inverse(); EXPECT_NEAR( (incr.getHomogeneousMatrixVal()-estIncr.getHomogeneousMatrixVal()).array().abs().sum(),0, 1e-3) << "=> Ground truth: " << incr << " Inverse: " << (INVERSE_INCR ? "YES":"NO") << endl << "=> inv_pose of KF-to-KF edge #0 (relative pose of KF#0 wrt KF#1):\n" << estIncr << endl << "=> Optimization error: " << new_kf_info.optimize_results.total_sqr_error_init << " -> " << new_kf_info.optimize_results.total_sqr_error_final << endl; }
void run_test() { // Declare a typedef "my_srba_t" for easily referring to my RBA problem type: typedef RbaEngine< kf2kf_poses::SE3, // Parameterization KF-to-KF poses landmarks::Euclidean3D, // Parameterization of landmark positions observations::Cartesian_3D, // Type of observations typename DATASET::my_srba_options > my_srba_t; my_srba_t rba; // Create an empty RBA problem rba.get_time_profiler().disable(); // -------------------------------------------------------------------------------- // Set parameters // -------------------------------------------------------------------------------- rba.setVerbosityLevel( 0 ); // 0: None; 1:Important only; 2:Verbose rba.parameters.srba.use_robust_kernel = true; rba.parameters.obs_noise.std_noise_observations = 0.1; // =========== Topology parameters =========== rba.parameters.srba.edge_creation_policy = mrpt::srba::ecpICRA2013; rba.parameters.srba.max_tree_depth = 3; rba.parameters.srba.max_optimize_depth = 3; // =========================================== DATASET::setExtraOptions(rba); size_t N0,N1; mrpt::poses::CPose3DQuat GT0,GT1; const basic_euclidean_dataset_entry_t *d0 = DATASET::getData0(N0,GT0); const basic_euclidean_dataset_entry_t *d1 = DATASET::getData1(N1,GT1); // -------------------------------------------------------------------------------- // Define observations of KF #0: // -------------------------------------------------------------------------------- typename my_srba_t::new_kf_observations_t list_obs; typename my_srba_t::new_kf_observation_t obs_field; obs_field.is_fixed = false; // Landmarks have unknown relative positions (i.e. treat them as unknowns to be estimated) obs_field.is_unknown_with_init_val = false; // We don't have any guess on the initial LM position (will invoke the inverse sensor model) for (size_t i=0;i<N0;i++) { obs_field.obs.feat_id = d0[i].landmark_id; obs_field.obs.obs_data.pt.x = d0[i].x + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); obs_field.obs.obs_data.pt.y = d0[i].y + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); obs_field.obs.obs_data.pt.z = d0[i].z + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); list_obs.push_back( obs_field ); } // Here happens the main stuff: create Key-frames, build structures, run optimization, etc. // ============================================================================================ typename my_srba_t::TNewKeyFrameInfo new_kf_info; rba.define_new_keyframe( list_obs, // Input observations for the new KF new_kf_info, // Output info true // Also run local optimization? ); // -------------------------------------------------------------------------------- // Define observations of next KF: // -------------------------------------------------------------------------------- list_obs.clear(); for (size_t i=0;i<N1;i++) { obs_field.obs.feat_id = d1[i].landmark_id; obs_field.obs.obs_data.pt.x = d1[i].x + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); obs_field.obs.obs_data.pt.y = d1[i].y + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); obs_field.obs.obs_data.pt.z = d1[i].z + randomGenerator.drawGaussian1D(0,SENSOR_NOISE_STD); list_obs.push_back( obs_field ); } rba.define_new_keyframe( list_obs, // Input observations for the new KF new_kf_info, // Output info true // Also run local optimization? ); // Compare to ground truth: // Relative pose of KF#1 wrt KF#0: const mrpt::poses::CPose3D P = -rba.get_k2k_edges()[0] #ifdef SRBA_WORKAROUND_MSVC9_DEQUE_BUG -> #else . #endif inv_pose; const mrpt::poses::CPose3D P_GT = GT1-GT0; EXPECT_NEAR(0, (P.getAsVectorVal()-P_GT.getAsVectorVal()).array().abs().sum(), 1e-2 ) << "P : " << P << endl << "GT: " << P_GT << endl; }
void CViewerContainer::showRobotDirection(const mrpt::poses::CPose3D& pose) { forEachGl([pose](CGlWidget* gl) { gl->setSelected(pose.asTPose()); }); }
// // Given a list of chessboard images, the number of corners (nx, ny) // on the chessboards, and a flag: useCalibrated for calibrated (0) or // uncalibrated (1: use cvStereoCalibrate(), 2: compute fundamental // matrix separately) stereo. Calibrate the cameras and display the // rectified results along with the computed disparity images. // void StereoCalib( const char* imageList, const char* sOutFile, int nx, int ny, int useUncalibrated, const float squareSize, const double alpha, const bool flag_fix_aspect_ratio, const bool flag_zero_tangent_dist, const bool flag_same_focal_len ) { int displayCorners = 1; bool isVerticalStereo = false;//OpenCV can handle left-right //or up-down camera arrangements const int maxScale = 1; FILE* f = fopen(imageList, "rt"); int i, j, lr, nframes, n = nx*ny, N = 0; vector<string> imageNames[2]; vector<CvPoint3D32f> objectPoints; vector<CvPoint2D32f> points[2]; vector<int> npoints; vector<uchar> active[2]; vector<CvPoint2D32f> temp(n); CvSize imageSize = {0,0}; // ARRAY AND VECTOR STORAGE: double M1[3][3], M2[3][3], D1[5], D2[5]; double R[3][3], T[3], E[3][3], F[3][3]; CvMat _M1 = cvMat(3, 3, CV_64F, M1 ); CvMat _M2 = cvMat(3, 3, CV_64F, M2 ); CvMat _D1 = cvMat(1, 5, CV_64F, D1 ); CvMat _D2 = cvMat(1, 5, CV_64F, D2 ); CvMat _R = cvMat(3, 3, CV_64F, R ); CvMat _T = cvMat(3, 1, CV_64F, T ); CvMat _E = cvMat(3, 3, CV_64F, E ); CvMat _F = cvMat(3, 3, CV_64F, F ); if( displayCorners ) cvNamedWindow( "corners", 1 ); // READ IN THE LIST OF CHESSBOARDS: if( !f ) { fprintf(stderr, "can not open file %s\n", imageList ); return; } std::vector<std::string> lst_image_files; printf("Starting main loop\n"); for(i=0;; i++) { printf("Iteration %d\n", i); char buf[1024]; int count = 0, result=0; lr = i % 2; vector<CvPoint2D32f>& pts = points[lr]; if( !fgets( buf, sizeof(buf)-3, f )) break; size_t len = strlen(buf); while( len > 0 && isspace(buf[len-1])) buf[--len] = '\0'; if( buf[0] == '#') continue; IplImage* img = cvLoadImage( buf, 0 ); if( !img ) break; lst_image_files.push_back(string(buf)); imageSize = cvGetSize(img); imageNames[lr].push_back(buf); //FIND CHESSBOARDS AND CORNERS THEREIN: for( int s = 1; s <= maxScale; s++ ) { IplImage* timg = img; if( s > 1 ) { timg = cvCreateImage(cvSize(img->width*s,img->height*s), img->depth, img->nChannels ); cvResize( img, timg, CV_INTER_CUBIC ); } result = cvFindChessboardCorners( timg, cvSize(nx, ny), &temp[0], &count, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE); if( timg != img ) cvReleaseImage( &timg ); if( result || s == maxScale ) for( j = 0; j < count; j++ ) { temp[j].x /= s; temp[j].y /= s; } if( result ) break; } if( displayCorners ) { printf("%s\n", buf); IplImage* cimg = cvCreateImage( imageSize, 8, 3 ); cvCvtColor( img, cimg, CV_GRAY2BGR ); cvDrawChessboardCorners( cimg, cvSize(nx, ny), &temp[0], count, result ); cvShowImage( "corners", cimg ); cvReleaseImage( &cimg ); int c = cvWaitKey(100); if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quit exit(-1); } else putchar('.'); N = pts.size(); pts.resize(N + n, cvPoint2D32f(0,0)); active[lr].push_back((uchar)result); //assert( result != 0 ); if( result ) { //Calibration will suffer without subpixel interpolation cvFindCornerSubPix( img, &temp[0], count, cvSize(11, 11), cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 30, 0.01) ); copy( temp.begin(), temp.end(), pts.begin() + N ); } cvReleaseImage( &img ); } fclose(f); printf("\n"); // HARVEST CHESSBOARD 3D OBJECT POINT LIST: nframes = active[0].size();//Number of good chessboads found objectPoints.resize(nframes*n); for( i = 0; i < ny; i++ ) for( j = 0; j < nx; j++ ) objectPoints[i*nx + j] = cvPoint3D32f(i*squareSize, j*squareSize, 0); for( i = 1; i < nframes; i++ ) copy( objectPoints.begin(), objectPoints.begin() + n, objectPoints.begin() + i*n ); npoints.resize(nframes,n); N = nframes*n; CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objectPoints[0] ); CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] ); CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] ); CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0] ); cvSetIdentity(&_M1); cvSetIdentity(&_M2); cvZero(&_D1); cvZero(&_D2); // CALIBRATE THE STEREO CAMERAS // ====================================================== printf("Running stereo calibration ..."); fflush(stdout); cvStereoCalibrate( &_objectPoints, &_imagePoints1, &_imagePoints2, &_npoints, &_M1, &_D1, &_M2, &_D2, imageSize, &_R, &_T, &_E, &_F, cvTermCriteria(CV_TERMCRIT_ITER+ CV_TERMCRIT_EPS, 150, 1e-6), (flag_fix_aspect_ratio ? CV_CALIB_FIX_ASPECT_RATIO:0) + (flag_zero_tangent_dist ? CV_CALIB_ZERO_TANGENT_DIST:0) + (flag_same_focal_len ? CV_CALIB_SAME_FOCAL_LENGTH:0) ); printf(" done\n"); // CALIBRATION QUALITY CHECK // ====================================================== // because the output fundamental matrix implicitly // includes all the output information, // we can check the quality of calibration using the // epipolar geometry constraint: m2^t*F*m1=0 vector<CvPoint3D32f> lines[2]; points[0].resize(N); points[1].resize(N); _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0] ); _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0] ); lines[0].resize(N); lines[1].resize(N); CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]); CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]); //Always work in undistorted space cvUndistortPoints( &_imagePoints1, &_imagePoints1, &_M1, &_D1, 0, &_M1 ); cvUndistortPoints( &_imagePoints2, &_imagePoints2, &_M2, &_D2, 0, &_M2 ); cvComputeCorrespondEpilines( &_imagePoints1, 1, &_F, &_L1 ); cvComputeCorrespondEpilines( &_imagePoints2, 2, &_F, &_L2 ); double avgErr = 0; for( i = 0; i < N; i++ ) { double err = fabs(points[0][i].x*lines[1][i].x + points[0][i].y*lines[1][i].y + lines[1][i].z) + fabs(points[1][i].x*lines[0][i].x + points[1][i].y*lines[0][i].y + lines[0][i].z); avgErr += err; } printf( "avg err = %g\n", avgErr/(nframes*n) ); //COMPUTE RECTIFICATION // ======================================================== CvMat* mx1 = cvCreateMat( imageSize.height, imageSize.width, CV_32F ); CvMat* my1 = cvCreateMat( imageSize.height, imageSize.width, CV_32F ); CvMat* mx2 = cvCreateMat( imageSize.height, imageSize.width, CV_32F ); CvMat* my2 = cvCreateMat( imageSize.height, imageSize.width, CV_32F ); CvMat* img1r = cvCreateMat( imageSize.height, imageSize.width, CV_8U ); CvMat* img2r = cvCreateMat( imageSize.height, imageSize.width, CV_8U ); CvMat* disp = cvCreateMat( imageSize.height, imageSize.width, CV_16S ); CvMat* vdisp = cvCreateMat( imageSize.height, imageSize.width, CV_8U ); CvMat* pair; double R1[3][3], R2[3][3], P1[3][4], P2[3][4], Q[4][4]; CvMat _R1 = cvMat(3, 3, CV_64F, R1); CvMat _R2 = cvMat(3, 3, CV_64F, R2); CvMat _Q = cvMat(4, 4, CV_64F, Q); // IF BY CALIBRATED (BOUGUET'S METHOD) if( useUncalibrated == 0 ) { CvMat _P1 = cvMat(3, 4, CV_64F, P1); CvMat _P2 = cvMat(3, 4, CV_64F, P2); #if MRPT_OPENCV_VERSION_NUM<0x210 // OpenCV 2.0.X cvStereoRectify( &_M1, &_M2, &_D1, &_D2, imageSize, &_R, &_T, &_R1, &_R2, &_P1, &_P2, &_Q, 0/*CV_CALIB_ZERO_DISPARITY*/ ); #else // OpenCV 2.1.X - 2.2.X - 2.3.X cvStereoRectify( &_M1, &_M2, &_D1, &_D2, imageSize, &_R, &_T, &_R1, &_R2, &_P1, &_P2, &_Q, 0 /* CV_CALIB_ZERO_DISPARITY */, 0 /* alpha */ ); #endif isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3]); //Precompute maps for cvRemap() cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1,my1); cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2,my2); } //OR ELSE HARTLEY'S METHOD else if( useUncalibrated == 1 || useUncalibrated == 2 ) // use intrinsic parameters of each camera, but // compute the rectification transformation directly // from the fundamental matrix { double H1[3][3], H2[3][3], iM[3][3]; CvMat _H1 = cvMat(3, 3, CV_64F, H1); CvMat _H2 = cvMat(3, 3, CV_64F, H2); CvMat _iM = cvMat(3, 3, CV_64F, iM); //Just to show you could have independently used F if( useUncalibrated == 2 ) cvFindFundamentalMat( &_imagePoints1, &_imagePoints2, &_F); cvStereoRectifyUncalibrated( &_imagePoints1, &_imagePoints2, &_F, imageSize, &_H1, &_H2, 3); cvInvert(&_M1, &_iM); cvMatMul(&_H1, &_M1, &_R1); cvMatMul(&_iM, &_R1, &_R1); cvInvert(&_M2, &_iM); cvMatMul(&_H2, &_M2, &_R2); cvMatMul(&_iM, &_R2, &_R2); //Precompute map for cvRemap() cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_M1,mx1,my1); cvInitUndistortRectifyMap(&_M2,&_D1,&_R2,&_M2,mx2,my2); } else assert(0); // SAVE CALIBRATION REPORT FILE // ============================================================================== cout << "Writing report file: " << sOutFile<< endl; FILE *f_out = fopen(sOutFile,"wt"); time_t systime; time(&systime); struct tm * timeinfo=localtime(&systime); fprintf( f_out, "# Stereo camera calibration report\n" "# Generated by camera-calib-gui - MRPT at %s" "# (This file is loadable from rawlog-edit and other MRPT tools)\n" "# ---------------------------------------------------------------------\n\n", asctime(timeinfo) ); fprintf( f_out, "# Left camera calibration parameters:\n" "[CAMERA_PARAMS_LEFT]\n" "resolution = [%u %u]\n" "cx = %f\n" "cy = %f\n" "fx = %f\n" "fy = %f\n" "dist = [%e %e %e %e %e] // The order is: [K1 K2 T1 T2 K3]\n\n", imageSize.width,imageSize.height, cvGet2D(&_M1,0,2).val[0], cvGet2D(&_M1,1,2).val[0], cvGet2D(&_M1,0,0).val[0], cvGet2D(&_M1,1,1).val[0], cvGet2D(&_D1,0,0).val[0], cvGet2D(&_D1,0,1).val[0], cvGet2D(&_D1,0,2).val[0], cvGet2D(&_D1,0,3).val[0], cvGet2D(&_D1,0,4).val[0] ); fprintf( f_out, "# Right camera calibration parameters:\n" "[CAMERA_PARAMS_RIGHT]\n" "resolution = [%u %u]\n" "cx = %f\n" "cy = %f\n" "fx = %f\n" "fy = %f\n" "dist = [%e %e %e %e %e] // The order is: [K1 K2 T1 T2 K3]\n\n", imageSize.width,imageSize.height, cvGet2D(&_M2,0,2).val[0], cvGet2D(&_M2,1,2).val[0], cvGet2D(&_M2,0,0).val[0], cvGet2D(&_M2,1,1).val[0], cvGet2D(&_D2,0,0).val[0], cvGet2D(&_D2,0,1).val[0], cvGet2D(&_D2,0,2).val[0], cvGet2D(&_D2,0,3).val[0], cvGet2D(&_D2,0,4).val[0] ); // Convert RT to MRPT classes: mrpt::math::CMatrixFixedNumeric<double,3,3> mROT; for (int i=0; i<3; i++) for (int j=0; j<3; j++) mROT(i,j)=cvGet2D(&_R,i,j).val[0]; mrpt::math::TPoint3D mT; mT.x = cvGet2D(&_T,0,0).val[0]; mT.y = cvGet2D(&_T,1,0).val[0]; mT.z = cvGet2D(&_T,2,0).val[0]; // NOTE: OpenCV seems to return the inverse of what we want, so invert the pose: const mrpt::poses::CPose3D RT_YPR(-mrpt::poses::CPose3D(mROT,mT)); const mrpt::poses::CPose3DQuat RT_quat(RT_YPR); fprintf( f_out, "# Relative pose of the right camera wrt to the left camera:\n" "[CAMERA_PARAMS_LEFT2RIGHT_POSE]\n" "translation_only = [%e %e %e]\n" "rotation_matrix_only = %s\n" "pose_yaw_pitch_roll = %s\n" "pose_quaternion = %s\n\n" , RT_YPR.x(),RT_YPR.y(),RT_YPR.z(), RT_YPR.getRotationMatrix().inMatlabFormat(13).c_str(), RT_YPR.asString().c_str(), RT_quat.asString().c_str() ); // Convert RT to MRPT classes: mrpt::math::CMatrixFixedNumeric<double,3,3> mR1, mR2; mrpt::math::CMatrixFixedNumeric<double,3,4> mP1, mP2; mrpt::math::CMatrixFixedNumeric<double,4,4> mQ; for (int i=0; i<3; i++) for (int j=0; j<3; j++) { mR1(i,j)=R1[i][j]; mR2(i,j)=R2[i][j]; } for (int i=0; i<3; i++) for (int j=0; j<4; j++) { mP1(i,j)=P1[i][j]; mP2(i,j)=P2[i][j]; } for (int i=0; i<4; i++) for (int j=0; j<4; j++) mQ(i,j)=Q[i][j]; fprintf( f_out, "# Stereo rectify matrices (see http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html ):\n" "# R1, R2: The output 3x3 rectification transforms (rotation matrices) for the first and the second cameras, respectively.\n" "# P1, P2: The output 3x4 projection matrices in the new (rectified) coordinate systems.\n" "[STEREO_RECTIFY_MATRICES]\n" "R1 = %s\n" "R2 = %s\n" "P1 = %s\n" "P2 = %s\n\n" "Q = %s\n\n" , mR1.inMatlabFormat(13).c_str(), mR2.inMatlabFormat(13).c_str(), mP1.inMatlabFormat(13).c_str(), mP2.inMatlabFormat(13).c_str(), mQ.inMatlabFormat(13).c_str() ); fprintf( f_out, "# Info about calibration parameters:\n" "[CALIB_METAINFO]\n" "number_good_cheesboards = %i\n" "average_reprojection_error = %f // pixels\n" "cheesboard_nx = %i\n" "cheesboard_ny = %i\n" "cheesboard_square_size = %f\n" "alpha = %f // Parameter for zoom in/out\n" "flag_fix_aspect_ratio = %s\n" "flag_zero_tangent_dist = %s\n" "flag_same_focal_len = %s\n\n" , nframes, avgErr/(nframes*n), nx,ny, (double)squareSize, alpha, flag_fix_aspect_ratio ? "true":"false", flag_zero_tangent_dist ? "true":"false", flag_same_focal_len ? "true":"false" ); fprintf( f_out, "# List of files used in the optimization:\n" "[CALIB_FILE_LIST]\n"); for (unsigned int i=0; i<lst_image_files.size(); i++) fprintf( f_out, "img_%04u = %s\n", i, lst_image_files[i].c_str() ); fprintf( f_out, "\n"); fclose(f_out); // DISPLAY RECTIFICATION // ======================================================== cvNamedWindow( "rectified", 1 ); // RECTIFY THE IMAGES AND FIND DISPARITY MAPS if( !isVerticalStereo ) pair = cvCreateMat( imageSize.height, imageSize.width*2, CV_8UC3 ); else pair = cvCreateMat( imageSize.height*2, imageSize.width, CV_8UC3 ); //Setup for finding stereo corrrespondences CvStereoBMState *BMState = cvCreateStereoBMState(); assert(BMState != 0); BMState->preFilterSize=41; BMState->preFilterCap=31; BMState->SADWindowSize=41; BMState->minDisparity=-64; BMState->numberOfDisparities=128; BMState->textureThreshold=10; BMState->uniquenessRatio=15; for( i = 0; i < nframes; i++ ) { IplImage* img1=cvLoadImage(imageNames[0][i].c_str(),0); IplImage* img2=cvLoadImage(imageNames[1][i].c_str(),0); if( img1 && img2 ) { CvMat part; cvRemap( img1, img1r, mx1, my1 ); cvRemap( img2, img2r, mx2, my2 ); if( !isVerticalStereo || useUncalibrated != 0 ) { // When the stereo camera is oriented vertically, // useUncalibrated==0 does not transpose the // image, so the epipolar lines in the rectified // images are vertical. Stereo correspondence // function does not support such a case. cvFindStereoCorrespondenceBM( img1r, img2r, disp, BMState); cvNormalize( disp, vdisp, 0, 256, CV_MINMAX ); //cvNamedWindow( "disparity" ); //cvShowImage( "disparity", vdisp ); } if( !isVerticalStereo ) { cvGetCols( pair, &part, 0, imageSize.width ); cvCvtColor( img1r, &part, CV_GRAY2BGR ); cvGetCols( pair, &part, imageSize.width, imageSize.width*2 ); cvCvtColor( img2r, &part, CV_GRAY2BGR ); for( j = 0; j < imageSize.height; j += 16 ) cvLine( pair, cvPoint(0,j), cvPoint(imageSize.width*2,j), CV_RGB(0,255,0)); } else { cvGetRows( pair, &part, 0, imageSize.height ); cvCvtColor( img1r, &part, CV_GRAY2BGR ); cvGetRows( pair, &part, imageSize.height, imageSize.height*2 ); cvCvtColor( img2r, &part, CV_GRAY2BGR ); for( j = 0; j < imageSize.width; j += 16 ) cvLine( pair, cvPoint(j,0), cvPoint(j,imageSize.height*2), CV_RGB(0,255,0)); } cvShowImage( "rectified", pair ); if( cvWaitKey() == 27 ) break; } cvReleaseImage( &img1 ); cvReleaseImage( &img2 ); } cvReleaseStereoBMState(&BMState); cvReleaseMat( &mx1 ); cvReleaseMat( &my1 ); cvReleaseMat( &mx2 ); cvReleaseMat( &my2 ); cvReleaseMat( &img1r ); cvReleaseMat( &img2r ); cvReleaseMat( &disp ); }