// create result mesh umdraw::UMMeshPtr create_result_mesh(DevidedMesh* divided_mesh, unsigned int level) { if (!divided_mesh) return umdraw::UMMeshPtr(); // result mesh umdraw::UMMeshPtr result = std::make_shared<umdraw::UMMesh>(); const std::vector<UMSubdivVertex>& vertex = divided_mesh->GetVertices(); const int veretx_size = static_cast<int>(vertex.size()); const unsigned int* face = divided_mesh->GetPatchTables()->GetFaceVertices(); const int face_size = divided_mesh->GetPatchTables()->GetNumFaces(); // important: base vertex index changed by level! const unsigned int base_vertex_index = divided_mesh->GetSubdivisionTables()->GetNumVerticesTotal(level - 1); OpenSubdiv::OsdCpuComputeContext* context = OpenSubdiv::OsdCpuComputeContext::Create(reinterpret_cast<const FarMesh<OsdVertex>* >(divided_mesh)); OpenSubdiv::OsdCpuComputeController* controller = new OpenSubdiv::OsdCpuComputeController(); OpenSubdiv::OsdCpuVertexBuffer *vertex_buffer = OpenSubdiv::OsdCpuVertexBuffer::Create(3, divided_mesh->GetNumVertices()); vertex_buffer->UpdateData(&(vertex[0].pos[0]), 0, divided_mesh->GetNumVertices()); // vertex will replace subdivided verts. controller->Refine(context, divided_mesh->GetKernelBatches(), vertex_buffer); // assing refined verts result->mutable_vertex_list().resize(veretx_size); float * refined_vertex = vertex_buffer->BindCpuBuffer() + (3 * base_vertex_index); for (size_t i = 0; i < veretx_size; ++i) { result->mutable_vertex_list().at(i) = UMVec3d( refined_vertex[i * 3 + 0], refined_vertex[i * 3 + 1], refined_vertex[i * 3 + 2]); } // assign faces as triangle const int triangle_count = face_size * 2; result->mutable_face_list().resize(triangle_count); for (int i = 0; i < triangle_count; ++i) { unsigned int f0 = face[ i * 4 + 0 ] - base_vertex_index; unsigned int f1 = face[ i * 4 + 1 ] - base_vertex_index; unsigned int f2 = face[ i * 4 + 2 ] - base_vertex_index; unsigned int f3 = face[ i * 4 + 3 ] - base_vertex_index; result->mutable_face_list().at(i * 2 + 0) = UMVec3i(f0, f1, f2); result->mutable_face_list().at(i * 2 + 1) = UMVec3i(f0, f2, f3); } // TODO: calc normals by subdiv result->create_normals(true); result->mutable_material_list().push_back(mesh_->mutable_material_list().at(0)); result->mutable_material_list().at(0)->set_polygon_count(triangle_count); result->update_box(); delete vertex_buffer; delete context; delete controller; return result; }
// ==================================== // Compute // ==================================== // // Description: // This method computes the value of the given output plug based // on the values of the input attributes. // // Arguments: // plug - the plug to compute // data - object that provides access to the attributes for this node // MStatus OsdPolySmooth::compute( const MPlug& plug, MDataBlock& data ) { MStatus returnStatus; // Check which output attribute we have been asked to compute. If this // node doesn't know how to compute it, we must return // MS::kUnknownParameter. // if( plug == a_output ) { bool createdSubdMesh = false; int subdivisionLevel = data.inputValue(a_subdivisionLevels).asInt(); short stateH = data.inputValue(state).asShort(); if ((subdivisionLevel > 0) and (stateH !=1)) { // == Retrieve input mesh ==================================== // Get attr values MObject inMeshObj = data.inputValue(a_inputPolymesh).asMesh(); short vertBoundaryMethod = data.inputValue(a_vertBoundaryMethod).asShort(); short fvarBoundaryMethod = data.inputValue(a_fvarBoundaryMethod).asShort(); bool fvarPropCorners = data.inputValue(a_fvarPropagateCorners).asBool(); bool smoothTriangles = data.inputValue(a_smoothTriangles).asBool(); short creaseMethodVal = data.inputValue(a_creaseMethod).asShort(); // Convert attr values to OSD enums HMesh::InterpolateBoundaryMethod vertInterpBoundaryMethod = ConvertMayaBoundaryMethodShortToOsdInterpolateBoundaryMethod(vertBoundaryMethod); HMesh::InterpolateBoundaryMethod fvarInterpBoundaryMethod = ConvertMayaBoundaryMethodShortToOsdInterpolateBoundaryMethod(fvarBoundaryMethod); HCatmark::CreaseSubdivision creaseMethod = (creaseMethodVal == k_creaseMethod_chaikin) ? HCatmark::k_CreaseChaikin : HCatmark::k_CreaseNormal; HCatmark::TriangleSubdivision triangleSubdivision = smoothTriangles ? HCatmark::k_New : HCatmark::k_Normal; // == Get Mesh Functions and Iterators ========================== MFnMeshData inMeshDat(inMeshObj); MFnMesh inMeshFn(inMeshObj, &returnStatus); MCHECKERR(returnStatus, "ERROR getting inMeshFn\n"); MItMeshPolygon inMeshItPolygon(inMeshObj, &returnStatus); MCHECKERR(returnStatus, "ERROR getting inMeshItPolygon\n"); // == Convert MFnMesh to OpenSubdiv ============================= // Create the hbrMesh // Note: These fvar values only need to be kept alive through the life of the farMesh std::vector<int> fvarIndices; std::vector<int> fvarWidths; HMesh *hbrMesh = createOsdHbrFromPoly( inMeshFn, inMeshItPolygon, fvarIndices, fvarWidths); assert(hbrMesh); // Create the farMesh if successfully created the hbrMesh if (hbrMesh) { // Set Boundary methods and other hbr paramters hbrMesh->SetInterpolateBoundaryMethod( vertInterpBoundaryMethod ); hbrMesh->SetFVarInterpolateBoundaryMethod( fvarInterpBoundaryMethod ); hbrMesh->SetFVarPropagateCorners(fvarPropCorners); hbrMesh->GetSubdivision()->SetCreaseSubdivisionMethod(creaseMethod); // Set HBR Catmark Subdivision parameters HCatmark *catmarkSubdivision = dynamic_cast<HCatmark *>(hbrMesh->GetSubdivision()); if (catmarkSubdivision) { catmarkSubdivision->SetTriangleSubdivisionMethod(triangleSubdivision); } // Finalize subd calculations -- apply boundary interpolation rules and resolves singular verts, etc. // NOTE: This HAS to be called after all HBR parameters are set hbrMesh->Finish(); int ncoarseverts = hbrMesh->GetNumVertices(); // Create a FarMesh from the HBR mesh and pass into // It will be owned by the OsdMesh and deleted in the ~OsdMesh() FMeshFactory meshFactory(hbrMesh, subdivisionLevel, false); FMesh *farMesh = meshFactory.Create((hbrMesh->GetTotalFVarWidth() > 0)); // == Setup OSD Data Structures ========================= int numVertexElements = 3; // only track vertex positions int numVaryingElements = 0; // XXX Future: Revise to include varying ColorSets int numVertices = inMeshFn.numVertices(); int numFarVerts = farMesh->GetNumVertices(); static OpenSubdiv::OsdCpuComputeController computeController = OpenSubdiv::OsdCpuComputeController(); OpenSubdiv::OsdCpuComputeController::ComputeContext *computeContext = OpenSubdiv::OsdCpuComputeController::ComputeContext::Create(farMesh); OpenSubdiv::OsdCpuVertexBuffer *vertexBuffer = OpenSubdiv::OsdCpuVertexBuffer::Create(numVertexElements, numFarVerts ); OpenSubdiv::OsdCpuVertexBuffer *varyingBuffer = (numVaryingElements) ? OpenSubdiv::OsdCpuVertexBuffer::Create(numVaryingElements, numFarVerts) : NULL; // == UPDATE VERTICES (can be done after farMesh generated from topology) == float const * vertex3fArray = inMeshFn.getRawPoints(&returnStatus); vertexBuffer->UpdateData(vertex3fArray, 0, numVertices ); // Hbr dupes singular vertices during Mesh::Finish() - we need // to duplicate their positions in the vertex buffer. if (ncoarseverts > numVertices) { MIntArray polyverts; for (int i=numVertices; i<ncoarseverts; ++i) { HVertex const * v = hbrMesh->GetVertex(i); HFace const * f = v->GetIncidentEdge()->GetFace(); int vidx = -1; for (int j=0; j<f->GetNumVertices(); ++j) { if (f->GetVertex(j)==v) { vidx = j; break; } } assert(vidx>-1); inMeshFn.getPolygonVertices(f->GetID(), polyverts); int vert = polyverts[vidx]; vertexBuffer->UpdateData(&vertex3fArray[0]+vert*numVertexElements, i, 1); } } // == Delete HBR // Can now delete the hbrMesh as we will only be referencing the farMesh from this point on delete hbrMesh; hbrMesh = NULL; // == Subdivide OpenSubdiv mesh ========================== computeController.Refine(computeContext, farMesh->GetKernelBatches(), vertexBuffer, varyingBuffer); computeController.Synchronize(); // == Convert subdivided OpenSubdiv mesh to MFnMesh Data outputMesh ============= // Create New Mesh Data Object MFnMeshData newMeshData; MObject newMeshDataObj = newMeshData.create(&returnStatus); MCHECKERR(returnStatus, "ERROR creating outputData"); // Create out mesh returnStatus = convertOsdFarToMayaMeshData(farMesh, vertexBuffer, subdivisionLevel, inMeshFn, newMeshDataObj); MCHECKERR(returnStatus, "ERROR convertOsdFarToMayaMesh"); // Propagate objectGroups from inMesh to outMesh (for per-facet shading, etc) returnStatus = createSmoothMesh_objectGroups(inMeshDat, subdivisionLevel, newMeshData ); // Write to output plug MDataHandle outMeshH = data.outputValue(a_output, &returnStatus); MCHECKERR(returnStatus, "ERROR getting polygon data handle\n"); outMeshH.set(newMeshDataObj); // == Cleanup OSD ============================================ // REVISIT: Re-add these deletes delete(vertexBuffer); delete(varyingBuffer); delete(computeContext); delete(farMesh); // note that the subd mesh was created (see the section below if !createdSubdMesh) createdSubdMesh = true; } } // Pass-through inMesh to outMesh if not created the subd mesh if (!createdSubdMesh) { MDataHandle outMeshH = data.outputValue(a_output, &returnStatus); returnStatus = outMeshH.copy(data.outputValue(a_inputPolymesh, &returnStatus)); MCHECKERR(returnStatus, "ERROR getting polygon data handle\n"); } // Clean up Maya Plugs data.setClean(plug); } else { // Unhandled parameter in this compute function, so return MS::kUnknownParameter // so it is handled in a parent compute() function. return MS::kUnknownParameter; } return MS::kSuccess; }