/************************************************************************************************ * extractFeaturesKLT ************************************************************************************************/ void CFeatureExtraction::extractFeaturesKLT( const mrpt::utils::CImage &inImg, CFeatureList &feats, unsigned int init_ID, unsigned int nDesiredFeatures, const TImageROI &ROI) const { //#define VERBOSE_TIMING #ifdef VERBOSE_TIMING CTicTac tictac; #endif MRPT_START #if MRPT_HAS_OPENCV const unsigned int MAX_COUNT = 300; // ----------------------------------------------------------------- // Create OpenCV Local Variables // ----------------------------------------------------------------- int count = 0; int nPts; #ifdef VERBOSE_TIMING tictac.Tic(); #endif const cv::Mat img( cv::cvarrToMat( inImg.getAs<IplImage>() ) ); #ifdef VERBOSE_TIMING cout << "[KLT] Attach: " << tictac.Tac()*1000.0f << endl; #endif const CImage inImg_gray( inImg, FAST_REF_OR_CONVERT_TO_GRAY ); const cv::Mat cGrey( cv::cvarrToMat( inImg_gray.getAs<IplImage>() ) ); nDesiredFeatures <= 0 ? nPts = MAX_COUNT : nPts = nDesiredFeatures; #ifdef VERBOSE_TIMING tictac.Tic(); #endif #ifdef VERBOSE_TIMING cout << "[KLT] Create: " << tictac.Tac()*1000.0f << endl; #endif count = nPts; // Number of points to find // ----------------------------------------------------------------- // Select good features with subpixel accuracy (USING HARRIS OR KLT) // ----------------------------------------------------------------- const bool use_harris = ( options.featsType == featHarris ); #ifdef VERBOSE_TIMING tictac.Tic(); #endif std::vector<cv::Point2f> points; cv::goodFeaturesToTrack( cGrey,points, nPts, (double)options.harrisOptions.threshold, // for rejecting weak local maxima ( with min_eig < threshold*max(eig_image) ) (double)options.harrisOptions.min_distance, // minimum distance between features cv::noArray(), // mask 3, // blocksize use_harris, /* harris */ options.harrisOptions.k ); #ifdef VERBOSE_TIMING cout << "[KLT] Find feats: " << tictac.Tac()*1000.0f << endl; #endif if( nDesiredFeatures > 0 && count < nPts ) cout << "\n[WARNING][selectGoodFeaturesKLT]: Only " << count << " of " << nDesiredFeatures << " points could be extracted in the image." << endl; if( options.FIND_SUBPIXEL ) { #ifdef VERBOSE_TIMING tictac.Tic(); #endif // Subpixel interpolation cv::cornerSubPix(cGrey,points, cv::Size(3,3), cv::Size(-1,-1), cv::TermCriteria( CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.05 )); #ifdef VERBOSE_TIMING cout << "[KLT] subpixel: " << tictac.Tac()*1000.0f << endl; #endif } // ----------------------------------------------------------------- // Fill output structure // ----------------------------------------------------------------- #ifdef VERBOSE_TIMING tictac.Tic(); #endif feats.clear(); unsigned int borderFeats = 0; unsigned int nCFeats = init_ID; int i = 0; const int limit = min( nPts, count ); int offset = (int)this->options.patchSize/2 + 1; unsigned int imgH = inImg.getHeight(); unsigned int imgW = inImg.getWidth(); while( i < limit ) { const int xBorderInf = (int)floor( points[i].x - options.patchSize/2 ); const int xBorderSup = (int)floor( points[i].x + options.patchSize/2 ); const int yBorderInf = (int)floor( points[i].y - options.patchSize/2 ); const int yBorderSup = (int)floor( points[i].y + options.patchSize/2 ); if( options.patchSize==0 || ( (xBorderSup < (int)imgW) && (xBorderInf > 0) && (yBorderSup < (int)imgH) && (yBorderInf > 0) ) ) { CFeaturePtr ft = CFeature::Create(); ft->type = featKLT; ft->x = points[i].x; // X position ft->y = points[i].y; // Y position ft->track_status = status_TRACKED; // Feature Status ft->response = 0.0; // A value proportional to the quality of the feature (unused yet) ft->ID = nCFeats++; // Feature ID into extraction ft->patchSize = options.patchSize; // The size of the feature patch if( options.patchSize > 0 ) { inImg.extract_patch( ft->patch, round( ft->x ) - offset, round( ft->y ) - offset, options.patchSize, options.patchSize ); // Image patch surronding the feature } feats.push_back( ft ); } // end if else borderFeats++; i++; } // end while #ifdef VERBOSE_TIMING cout << "[KLT] Create output: " << tictac.Tac()*1000.0f << endl; #endif #else THROW_EXCEPTION("The MRPT has been compiled with MRPT_HAS_OPENCV=0 !"); #endif MRPT_END } // end of function
// N_fast = 9, 10, 12 void CFeatureExtraction::extractFeaturesFASTER_N( const int N_fast, const mrpt::utils::CImage & inImg, CFeatureList & feats, unsigned int init_ID, unsigned int nDesiredFeatures, const TImageROI & ROI ) const { MRPT_START #if MRPT_HAS_OPENCV // Make sure we operate on a gray-scale version of the image: const CImage inImg_gray( inImg, FAST_REF_OR_CONVERT_TO_GRAY ); const IplImage *IPL = inImg_gray.getAs<IplImage>(); TSimpleFeatureList corners; TFeatureType type_of_this_feature; switch (N_fast) { case 9: fast_corner_detect_9 (IPL,corners, options.FASTOptions.threshold, 0, NULL); type_of_this_feature=featFASTER9; break; case 10: fast_corner_detect_10(IPL,corners, options.FASTOptions.threshold, 0, NULL); type_of_this_feature=featFASTER10; break; case 12: fast_corner_detect_12(IPL,corners, options.FASTOptions.threshold, 0, NULL); type_of_this_feature=featFASTER12; break; default: THROW_EXCEPTION("Only the 9,10,12 FASTER detectors are implemented.") break; }; // *All* the features have been extracted. const size_t N = corners.size(); // Now: // 1) Sort them by "response": It's ~100 times faster to sort a list of // indices "sorted_indices" than sorting directly the actual list of features "corners" std::vector<size_t> sorted_indices(N); for (size_t i=0;i<N;i++) sorted_indices[i]=i; // Use KLT response if (options.FASTOptions.use_KLT_response || nDesiredFeatures!=0 // If the user wants us to limit the number of features, we need to do it according to some quality measure ) { const int KLT_half_win = 4; const int max_x = inImg_gray.getWidth() - 1 - KLT_half_win; const int max_y = inImg_gray.getHeight() - 1 - KLT_half_win; for (size_t i=0;i<N;i++) { const int x = corners[i].pt.x; const int y = corners[i].pt.y; if (x>KLT_half_win && y>KLT_half_win && x<=max_x && y<=max_y) corners[i].response = inImg_gray.KLT_response(x,y,KLT_half_win); else corners[i].response = -100; } std::sort( sorted_indices.begin(), sorted_indices.end(), KeypointResponseSorter<TSimpleFeatureList>(corners) ); } else { for (size_t i=0;i<N;i++) corners[i].response = 0; } // 2) Filter by "min-distance" (in options.FASTOptions.min_distance) // 3) Convert to MRPT CFeatureList format. // Steps 2 & 3 are done together in the while() below. // The "min-distance" filter is done by means of a 2D binary matrix where each cell is marked when one // feature falls within it. This is not exactly the same than a pure "min-distance" but is pretty close // and for large numbers of features is much faster than brute force search of kd-trees. // (An intermediate approach would be the creation of a mask image updated for each accepted feature, etc.) const bool do_filter_min_dist = options.FASTOptions.min_distance>1; // Used half the min-distance since we'll later mark as occupied the ranges [i-1,i+1] for a feature at "i" const unsigned int occupied_grid_cell_size = options.FASTOptions.min_distance/2.0; const float occupied_grid_cell_size_inv = 1.0f/occupied_grid_cell_size; unsigned int grid_lx = !do_filter_min_dist ? 1 : (unsigned int)(1 + inImg.getWidth() * occupied_grid_cell_size_inv); unsigned int grid_ly = !do_filter_min_dist ? 1 : (unsigned int)(1 + inImg.getHeight() * occupied_grid_cell_size_inv ); mrpt::math::CMatrixBool occupied_sections(grid_lx,grid_ly); // See the comments above for an explanation. occupied_sections.fillAll(false); unsigned int nMax = (nDesiredFeatures!=0 && N > nDesiredFeatures) ? nDesiredFeatures : N; const int offset = (int)this->options.patchSize/2 + 1; const int size_2 = options.patchSize/2; const size_t imgH = inImg.getHeight(); const size_t imgW = inImg.getWidth(); unsigned int i = 0; unsigned int cont = 0; TFeatureID nextID = init_ID; if( !options.addNewFeatures ) feats.clear(); while( cont != nMax && i!=N ) { // Take the next feature fromt the ordered list of good features: const TSimpleFeature &feat = corners[ sorted_indices[i] ]; i++; // Patch out of the image?? const int xBorderInf = feat.pt.x - size_2; const int xBorderSup = feat.pt.x + size_2; const int yBorderInf = feat.pt.y - size_2; const int yBorderSup = feat.pt.y + size_2; if (!( xBorderSup < (int)imgW && xBorderInf > 0 && yBorderSup < (int)imgH && yBorderInf > 0 )) continue; // nope, skip. if (do_filter_min_dist) { // Check the min-distance: const size_t section_idx_x = size_t(feat.pt.x * occupied_grid_cell_size_inv); const size_t section_idx_y = size_t(feat.pt.y * occupied_grid_cell_size_inv); if (occupied_sections(section_idx_x,section_idx_y)) continue; // Already occupied! skip. // Mark section as occupied occupied_sections.set_unsafe(section_idx_x,section_idx_y, true); if (section_idx_x>0) occupied_sections.set_unsafe(section_idx_x-1,section_idx_y, true); if (section_idx_y>0) occupied_sections.set_unsafe(section_idx_x,section_idx_y-1, true); if (section_idx_x<grid_lx-1) occupied_sections.set_unsafe(section_idx_x+1,section_idx_y, true); if (section_idx_y<grid_ly-1) occupied_sections.set_unsafe(section_idx_x,section_idx_y+1, true); } // All tests passed: add new feature: CFeaturePtr ft = CFeature::Create(); ft->type = type_of_this_feature; ft->ID = nextID++; ft->x = feat.pt.x; ft->y = feat.pt.y; ft->response = feat.response; ft->orientation = 0; ft->scale = 1; ft->patchSize = options.patchSize; // The size of the feature patch if( options.patchSize > 0 ) { inImg.extract_patch( ft->patch, round( ft->x ) - offset, round( ft->y ) - offset, options.patchSize, options.patchSize ); // Image patch surronding the feature } feats.push_back( ft ); ++cont; } #endif MRPT_END }
/************************************************************************************************ * extractFeaturesSURF * ************************************************************************************************/ void CFeatureExtraction::extractFeaturesSURF( const mrpt::utils::CImage &inImg, CFeatureList &feats, unsigned int init_ID, unsigned int nDesiredFeatures, const TImageROI &ROI) const { MRPT_UNUSED_PARAM(ROI); #if MRPT_HAS_OPENCV && MRPT_OPENCV_VERSION_NUM >= 0x111 const CImage img_grayscale(inImg, FAST_REF_OR_CONVERT_TO_GRAY); const IplImage* cGrey = img_grayscale.getAs<IplImage>(); CvSeq *kp = NULL; CvSeq *desc = NULL; CvMemStorage *storage = cvCreateMemStorage(0); // Extract the SURF points: CvSURFParams surf_params = cvSURFParams(options.SURFOptions.hessianThreshold, options.SURFOptions.rotation_invariant ? 1:0); surf_params.nOctaves = options.SURFOptions.nOctaves; surf_params.nOctaveLayers = options.SURFOptions.nLayersPerOctave; cvExtractSURF( cGrey, NULL, &kp, &desc, storage, surf_params); // ----------------------------------------------------------------- // MRPT Wrapping // ----------------------------------------------------------------- feats.clear(); unsigned int nCFeats = init_ID; int limit; int offset = (int)this->options.patchSize/2 + 1; unsigned int imgH = inImg.getHeight(); unsigned int imgW = inImg.getWidth(); if( nDesiredFeatures == 0 ) limit = kp->total; else limit = (int)nDesiredFeatures < kp->total ? (int)nDesiredFeatures : kp->total; for( int i = 0; i < limit; i++ ) { // Get the OpenCV SURF point CvSURFPoint *point; CFeaturePtr ft = CFeature::Create(); point = (CvSURFPoint*)cvGetSeqElem( kp, i ); const int xBorderInf = (int)floor( point->pt.x - options.patchSize/2 ); const int xBorderSup = (int)floor( point->pt.x + options.patchSize/2 ); const int yBorderInf = (int)floor( point->pt.y - options.patchSize/2 ); const int yBorderSup = (int)floor( point->pt.y + options.patchSize/2 ); if( options.patchSize == 0 || ( (xBorderSup < (int)imgW) && (xBorderInf > 0) && (yBorderSup < (int)imgH) && (yBorderInf > 0) ) ) { ft->type = featSURF; ft->x = point->pt.x; // X position ft->y = point->pt.y; // Y position ft->orientation = point->dir; // Orientation ft->scale = point->size*1.2/9; // Scale ft->ID = nCFeats++; // Feature ID into extraction ft->patchSize = options.patchSize; // The size of the feature patch if( options.patchSize > 0 ) { inImg.extract_patch( ft->patch, round( ft->x ) - offset, round( ft->y ) - offset, options.patchSize, options.patchSize ); // Image patch surronding the feature } // Get the SURF descriptor float* d = (float*)cvGetSeqElem( desc, i ); ft->descriptors.SURF.resize( options.SURFOptions.rotation_invariant ? 128 : 64 ); std::vector<float>::iterator itDesc; unsigned int k; for( k = 0, itDesc = ft->descriptors.SURF.begin(); k < ft->descriptors.SURF.size(); k++, itDesc++ ) *itDesc = d[k]; feats.push_back( ft ); } // end if } // end for cvReleaseMemStorage(&storage); // Free memory #else THROW_EXCEPTION("Method not available since either MRPT has been compiled without OpenCV or OpenCV version is incorrect (Required 1.1.0)") #endif //MRPT_HAS_OPENCV } // end extractFeaturesSURF
/************************************************************************************************ * extractFeaturesFAST ** ************************************************************************************************/ void CFeatureExtraction::extractFeaturesFAST( const mrpt::utils::CImage& inImg, CFeatureList& feats, unsigned int init_ID, unsigned int nDesiredFeatures, const TImageROI& ROI, const CMatrixBool* mask) const { MRPT_UNUSED_PARAM(ROI); MRPT_START #if MRPT_HAS_OPENCV #if MRPT_OPENCV_VERSION_NUM < 0x210 THROW_EXCEPTION("This function requires OpenCV > 2.1.0") #else using namespace cv; vector<KeyPoint> cv_feats; // The opencv keypoint output vector // Make sure we operate on a gray-scale version of the image: const CImage inImg_gray(inImg, FAST_REF_OR_CONVERT_TO_GRAY); // JL: Instead of // int aux = options.FASTOptions.threshold; .... // It's better to use an adaptive threshold, controlled from our caller // outside. #if MRPT_OPENCV_VERSION_NUM >= 0x211 // cv::Mat *mask ; // if( _mask ) // mask = static_cast<cv::Mat*>(_mask); const Mat theImg = cvarrToMat(inImg_gray.getAs<IplImage>()); cv::Mat cvMask; if (options.useMask) { cout << "using mask" << endl; size_t maskW = mask->getColCount(), maskH = mask->getRowCount(); ASSERT_( maskW == inImg_gray.getWidth() && maskH == inImg_gray.getHeight()); // Convert Mask into CV type cvMask = cv::Mat::ones(maskH, maskW, CV_8UC1); for (int ii = 0; ii < int(maskW); ++ii) for (int jj = 0; jj < int(maskH); ++jj) { if (!mask->get_unsafe(jj, ii)) { cvMask.at<char>(ii, jj) = (char)0; } } } #if MRPT_OPENCV_VERSION_NUM < 0x300 FastFeatureDetector fastDetector( options.FASTOptions.threshold, options.FASTOptions.nonmax_suppression); fastDetector.detect(theImg, cv_feats); #else Ptr<cv::FastFeatureDetector> fastDetector = cv::FastFeatureDetector::create( options.FASTOptions.threshold, options.FASTOptions.nonmax_suppression); fastDetector->detect(theImg, cv_feats); #endif #elif MRPT_OPENCV_VERSION_NUM >= 0x210 FAST( inImg_gray.getAs<IplImage>(), cv_feats, options.FASTOptions.threshold, options.FASTOptions.nonmax_suppression); #endif // *All* the features have been extracted. const size_t N = cv_feats.size(); // Use KLT response instead of the OpenCV's original "response" field: if (options.FASTOptions.use_KLT_response) { const unsigned int KLT_half_win = 4; const unsigned int max_x = inImg_gray.getWidth() - 1 - KLT_half_win; const unsigned int max_y = inImg_gray.getHeight() - 1 - KLT_half_win; for (size_t i = 0; i < N; i++) { const unsigned int x = cv_feats[i].pt.x; const unsigned int y = cv_feats[i].pt.y; if (x > KLT_half_win && y > KLT_half_win && x <= max_x && y <= max_y) cv_feats[i].response = inImg_gray.KLT_response(x, y, KLT_half_win); else cv_feats[i].response = -100; } } // Now: // 1) Sort them by "response": It's ~100 times faster to sort a list of // indices "sorted_indices" than sorting directly the actual list of // features "cv_feats" std::vector<size_t> sorted_indices(N); for (size_t i = 0; i < N; i++) sorted_indices[i] = i; std::sort( sorted_indices.begin(), sorted_indices.end(), KeypointResponseSorter<vector<KeyPoint>>(cv_feats)); // 2) Filter by "min-distance" (in options.FASTOptions.min_distance) // 3) Convert to MRPT CFeatureList format. // Steps 2 & 3 are done together in the while() below. // The "min-distance" filter is done by means of a 2D binary matrix where // each cell is marked when one // feature falls within it. This is not exactly the same than a pure // "min-distance" but is pretty close // and for large numbers of features is much faster than brute force search // of kd-trees. // (An intermediate approach would be the creation of a mask image updated // for each accepted feature, etc.) const bool do_filter_min_dist = options.FASTOptions.min_distance > 1; // Used half the min-distance since we'll later mark as occupied the ranges // [i-1,i+1] for a feature at "i" const unsigned int occupied_grid_cell_size = options.FASTOptions.min_distance / 2.0; const float occupied_grid_cell_size_inv = 1.0f / occupied_grid_cell_size; unsigned int grid_lx = !do_filter_min_dist ? 1 : (unsigned int)(1 + inImg.getWidth() * occupied_grid_cell_size_inv); unsigned int grid_ly = !do_filter_min_dist ? 1 : (unsigned int)(1 + inImg.getHeight() * occupied_grid_cell_size_inv); mrpt::math::CMatrixBool occupied_sections( grid_lx, grid_ly); // See the comments above for an explanation. occupied_sections.fillAll(false); unsigned int nMax = (nDesiredFeatures != 0 && N > nDesiredFeatures) ? nDesiredFeatures : N; const int offset = (int)this->options.patchSize / 2 + 1; const size_t size_2 = options.patchSize / 2; const size_t imgH = inImg.getHeight(); const size_t imgW = inImg.getWidth(); unsigned int i = 0; unsigned int cont = 0; TFeatureID nextID = init_ID; if (!options.addNewFeatures) feats.clear(); while (cont != nMax && i != N) { // Take the next feature fromt the ordered list of good features: const KeyPoint& kp = cv_feats[sorted_indices[i]]; i++; // Patch out of the image?? const int xBorderInf = (int)floor(kp.pt.x - size_2); const int xBorderSup = (int)floor(kp.pt.x + size_2); const int yBorderInf = (int)floor(kp.pt.y - size_2); const int yBorderSup = (int)floor(kp.pt.y + size_2); if (!(xBorderSup < (int)imgW && xBorderInf > 0 && yBorderSup < (int)imgH && yBorderInf > 0)) continue; // nope, skip. if (do_filter_min_dist) { // Check the min-distance: const size_t section_idx_x = size_t(kp.pt.x * occupied_grid_cell_size_inv); const size_t section_idx_y = size_t(kp.pt.y * occupied_grid_cell_size_inv); if (occupied_sections(section_idx_x, section_idx_y)) continue; // Already occupied! skip. // Mark section as occupied occupied_sections.set_unsafe(section_idx_x, section_idx_y, true); if (section_idx_x > 0) occupied_sections.set_unsafe( section_idx_x - 1, section_idx_y, true); if (section_idx_y > 0) occupied_sections.set_unsafe( section_idx_x, section_idx_y - 1, true); if (section_idx_x < grid_lx - 1) occupied_sections.set_unsafe( section_idx_x + 1, section_idx_y, true); if (section_idx_y < grid_ly - 1) occupied_sections.set_unsafe( section_idx_x, section_idx_y + 1, true); } // All tests passed: add new feature: CFeature::Ptr ft = mrpt::make_aligned_shared<CFeature>(); ft->type = featFAST; ft->ID = nextID++; ft->x = kp.pt.x; ft->y = kp.pt.y; ft->response = kp.response; ft->orientation = kp.angle; ft->scale = kp.octave; ft->patchSize = options.patchSize; // The size of the feature patch if (options.patchSize > 0) { inImg.extract_patch( ft->patch, round(ft->x) - offset, round(ft->y) - offset, options.patchSize, options.patchSize); // Image patch surronding the feature } feats.push_back(ft); ++cont; } // feats.resize( cont ); // JL: really needed??? #endif #endif MRPT_END }
/************************************************************************************************ * selectGoodFeaturesKLT * ************************************************************************************************/ void CFeatureExtraction::selectGoodFeaturesKLT( const mrpt::utils::CImage &inImg, CFeatureList &feats, unsigned int init_ID, unsigned int nDesiredFeatures, void *mask_ ) const { //#define VERBOSE_TIMING #ifdef VERBOSE_TIMING CTicTac tictac; #endif MRPT_START #if MRPT_HAS_OPENCV const unsigned int MAX_COUNT = 300; // Reinterpret opencv formal arguments CvMatrix *mask = reinterpret_cast<CvMatrix*>(mask_); // ----------------------------------------------------------------- // Create OpenCV Local Variables // ----------------------------------------------------------------- int count = 0; int nPts; CvImage img, cGrey; #ifdef VERBOSE_TIMING tictac.Tic(); #endif img.attach( const_cast<IplImage*>(inImg.getAs<IplImage>()), false ); // Attach Image as IplImage and do not use ref counter #ifdef VERBOSE_TIMING cout << "[KLT] Attach: " << tictac.Tac()*1000.0f << endl; #endif if( img.channels() == 1 ) cGrey = img; // Input image is already 'grayscale' else { cGrey.create( cvGetSize( img ), 8, 1); cvCvtColor( img, cGrey, CV_BGR2GRAY ); // Convert input image into 'grayscale' } nDesiredFeatures <= 0 ? nPts = MAX_COUNT : nPts = nDesiredFeatures; std::vector<CvPoint2D32f> points(nPts); CvImage eig, temp; // temporary and auxiliary images #ifdef VERBOSE_TIMING tictac.Tic(); #endif eig.create( cvGetSize( cGrey ), 32, 1 ); temp.create( cvGetSize( cGrey ), 32, 1 ); #ifdef VERBOSE_TIMING cout << "[KLT] Create: " << tictac.Tac()*1000.0f << endl; #endif count = nPts; // Number of points to find #if 0 // Temporary debug { static int i=0; cvSaveImage( format("debug_map_%05i.bmp",++i).c_str(), cGrey); } #endif // ----------------------------------------------------------------- // Select good features with subpixel accuracy (USING HARRIS OR KLT) // ----------------------------------------------------------------- if( options.featsType == featHarris ) { #ifdef VERBOSE_TIMING tictac.Tic(); #endif cvGoodFeaturesToTrack( cGrey, eig, temp, &points[0], &count, // input and output data (double)options.harrisOptions.threshold, // for rejecting weak local maxima ( with min_eig < threshold*max(eig_image) ) (double)options.harrisOptions.min_distance, // minimum distance between features mask ? (*mask) : static_cast<const CvMat*>(NULL), // ROI (double)options.harrisOptions.radius, // size of the block of pixels used 1, // use Harris options.harrisOptions.k ); // k factor for the Harris algorithm #ifdef VERBOSE_TIMING cout << "[KLT] Find feats: " << tictac.Tac()*1000.0f << endl; #endif } else { #ifdef VERBOSE_TIMING tictac.Tic(); #endif cvGoodFeaturesToTrack( cGrey, eig, temp, &points[0], &count, // input and output data (double)options.KLTOptions.threshold, // for rejecting weak local maxima ( with min_eig < threshold*max(eig_image) ) (double)options.KLTOptions.min_distance, // minimum distance between features mask ? (*mask) : static_cast<const CvMat*>(NULL), // ROI options.KLTOptions.radius, // size of the block of pixels used 0, // use Kanade Lucas Tomasi 0.04 ); // un-used parameter #ifdef VERBOSE_TIMING cout << "[KLT]: Find feats: " << tictac.Tac()*1000.0f << endl; #endif } if( nDesiredFeatures > 0 && count < nPts ) cout << "\n[WARNING][selectGoodFeaturesKLT]: Only " << count << " of " << nDesiredFeatures << " points could be extracted in the image." << endl; if( options.FIND_SUBPIXEL ) { #ifdef VERBOSE_TIMING tictac.Tic(); #endif // Subpixel interpolation cvFindCornerSubPix( cGrey, &points[0], count, cvSize(3,3), cvSize(-1,-1), cvTermCriteria( CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10, 0.05 )); #ifdef VERBOSE_TIMING cout << "[KLT] subpixel: " << tictac.Tac()*1000.0f << endl; #endif } // ----------------------------------------------------------------- // Fill output structure // ----------------------------------------------------------------- #ifdef VERBOSE_TIMING tictac.Tic(); #endif feats.clear(); unsigned int borderFeats = 0; unsigned int nCFeats = init_ID; int i = 0; const int limit = min( nPts, count ); int offset = (int)this->options.patchSize/2 + 1; unsigned int imgH = inImg.getHeight(); unsigned int imgW = inImg.getWidth(); while( i < limit ) { const int xBorderInf = (int)floor( points[i].x - options.patchSize/2 ); const int xBorderSup = (int)floor( points[i].x + options.patchSize/2 ); const int yBorderInf = (int)floor( points[i].y - options.patchSize/2 ); const int yBorderSup = (int)floor( points[i].y + options.patchSize/2 ); if( options.patchSize==0 || ( (xBorderSup < (int)imgW) && (xBorderInf > 0) && (yBorderSup < (int)imgH) && (yBorderInf > 0) ) ) { CFeaturePtr ft = CFeature::Create(); ft->type = featKLT; ft->x = points[i].x; // X position ft->y = points[i].y; // Y position ft->track_status = status_TRACKED; // Feature Status ft->response = 0.0; // A value proportional to the quality of the feature (unused yet) ft->ID = nCFeats++; // Feature ID into extraction ft->patchSize = options.patchSize; // The size of the feature patch if( options.patchSize > 0 ) { inImg.extract_patch( ft->patch, round( ft->x ) - offset, round( ft->y ) - offset, options.patchSize, options.patchSize ); // Image patch surronding the feature } feats.push_back( ft ); } // end if else borderFeats++; i++; } // end while #ifdef VERBOSE_TIMING cout << "[KLT] Create output: " << tictac.Tac()*1000.0f << endl; #endif #else THROW_EXCEPTION("The MRPT has been compiled with MRPT_HAS_OPENCV=0 !"); #endif MRPT_END } // end of function