Exemple #1
0
static nd::array function_type_construct(const ndt::type& DYND_UNUSED(dt),
        const nd::array& year, const nd::array& month, const nd::array& day)
{
    // TODO proper buffering
    nd::array year_as_int = year.ucast(ndt::make_type<int32_t>()).eval();
    nd::array month_as_int = month.ucast(ndt::make_type<int32_t>()).eval();
    nd::array day_as_int = day.ucast(ndt::make_type<int32_t>()).eval();
    nd::array result;

    array_iter<1,3> iter(ndt::make_date(), result, year_as_int, month_as_int, day_as_int);
    if (!iter.empty()) {
        datetime::date_ymd ymd;
        do {
            ymd.year = *reinterpret_cast<const int32_t *>(iter.data<1>());
            ymd.month = *reinterpret_cast<const int32_t *>(iter.data<2>());
            ymd.day = *reinterpret_cast<const int32_t *>(iter.data<3>());
            if (!datetime::is_valid_ymd(ymd)) {
                stringstream ss;
                ss << "invalid year/month/day " << ymd.year << "/" << ymd.month << "/" << ymd.day;
                throw runtime_error(ss.str());
            }
            *reinterpret_cast<int32_t *>(iter.data<0>()) = datetime::ymd_to_days(ymd);
        } while (iter.next());
    }

    return result;
}
Exemple #2
0
 inline static bool run(nd::array &a)
 {
   const ndt::type &tp = a.get_type();
   if (a.is_immutable() && tp.get_type_id() == fixed_dim_type_id) {
     // It's immutable and "N * <something>"
     const ndt::type &et = tp.extended<fixed_dim_type>()->get_element_type();
     const fixed_dim_type_arrmeta *md =
         reinterpret_cast<const fixed_dim_type_arrmeta *>(a.get_arrmeta());
     if (et.get_type_id() == type_type_id &&
         md->stride == sizeof(ndt::type)) {
       // It also has the right type and is contiguous,
       // so no modification necessary.
       return true;
     }
   }
   // We have to make a copy, check that it's a 1D array, and that
   // it has the same array kind as the requested type.
   if (tp.get_ndim() == 1) {
     // It's a 1D array
     const ndt::type &et = tp.get_type_at_dimension(NULL, 1).value_type();
     if (et.get_type_id() == type_type_id) {
       // It also has the same array type as requested
       nd::array tmp = nd::empty(a.get_dim_size(), ndt::make_type());
       tmp.vals() = a;
       tmp.flag_as_immutable();
       a.swap(tmp);
       return true;
     }
   }
   // It's not compatible, so return false
   return false;
 }
Exemple #3
0
nd::array dynd::format_json(const nd::array& n)
{
    // Create a UTF-8 string
    nd::array result = nd::empty(ndt::make_string());

    // Initialize the output with some memory
    output_data out;
    out.blockref = reinterpret_cast<const string_type_metadata *>(result.get_ndo_meta())->blockref;
    out.api = get_memory_block_pod_allocator_api(out.blockref);
    out.api->allocate(out.blockref, 1024, 1, &out.out_begin, &out.out_capacity_end);
    out.out_end = out.out_begin;

    if (!n.get_type().is_expression()) {
        ::format_json(out, n.get_type(), n.get_ndo_meta(), n.get_readonly_originptr());
    } else {
        nd::array tmp = n.eval();
        ::format_json(out, tmp.get_type(), tmp.get_ndo_meta(), tmp.get_readonly_originptr());
    }

    // Shrink the memory to fit, and set the pointers in the output
    string_type_data *d = reinterpret_cast<string_type_data *>(result.get_readwrite_originptr());
    d->begin = out.out_begin;
    d->end = out.out_capacity_end;
    out.api->resize(out.blockref, out.out_end - out.out_begin, &d->begin, &d->end);

    // Finalize processing and mark the result as immutable
    result.get_type().extended()->metadata_finalize_buffers(result.get_ndo_meta());
    result.flag_as_immutable();

    return result;
}
/**
 * This function promotes the requested `axis` from
 * a strided dim to a var dim. It modifies `shape`, `coord`,
 * `elem`, and `arr` to point to a new array, and
 * copies the data over.
 */
static void promote_nd_arr_dim(std::vector<intptr_t> &shape,
                               std::vector<afpd_coordentry> &coord,
                               afpd_dtype &elem, nd::array &arr, intptr_t axis,
                               bool copy_final_coord)
{
  vector<afpd_coordentry> newcoord;
  afpd_dtype newelem;
  newelem.dtp = elem.dtp;
  // Convert the axis into a var dim
  shape[axis] = -1;
  // Create the new array
  nd::array newarr = allocate_nd_arr(shape, newcoord, newelem, axis);
  // Copy the data up to, but not including, the current `coord`
  // from the old `arr` to the new one. The recursion stops
  // at `axis`, where all subsequent dimensions are handled by the
  // created kernel.
  ckernel_builder<kernel_request_host> k;
  if (elem.dtp.get_type_id() != uninitialized_type_id) {
    make_assignment_kernel(&k, 0, newcoord[axis].tp, newcoord[axis].arrmeta_ptr,
                           coord[axis].tp, coord[axis].arrmeta_ptr,
                           kernel_request_strided, &eval::default_eval_context);
  }
  copy_to_promoted_nd_arr(shape, newarr.get_readwrite_originptr(), newcoord,
                          newelem, arr.get_readonly_originptr(), coord, elem, k,
                          0, axis, copy_final_coord, true);
  arr.swap(newarr);
  coord.swap(newcoord);
  elem.swap(newelem);
}
Exemple #5
0
void dynd::parse_json(nd::array &out, const char *json_begin,
                      const char *json_end, const eval::eval_context *ectx)
{
    try {
        const char *begin = json_begin, *end = json_end;
        ndt::type tp = out.get_type();
        ::parse_json(tp, out.get_ndo_meta(), out.get_readwrite_originptr(), begin, end, ectx);
        begin = skip_whitespace(begin, end);
        if (begin != end) {
            throw json_parse_error(begin, "unexpected trailing JSON text", tp);
        }
    } catch (const json_parse_error& e) {
        stringstream ss;
        string line_prev, line_cur;
        int line, column;
        get_error_line_column(json_begin, json_end, e.get_position(),
                        line_prev, line_cur, line, column);
        ss << "Error parsing JSON at line " << line << ", column " << column << "\n";
        if (e.get_type().get_type_id() != uninitialized_type_id) {
            ss << "DType: " << e.get_type() << "\n";
        }
        ss << "Message: " << e.get_message() << "\n";
        print_json_parse_error_marker(ss, line_prev, line_cur, line, column);
        throw runtime_error(ss.str());
    }
}
nd::array dynd::format_json(const nd::array &n, bool struct_as_list)
{
  // Create a UTF-8 string
  nd::array result = nd::empty(ndt::string_type::make());

  // Initialize the output with some memory
  output_data out;
  out.out_string.resize(1024);
  out.out_begin = out.out_string.begin();
  out.out_capacity_end = out.out_string.end();
  out.out_end = out.out_begin;
  out.struct_as_list = struct_as_list;

  if (!n.get_type().is_expression()) {
    ::format_json(out, n.get_type(), n.get_arrmeta(), n.get_readonly_originptr());
  } else {
    nd::array tmp = n.eval();
    ::format_json(out, tmp.get_type(), tmp.get_arrmeta(), tmp.get_readonly_originptr());
  }

  // Shrink the memory to fit, and set the pointers in the output
  string *d = reinterpret_cast<string *>(result.get_readwrite_originptr());
  d->assign(out.out_string.data(), out.out_end - out.out_begin);

  // Finalize processing and mark the result as immutable
  result.get_type().extended()->arrmeta_finalize_buffers(result.get_arrmeta());
  result.flag_as_immutable();

  return result;
}
Exemple #7
0
    static void instantiate(const callable_type_data *DYND_UNUSED(self), const callable_type *DYND_UNUSED(self_tp),
                            kernel_builder *ckb, intptr_t ckb_offset, const ndt::type &DYND_UNUSED(dst_tp),
                            const char *dst_arrmeta, intptr_t DYND_UNUSED(nsrc), const ndt::type *src_tp,
                            const char *const *src_arrmeta, kernel_request_t kernreq,
                            const eval::eval_context *DYND_UNUSED(ectx), const nd::array &kwds,
                            const std::map<std::string, ndt::type> &DYND_UNUSED(tp_vars))
    {
      const size_stride_t *dst_size_stride = reinterpret_cast<const size_stride_t *>(dst_arrmeta);
      const size_stride_t *src_size_stride = reinterpret_cast<const size_stride_t *>(src_arrmeta[0]);

      array axes = kwds.p("axes");
      array shape = kwds.p("shape");

      int ndim = static_cast<int>(src_tp[0].get_ndim());

      int rank = static_cast<int>(axes.is_missing() ? ndim : (ndim - 1));
      int istride = static_cast<int>(src_size_stride[ndim - 1].stride / sizeof(src_type));
      int idist = static_cast<int>(src_size_stride[0].stride / sizeof(src_type));
      int ostride = static_cast<int>(dst_size_stride[ndim - 1].stride / sizeof(dst_type));
      int odist = static_cast<int>(dst_size_stride[0].stride / sizeof(dst_type));

      std::vector<int> n(rank), inembed(rank), onembed(rank);
      for (int i = 0, j = axes.is_missing() ? 0 : 1; j < ndim; ++i, ++j) {
        n[i] = static_cast<int>(src_size_stride[j].dim_size);
        inembed[i] = static_cast<int>(src_size_stride[j].dim_size);
        onembed[i] = static_cast<int>(dst_size_stride[j].dim_size);
      }

      int batch = static_cast<int>(axes.is_missing() ? 1 : src_size_stride[0].dim_size);

      self_type *self = self_type::create(ckb, kernreq, ckb_offset);
      cufftPlanMany(&self->plan, rank, n.data(), inembed.data(), istride, idist, onembed.data(), ostride, odist,
                    CUFFT_Z2Z, batch);
    }
Exemple #8
0
 static void set(const ndt::type& paramtype, char *metadata, char *data, const nd::array& value) {
     if (paramtype.get_type_id() == void_pointer_type_id) {
         // TODO: switch to a better mechanism for passing nd::array references
         *reinterpret_cast<const array_preamble **>(data) = value.get_ndo();
     } else {
         typed_data_assign(paramtype, metadata, data, value.get_type(), value.get_ndo_meta(), value.get_ndo()->m_data_pointer);
     }
 }
static nd::array function_ndo_strftime(const nd::array& n, const std::string& format) {
    // TODO: Allow 'format' itself to be an array, with broadcasting, etc.
    if (format.empty()) {
        throw runtime_error("format string for strftime should not be empty");
    }
    return n.replace_dtype(ndt::make_unary_expr(ndt::make_string(), n.get_dtype(),
                    make_strftime_kernelgen(format)));
}
Exemple #10
0
void dynd::typed_data_assign(const ndt::type &dst_tp, const char *dst_arrmeta,
                             char *dst_data, const nd::array &src_arr,
                             const eval::eval_context *ectx)
{
  typed_data_assign(dst_tp, dst_arrmeta, dst_data, src_arr.get_type(),
                    src_arr.get_arrmeta(), src_arr.get_readonly_originptr(),
                    ectx);
}
 const char *get_category_data_from_value(size_t value) const {
     if (value >= get_category_count()) {
         throw std::runtime_error("category value is out of bounds");
     }
     return m_categories.get_readonly_originptr() +
            m_value_to_category_index[value] *
                reinterpret_cast<const strided_dim_type_arrmeta *>(
                    m_categories.get_arrmeta())->stride;
 }
Exemple #12
0
static void linspace_specialization(float start, float stop, intptr_t count, nd::array& result)
{
    intptr_t stride = result.get_strides()[0];
    char *dst = result.get_readwrite_originptr();
    for (intptr_t i = 0; i < count; ++i, dst += stride) {
        double val = ((count - i - 1) * double(start) + i * double(stop)) / double(count - 1);
        *reinterpret_cast<float *>(dst) = static_cast<float>(val);
    }
}
Exemple #13
0
static nd::array function_ndo_replace(const nd::array& n, int32_t year, int32_t month, int32_t day) {
    // TODO: Allow 'year', 'month', and 'day' to be arrays, with broadcasting, etc.
    if (year == numeric_limits<int32_t>::max() && month == numeric_limits<int32_t>::max() &&
            day == numeric_limits<int32_t>::max()) {
        throw std::runtime_error("no parameters provided to date.replace, should provide at least one");
    }
    return n.replace_dtype(ndt::make_unary_expr(ndt::make_date(), n.get_dtype(),
                           make_replace_kernelgen(year, month, day)));
}
Exemple #14
0
nd::array dynd::nd::linspace(const nd::array& start, const nd::array& stop, intptr_t count)
{
    ndt::type dt = promote_types_arithmetic(start.get_dtype(), stop.get_dtype());
    // Make sure it's at least floating point
    if (dt.get_kind() == bool_kind || dt.get_kind() == int_kind || dt.get_kind() == uint_kind) {
        dt = ndt::make_type<double>();
    }
    return linspace(start, stop, count, dt);
}
Exemple #15
0
static void linspace_specialization(double start, double stop, intptr_t count, nd::array& result)
{
    intptr_t stride = result.get_strides()[0];
    char *dst = result.get_readwrite_originptr();
    for (intptr_t i = 0; i < count; ++i, dst += stride) {
        double val = ((count - i - 1) * start + i * stop) / double(count - 1);
        *reinterpret_cast<double *>(dst) = val;
    }
}
Exemple #16
0
static void linspace_specialization(dynd_complex<double> start, dynd_complex<double> stop, intptr_t count, nd::array& result)
{
    intptr_t stride = result.get_strides()[0];
    char *dst = result.get_readwrite_originptr();
    for (intptr_t i = 0; i < count; ++i, dst += stride) {
        dynd_complex<double> val = (double(count - i - 1) * dynd_complex<double>(start) +
                        double(i) * dynd_complex<double>(stop)) / double(count - 1);
        *reinterpret_cast<dynd_complex<double> *>(dst) = val;
    }
}
/**
 * Substitutes the field types for contiguous array of types
 */
static std::vector<ndt::type> substitute_type_array(const nd::array &type_array,
                                                    const std::map<std::string, ndt::type> &typevars, bool concrete) {
  intptr_t field_count = type_array.get_dim_size();
  const ndt::type *field_types = reinterpret_cast<const ndt::type *>(type_array.cdata());
  std::vector<ndt::type> tmp_field_types(field_count);

  for (intptr_t i = 0; i < field_count; ++i) {
    tmp_field_types[i] = ndt::substitute(field_types[i], typevars, concrete);
  }
  return tmp_field_types;
}
Exemple #18
0
nd::array dynd::nd::linspace(const nd::array& start, const nd::array& stop, intptr_t count, const ndt::type& dt)
{
    nd::array start_cleaned = start.ucast(dt).eval();
    nd::array stop_cleaned = stop.ucast(dt).eval();

    if (start_cleaned.is_scalar() && stop_cleaned.is_scalar()) {
        return linspace(dt, start_cleaned.get_readonly_originptr(), stop_cleaned.get_readonly_originptr(), count);
    } else {
        throw runtime_error("dynd::linspace presently only supports scalar parameters");
    }
}
Exemple #19
0
 const char *get_category_data_from_value(uint32_t value) const
 {
   if (value >= get_category_count()) {
     throw std::runtime_error("category value is out of bounds");
   }
   return m_categories.get_readonly_originptr() +
          unchecked_fixed_dim_get<intptr_t>(m_value_to_category_index,
                                            value) *
              reinterpret_cast<const fixed_dim_type_arrmeta *>(
                  m_categories.get_arrmeta())->stride;
 }
uint32_t categorical_type::get_value_from_category(const nd::array& category) const
{
    if (category.get_type() == m_category_tp) {
        // If the type is right, get the category value directly
        return get_value_from_category(category.get_arrmeta(), category.get_readonly_originptr());
    } else {
        // Otherwise convert to the correct type, then get the category value
        nd::array c = nd::empty(m_category_tp);
        c.val_assign(category);
        return get_value_from_category(c.get_arrmeta(), c.get_readonly_originptr());
    }
}
/**
 * Substitutes the field types for contiguous array of types
 */
static nd::array substitute_type_array(const nd::array &type_array, const std::map<std::string, ndt::type> &typevars,
                                       bool concrete)
{
  intptr_t field_count = type_array.get_dim_size();
  const ndt::type *field_types = reinterpret_cast<const ndt::type *>(type_array.cdata());
  nd::array tmp_field_types(nd::empty(field_count, ndt::make_type()));
  ndt::type *ftraw = reinterpret_cast<ndt::type *>(tmp_field_types.data());
  for (intptr_t i = 0; i < field_count; ++i) {
    ftraw[i] = ndt::substitute(field_types[i], typevars, concrete);
  }
  return tmp_field_types;
}
Exemple #22
0
inline string broadcast_error_message(const nd::array& dst, const nd::array& src)
{
    vector<intptr_t> dst_shape = dst.get_shape(), src_shape = src.get_shape();
    stringstream ss;

    ss << "cannot broadcast dynd array with type ";
    ss << src.get_type() << " and shape ";
    print_shape(ss, src_shape);
    ss << " to type " << dst.get_type() << " and shape ";
    print_shape(ss, dst_shape);

    return ss.str();
}
Exemple #23
0
dynd::busdate_type::busdate_type(busdate_roll_t roll, const bool *weekmask, const nd::array& holidays)
    : base_type(busdate_type_id, datetime_kind, 4, 4, type_flag_scalar, 0, 0), m_roll(roll)
{
    memcpy(m_workweek, weekmask, sizeof(m_workweek));
    m_busdays_in_weekmask = 0;
    for (int i = 0; i < 7; ++i) {
        m_busdays_in_weekmask += weekmask[i] ? 1 : 0;
    }
    if (!holidays.is_empty()) {
        nd::array hol = holidays.ucast(ndt::make_date()).eval_immutable();
        // TODO: Make sure hol is contiguous and one-dimensional
        m_holidays = hol;
    }
}
Exemple #24
0
 const arrfunc_type *get_is_avail_arrfunc_type() const
 {
   return m_nafunc.get_type()
       .extended<base_tuple_type>()
       ->get_field_type(0)
       .extended<arrfunc_type>();
 }
Exemple #25
0
 const arrfunc_type *get_assign_na_arrfunc_type() const
 {
   return m_nafunc.get_type()
       .extended<base_tuple_type>()
       ->get_field_type(1)
       .extended<arrfunc_type>();
 }
  static inline nd::array To(const nd::array &a) {
#ifdef DYND_CUDA
    return a.to_host();
#else
    return a;
#endif // DYND_CUDA
  }
ndt::type dynd::ndt::factor_categorical(const nd::array& values)
{
    // Do the factor operation on a concrete version of the values
    // TODO: Some cases where we don't want to do this?
    nd::array values_eval = values.eval();
    array_iter<0, 1> iter(values_eval);

    comparison_ckernel_builder k;
    ::make_comparison_kernel(&k, 0,
                    iter.get_uniform_dtype(), iter.arrmeta(),
                    iter.get_uniform_dtype(), iter.arrmeta(),
                    comparison_type_sorting_less, &eval::default_eval_context);

    cmp less(k.get_function(), k.get());
    set<const char *, cmp> uniques(less);

    if (!iter.empty()) {
        do {
            if (uniques.find(iter.data()) == uniques.end()) {
                uniques.insert(iter.data());
            }
        } while (iter.next());
    }

    // Copy the values (now sorted and unique) into a new nd::array
    nd::array categories = make_sorted_categories(uniques,
                    iter.get_uniform_dtype(), iter.arrmeta());

    return ndt::type(new categorical_type(categories, true), false);
}
Exemple #28
0
uint32_t ndt::categorical_type::get_value_from_category(const nd::array &category) const
{
  nd::array c;
  if (category.get_type() == m_category_tp) {
    // If the type is right, get the category value directly
    c = category;
  }
  else {
    // Otherwise convert to the correct type, then get the category value
    c = nd::empty(m_category_tp);
    c.assign(category);
  }

  intptr_t i = nd::binary_search(m_categories, c).as<intptr_t>();
  if (i < 0) {
    stringstream ss;
    ss << "Unrecognized category value ";
    m_category_tp.print_data(ss, c.get()->metadata(), c.data());
    ss << " assigning to dynd type " << type(this, true);
    throw std::runtime_error(ss.str());
  }
  else {
    return (uint32_t)unchecked_fixed_dim_get<intptr_t>(m_category_index_to_value, i);
  }
}
Exemple #29
0
ndt::type ndt::factor_categorical(const nd::array &values)
{
  // Do the factor operation on a concrete version of the values
  // TODO: Some cases where we don't want to do this?
  nd::array values_eval = values.eval();

  intptr_t dim_size, stride;
  type el_tp;
  const char *el_arrmeta;
  values_eval.get_type().get_as_strided(values_eval.get_arrmeta(), &dim_size,
                                        &stride, &el_tp, &el_arrmeta);

  ckernel_builder<kernel_request_host> k;
  ::make_comparison_kernel(&k, 0, el_tp, el_arrmeta, el_tp, el_arrmeta,
                           comparison_type_sorting_less,
                           &eval::default_eval_context);
  expr_single_t fn = k.get()->get_function<expr_single_t>();

  cmp less(fn, k.get());
  set<const char *, cmp> uniques(less);

  for (intptr_t i = 0; i < dim_size; ++i) {
    const char *data = values_eval.get_readonly_originptr() + i * stride;
    if (uniques.find(data) == uniques.end()) {
      uniques.insert(data);
    }
  }

  // Copy the values (now sorted and unique) into a new nd::array
  nd::array categories = make_sorted_categories(uniques, el_tp, el_arrmeta);

  return type(new categorical_type(categories, true), false);
}
Exemple #30
0
ndt::type ndt::factor_categorical(const nd::array &values)
{
  // Do the factor operation on a concrete version of the values
  // TODO: Some cases where we don't want to do this?
  nd::array values_eval = values.eval();

  intptr_t dim_size, stride;
  type el_tp;
  const char *el_arrmeta;
  values_eval.get_type().get_as_strided(values_eval.get()->metadata(), &dim_size, &stride, &el_tp, &el_arrmeta);

  nd::kernel_builder k;
  kernel_single_t fn = k.get()->get_function<kernel_single_t>();

  cmp less(fn, k.get());
  set<const char *, cmp> uniques(less);

  for (intptr_t i = 0; i < dim_size; ++i) {
    const char *data = values_eval.cdata() + i * stride;
    if (uniques.find(data) == uniques.end()) {
      uniques.insert(data);
    }
  }

  // Copy the values (now sorted and unique) into a new nd::array
  nd::array categories = make_sorted_categories(uniques, el_tp, el_arrmeta);

  return type(new categorical_type(categories, true), false);
}