// redraw the window void display(void) { mgr->redraw(); }
// react to mouse motions with pressed buttons void motion(int x, int y) { mgr->mouseMove(x, y); glutPostRedisplay(); }
// Initialize GLUT & OpenSG and set up the scene int doMain(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // the connection between GLUT and OpenSG OSG::GLUTWindowUnrecPtr gwin= OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->setSize( 800, 800 ); gwin->init(); // Create the shader material OSG::ChunkMaterialUnrecPtr cmat = OSG::ChunkMaterial::create(); // Read the image for the normal texture OSG::ImageUnrecPtr earth_map_img = OSG::Image::create(); if(!earth_map_img->read("Earth.jpg")) { fprintf(stderr, "Couldn't read texture 'Earth.jpg'\n"); return 1; } OSG::TextureObjChunkUnrecPtr tex_earth = OSG::TextureObjChunk::create(); OSG::TextureEnvChunkUnrecPtr tex_earth_env = OSG::TextureEnvChunk::create(); tex_earth->setImage(earth_map_img); tex_earth->setMinFilter(GL_LINEAR_MIPMAP_LINEAR); tex_earth->setMagFilter(GL_LINEAR); tex_earth->setWrapS(GL_REPEAT); tex_earth->setWrapT(GL_REPEAT); tex_earth_env->setEnvMode(GL_MODULATE); // Read the image for the normal texture OSG::ImageUnrecPtr earth_night_map_img = OSG::Image::create(); if(!earth_night_map_img->read("EarthNight.jpg")) { fprintf(stderr, "Couldn't read texture 'EarthNight.jpg'\n"); return 1; } OSG::TextureObjChunkUnrecPtr tex_earth_night = OSG::TextureObjChunk::create(); OSG::TextureEnvChunkUnrecPtr tex_earth_night_env = OSG::TextureEnvChunk::create(); tex_earth_night->setImage(earth_night_map_img); tex_earth_night->setMinFilter(GL_LINEAR_MIPMAP_LINEAR); tex_earth_night->setMagFilter(GL_LINEAR); tex_earth_night->setWrapS(GL_REPEAT); tex_earth_night->setWrapT(GL_REPEAT); tex_earth_night_env->setEnvMode(GL_MODULATE); // Read the image for the normal texture OSG::ImageUnrecPtr earth_clouds_map_img = OSG::Image::create(); if(!earth_clouds_map_img->read("EarthClouds.jpg")) { fprintf(stderr, "Couldn't read texture 'EarthClouds.jpg'\n"); return 1; } OSG::TextureObjChunkUnrecPtr tex_earth_clouds = OSG::TextureObjChunk::create(); OSG::TextureEnvChunkUnrecPtr tex_earth_clouds_env = OSG::TextureEnvChunk::create(); tex_earth_clouds->setImage(earth_clouds_map_img); tex_earth_clouds->setMinFilter(GL_LINEAR_MIPMAP_LINEAR); tex_earth_clouds->setMagFilter(GL_LINEAR); tex_earth_clouds->setWrapS(GL_REPEAT); tex_earth_clouds->setWrapT(GL_REPEAT); tex_earth_clouds_env->setEnvMode(GL_MODULATE); _shl = OSG::SHLChunk::create(); if(!_shl->readVertexProgram("Earth.vp")) fprintf(stderr, "Couldn't read vertex program 'Earth.vp'\n"); if(!_shl->readFragmentProgram("Earth.fp")) fprintf(stderr, "Couldn't read fragment program 'Earth.fp'\n"); _shl->addUniformVariable("EarthDay", 0); _shl->addUniformVariable("EarthNight", 1); _shl->addUniformVariable("EarthCloudGloss", 2); _shl->addUniformVariable("season", 0.0f); _shl->addUniformVariable("cos_time_0_2PI", -0.406652f); _shl->addUniformVariable("sin_time_0_2PI", -0.913583f); // _shl->setUniformParameter("foo", -0.913583f); cmat->addChunk(_shl); cmat->addChunk(tex_earth); cmat->addChunk(tex_earth_env); cmat->addChunk(tex_earth_night); cmat->addChunk(tex_earth_night_env); cmat->addChunk(tex_earth_clouds); cmat->addChunk(tex_earth_clouds_env); // create root node _scene = OSG::Node::create(); OSG::GeometryUnrecPtr geo = OSG::makeLatLongSphereGeo (100, 100, 1.0); geo->setMaterial(cmat); OSG::NodeUnrecPtr torus = OSG::Node::create(); torus->setCore(geo); // add torus to scene OSG::GroupUnrecPtr group = OSG::Group::create(); _scene->setCore(group); _scene->addChild(torus); // create the SimpleSceneManager helper _mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage _mgr->setWindow(gwin ); _mgr->setRoot(_scene); // show the whole scene _mgr->showAll(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // The scene group OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr g = OSG::Group::create(); scene->setCore(g); if(argc < 2) { FWARNING(("No file given!\n")); FWARNING(("Supported file formats:\n")); std::list<const char*> suffixes; OSG::SceneFileHandler::the()->getSuffixList(suffixes); for(std::list<const char*>::iterator it = suffixes.begin(); it != suffixes.end(); ++it) { FWARNING(("%s\n", *it)); } fileroot = OSG::makeTorus(.5, 2, 16, 16); } else { fileroot = OSG::SceneFileHandler::the()->read(argv[1]); /* All scene file loading is handled via the SceneFileHandler. */ } scene->addChild(fileroot); // Create a small geometry to show the ray and what was hit // Contains a line and a single triangle. // The line shows the ray, the triangle whatever was hit. OSG::SimpleMaterialRefPtr red = OSG::SimpleMaterial::create(); red->setDiffuse (OSG::Color3f( 1,0,0 )); red->setTransparency(0.5); red->setLit (false); isectPoints = OSG::GeoPnt3fProperty::create(); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); isectPoints->addValue(OSG::Pnt3f(0,0,0)); OSG::GeoUInt32PropertyRefPtr index = OSG::GeoUInt32Property::create(); index->addValue(0); index->addValue(1); index->addValue(2); index->addValue(3); index->addValue(4); OSG::GeoUInt32PropertyRefPtr lens = OSG::GeoUInt32Property::create(); lens->addValue(2); lens->addValue(3); OSG::GeoUInt8PropertyRefPtr type = OSG::GeoUInt8Property::create(); type->addValue(GL_LINES); type->addValue(GL_TRIANGLES); testgeocore = OSG::Geometry::create(); testgeocore->setPositions(isectPoints); testgeocore->setIndices(index); testgeocore->setLengths(lens); testgeocore->setTypes(type); testgeocore->setMaterial(red); OSG::NodeRefPtr testgeo = OSG::Node::create(); testgeo->setCore(testgeocore); scene->addChild(testgeo); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // show the whole scene mgr->showAll(); mgr->getCamera()->setNear(mgr->getCamera()->getNear() / 10); // Show the bounding volumes? Not for now mgr->getRenderAction()->setVolumeDrawing(false); _idbuff = new IDbuffer(); _idbuff->setCamera(mgr->getCamera()); _idbuff->setRoot(scene); } // GLUT main loop glutMainLoop(); return 0; }
// // react to keys // void keyboard(unsigned char k, int, int) { static OSG::Real32 val0 = 0.f; static OSG::Real32 val1 = 0.f; static OSG::Real32 x1 = 0.f; static OSG::Real32 y1 = 0.f; static OSG::Real32 z1 = 0.f; static OSG::Real32 x2 = 0.f; static OSG::Real32 y2 = 0.f; static OSG::Real32 z2 = 0.f; switch(k) { case ' ': { OSG::SceneGraphPrinter sgp(mgr->getRoot()); sgp.printDownTree(std::cout); } break; case '1': // enable/disable clip plane 0 { vecClipPlaneData[0]._enabled = !vecClipPlaneData[0]._enabled; updateClipPlanes(vecClipPlaneData); } break; case '2': // enable/disable clip plane 1 { vecClipPlaneData[1]._enabled = !vecClipPlaneData[1]._enabled; updateClipPlanes(vecClipPlaneData); } break; case '3': // enable/disable box geometry { if(vecGeometries[0] == NULL) { OSG::Matrix matrix; OSG::Vec3f v(10.f, 0.f, 15.f); matrix.setTranslate(v); OSG::GeometryRefPtr boxGeo = OSG::makeBoxGeo(15, 15, 15, 1, 1, 1); OSG::NodeRefPtr boxTree = buildGeoTree(scene, boxGeo, matrix); vecGeometries[0] = boxTree; scene->addChild(boxTree); } else { scene->subChild(vecGeometries[0]); vecGeometries[0] = NULL; } // mgr->showAll(); // mgr->redraw(); } break; case '4': // enable/disable torus geometry { if (vecGeometries[1] == NULL) { OSG::Matrix matrix; OSG::Vec3f v( 0.f, 10.f, 0.f); matrix.setTranslate(v); OSG::GeometryRefPtr torusGeo = OSG::makeTorusGeo(2, 6, 8, 16); OSG::NodeRefPtr torusTree = buildGeoTree(scene, torusGeo, matrix); vecGeometries[1] = torusTree; scene->addChild(torusTree); } else { scene->subChild(vecGeometries[1]); vecGeometries[1] = NULL; } // mgr->showAll(); // mgr->redraw(); } break; case '5': { OSG::SceneFileHandler::the()->write(mgr->getRoot(), "clipplane_model.osb", true); } break; case 'n': // move clip plane 0 opposite to the normal direction of the plane { val0 -= 0.2; vecClipPlaneData[0]._equation[3] = val0; updateClipPlanes(vecClipPlaneData); } break; case 'm': // move clip plane 0 in the normal direction of the plane { val0 += 0.2; vecClipPlaneData[0]._equation[3] = val0; updateClipPlanes(vecClipPlaneData); } break; case ',': // move clip plane 1 opposite to the normal direction of the plane { val1 -= 0.2; vecClipPlaneData[1]._equation[3] = val1; updateClipPlanes(vecClipPlaneData); } break; case '.': // move clip plane 1 in the normal direction of the plane { val1 += 0.2; vecClipPlaneData[1]._equation[3] = val1; updateClipPlanes(vecClipPlaneData); } break; case 'q': // move box in -x direction { x1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'w': // move box in +x direction { x1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'a': // move box in -y direction { y1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 's': // move box in +y direction { y1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'y': // move box in -z direction { z1 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'x': // move box in +z direction { z1 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v(10.f + x1, 0.f + y1, 15.f + z1); matrix.setTranslate(v); if(vecGeometries[0] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[0]->getCore()); transformCore->setMatrix(matrix); } } break; case 'e': // move torus in -x direction { x2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'r': // move torus in +x direction { x2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'd': // move torus in -y direction { y2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'f': // move torus in +y direction { y2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'c': // move torus in -z direction { z2 -= 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 'v': // move torus in +z direction { z2 += 0.2f; OSG::Matrix matrix; OSG::Vec3f v( 0.f + x2, 10.f + y2, 0.f + z2); matrix.setTranslate(v); if(vecGeometries[1] != NULL) { OSG::TransformRefPtr transformCore = dynamic_cast<OSG::Transform *>(vecGeometries[1]->getCore()); transformCore->setMatrix(matrix); } } break; case 27: { cleanup(); OSG::osgExit(); exit(0); } break; } glutPostRedisplay(); }
int doMain(int argc, char **argv) { // // This might be necessary depending on the // used platform to ensure that the corresponding // libraries get loaded. // OSG::preloadSharedObject("OSGFileIO"); OSG::preloadSharedObject("OSGImageFileIO"); OSG::preloadSharedObject("OSGContribPLY"); OSG::osgInit(argc,argv); // GLUT init glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_STENCIL | GLUT_DOUBLE); glutCreateWindow("OpenSG"); glutReshapeFunc(reshape); glutDisplayFunc(display); glutIdleFunc(display); glutMouseFunc(mouse); glutMotionFunc(motion); glutKeyboardFunc(keyboard); OSG::PassiveWindowRefPtr pwin=OSG::PassiveWindow::create(); pwin->init(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // create the window and initial camera/viewport mgr->setWindow(pwin); // // for storing clipplane beacon we use a container // collection attachment which we attach to the scene // node. Otherwise the scene could not be saved correctly, // as the beacons would be lost. // container = OSG::ContainerCollection::create(); // // Implementation details: // For each clip plane we provide a ClipPlaneChunk, the plane geometry, // the plane transform core and at least a plane color conveniently in // a vector of type VecClipPlaneDetailsT. The next function call // initializes this data structure. // createClipPlaneDetails(); // // The scene // scene = OSG::Node::create(); scene->setCore(OSG::Group::create()); scene->addAttachment(container); // // A place for accessing the box and torus. // vecGeometries.push_back(NULL); vecGeometries.push_back(NULL); // // Build concrete clipping planes and update the clip plane details. // ClipPlaneData data1; ClipPlaneData data2; data1._equation = OSG::Vec4f(0,0,1,0); data1._enabled = true; data2._equation = OSG::Vec4f(1,0,0,0); data2._enabled = false; vecClipPlaneData.push_back(data1); vecClipPlaneData.push_back(data2); updateClipPlanes(vecClipPlaneData); keyboard('3',-1,-1); keyboard('4',-1,-1); // tell the manager what to manage mgr->setRoot(scene); // show the whole scene mgr->showAll(); mgr->redraw(); pwin->dumpExtensions(); return 0; }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { printf("Usage: testCGShader <filename.vp> <filename.fp>\n"); if( argc < 3 ) return 0; // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // the connection between GLUT and OpenSG OSG::GLUTWindowUnrecPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->setSize( 800, 800 ); gwin->init(); // Create the shader material OSG::ChunkMaterialUnrecPtr cmat = OSG::ChunkMaterial::create(); OSG::MaterialChunkUnrecPtr matc = OSG::MaterialChunk::create(); matc->setAmbient(OSG::Color4f(0.1, 0.1, 0.1, 1.0)); matc->setDiffuse(OSG::Color4f(0.3, 0.3, 0.3, 1.0)); matc->setSpecular(OSG::Color4f(0.8, 0.8, 0.8, 1.0)); matc->setShininess(100); matc->setLit(true); OSG::SHLChunkUnrecPtr shl = OSG::SHLChunk::create(); shl->readVertexProgram(argv[1]); shl->readFragmentProgram(argv[2]); cmat->addChunk(shl); // create root node _scene = OSG::Node::create(); // create torus OSG::GeometryUnrecPtr geo = OSG::makeTorusGeo(.8, 1.8, 128, 128); geo->setMaterial(cmat); OSG::NodeUnrecPtr torus = OSG::Node::create(); torus->setCore(geo); // add torus to scene OSG::GroupUnrecPtr group = OSG::Group::create(); _scene->setCore(group); _scene->addChild(torus); // create the SimpleSceneManager helper _mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage _mgr->setWindow(gwin ); _mgr->setRoot(_scene); /* // create point headlight _mgr->turnHeadlightOff(); NodePtr headlight = _mgr->getHighlight(); PointLightPtr light = PointLight::create(); beginEditCP(light); light->setAmbient (.3, .3, .3, 1); light->setDiffuse ( 1, 1, 1, 1); light->setSpecular ( 1, 1, 1, 1); light->setBeacon (_mgr->getCamera()->getBeacon()); endEditCP(light); beginEditCP(_scene); _scene->setCore(light); endEditCP(_scene); */ // show the whole scene _mgr->showAll(); // GLUT main loop glutMainLoop(); return 0; }
// // Initialize GLUT & OpenSG and set up the scene // int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); mgr->setWindow(gwin); // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene OSG::NodeRefPtr scene = OSG::Node::create(); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::Node::create(); OSG::GeometryRefPtr cylgeo = OSG::makeCylinderGeo( 1.4f, .3f, 24, true, true, true ); cyl->setCore(cylgeo); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::Node::create(); OSG::GeometryRefPtr torusgeo = OSG::makeTorusGeo( .2f, 1, 24, 36 ); torus->setCore(torusgeo); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // // create the shader program // OSG::ShaderProgramChunkRefPtr prog_chunk = OSG::ShaderProgramChunk::create(); OSG::ShaderProgramRefPtr vertShader = OSG::ShaderProgram::createVertexShader(); OSG::ShaderProgramRefPtr fragShader = OSG::ShaderProgram::createFragmentShader(); vertShader->setProgram(get_vp_program()); fragShader->setProgram(get_fp_program()); // // binding the shader storage block to a buffer binding point can be performed // either by calling the shaders's addShaderStorageBlock method or by // adding a 'buffer block' variable to a ShaderProgramVariableChunk. // In the following we use both variants for illustration. // fragShader->addShaderStorageBlock("ExampleBlock", 1); // block binding point prog_chunk->addShader(vertShader); prog_chunk->addShader(fragShader); // // create shader storage buffer object for block 'ExampleBlock' // OSG::MultiPropertySSBOChunkRefPtr ssbo_example_block = create_example_block_state(); OSG::PolygonChunkRefPtr polygon_chunk = OSG::PolygonChunk::create(); polygon_chunk->setFrontMode(GL_FILL); polygon_chunk->setBackMode(GL_FILL); polygon_chunk->setCullFace(GL_NONE); OSG::DepthChunkRefPtr depth_chunk = OSG::DepthChunk::create(); depth_chunk->setEnable(true); OSG::ChunkMaterialRefPtr prog_state = OSG::ChunkMaterial::create(); prog_state->addChunk(ssbo_example_block, 1); // buffer binding point 1 prog_state->addChunk(prog_chunk); prog_state->addChunk(polygon_chunk); prog_state->addChunk(depth_chunk); OSG::MaterialChunkOverrideGroupRefPtr mgrp = OSG::MaterialChunkOverrideGroup::create(); mgrp->setMaterial(prog_state); scene->setCore(mgrp); OSG::commitChanges(); mgr->setRoot(scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// react to keys void keyboard(unsigned char k, int , int ) { switch (k) { case 27: { mgr = NULL; delete gTextStuff; OSG::commitChanges(); OSG::osgExit(); exit(0); } break; case '-': gTextStuff->incFaceSize(false); break; case '=': gTextStuff->incFaceSize(true); break; case '[': gTextStuff->incTextureSize(false); break; case ']': gTextStuff->incTextureSize(true); break; case '<': gTextStuff->incMaxExtent(false); break; case '>': gTextStuff->incMaxExtent(true); break; case ',': gTextStuff->incLineSpacing(false); break; case '.': gTextStuff->incLineSpacing(true); break; case '{': gTextStuff->incGeoScale(false); break; case '}': gTextStuff->incGeoScale(true); break; case 'f': gTextStuff->goToNextFamily(); break; case 'd': OSG::SceneFileHandler::the()->write(mgr->getRoot(),"dump_scene.osb"); std::cout << "Wrote out scene: dump_scene.osb" << std::endl; break; case 't': mgr->setNavigationMode(OSG::Navigator::TRACKBALL); break; case 'l': mgr->setHeadlight(!mgr->getHeadlightState()); std::cout << "Set headlight: " << mgr->getHeadlightState() << std::endl; break; case 'z': glPolygonMode( GL_FRONT_AND_BACK, GL_POINT); std::cerr << "PolygonMode: Point." << std::endl; break; case 'x': glPolygonMode( GL_FRONT_AND_BACK, GL_LINE); std::cerr << "PolygonMode: Line." << std::endl; break; case 'c': glPolygonMode( GL_FRONT_AND_BACK, GL_FILL); std::cerr << "PolygonMode: Fill." << std::endl; break; case 'h': std::cerr << "Keys:" << std::endl; std::cerr << "- =: change face size" << std::endl; std::cerr << "{ }: change geo scale" << std::endl; std::cerr << "[ ]: change texture size" << std::endl; std::cerr << "< >: change max extend for 1st line" << std::endl; std::cerr << ", .: change line spacing" << std::endl; std::cerr << "f : next font family" << std::endl; std::cerr << "d : dump scene" << std::endl; } }
// redraw the window void display(void) { // render scene _mgr->redraw(); }
// redraw the window void display(void) { mgr->idle(); mgr->redraw(); }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // Args given? if(argc > 1) { if(sscanf(argv[1], "%u", &nlights) != 1) { FWARNING(("Number of lights '%s' not understood.\n", argv[1])); nlights = 3; } } // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); /* A Light defines a source of light in the scene. Generally, two types of information are of interest: The position of the light source (geometry), and what elements of the scene are lit (semantics). Using the position of the light in the graph for geometry allows moving the Light just like any other node, by putting it below a OSG::Transform Node and changing the transformation. This consistency also simplifies attaching Lights to moving parts in the scene: just put them below the same Transform and they will move with the object. The semantic interpretation also makes sense, it lets you restrict the influence area of the light to a subgraph of the scene. This can be used for efficiency, as every active light increases the amount of calculations necessary per vertex, even if the light doesn't influence the vertex, because it is too far away. It can also be used to overcome the restrictions on the number of lights. OpenSG currently only allows 8 concurrently active lights. It is also not difficult to imagine situations where both interpretations are necessary at the same time. Take for example a car driving through a night scene. You'd want to headlights to be fixed to the car and move together with it. But at the same time they should light the houses you're driving by, and not the mountains in the distance. Thus there should be a way to do both at the same time. OpenSG solves this by splitting the two tasks to two Nodes. The Light's Node is for the sematntic part, it defines which object are lit by the Light. FOr the geometrc part the Light keeps a SFNodePtr to a different Node, the so called beacon. The local coordinate system of the beacon provides the reference coordinate system for the light's position. Thus the typical setup of an OpenSG scenegraph starts with a set of lights, which light the whole scene, followed by the actual geometry. Tip: Using the beacon of the camera (see \ref PageSystemWindowCamera) as the beacon of a light source creates a headlight. Every light is closely related to OpenGL's light specification. It has a diffuse, specular and ambient color. Additionally it can be switched on and off using the on field. */ // Create the scene OSG::NodeRefPtr scene = OSG::Node::create(); OSG::GroupRefPtr group = OSG::Group::create(); scene->setCore(group); // create the scene to be lit // a simple torus is fine for now. // You can add more Geometry here if you want to. OSG::NodeRefPtr lit_scene = OSG::makeTorus(.5, 2, 32, 64); // helper node to keep the lights on top of each other OSG::NodeRefPtr lastnode = lit_scene; // create the light sources OSG::Color3f colors[] = { OSG::Color3f(1,0,0), OSG::Color3f(0,1,0), OSG::Color3f(0,0,1), OSG::Color3f(1,1,0), OSG::Color3f(0,1,1), OSG::Color3f(1,0,1), OSG::Color3f(1,1,1), OSG::Color3f(1,1,1) }; if(nlights > 8) { FWARNING(("Currently only 8 lights supported\n")); nlights = 8; } // scale the lights to not overexpose everything. Just a little. OSG::Real32 scale = OSG::osgMax(1., 1.5 / nlights); for(OSG::UInt16 i = 0; i < nlights; ++i) { // create the light source OSG::NodeRefPtr light = OSG::Node::create(); OSG::LightRefPtr light_core; OSG::NodeRefPtr geo_node; switch((i % 3) + 0) { /* The PointLight has a position to define its location. In addition, as it really is located in the scene, it has attenuation parameters to change the light's intensity depending on the distance to the light. Point lights are more expesinve to compute than directional lights, but not quite as expesive as spot lights. If you need to see the localized effects of the light, a point light is a good compromise between speed and quality. */ case 0: { OSG::PointLightRefPtr l = OSG::PointLight::create(); l->setPosition (0, 0, 0); l->setConstantAttenuation (1); l->setLinearAttenuation (0); l->setQuadraticAttenuation (3); // a little sphere to show where the light is geo_node = OSG::makeLatLongSphere(8, 8, 0.1f); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; /* The DirectionalLight just has a direction. To use it as a headlight use (0,0,-1) as a direction. it is the computationally cheapest light source. Thus for the fastest lit rendering, just a single directional light source. The osg::SimpleSceneManager's headlight is a directional light source. */ case 1: { OSG::DirectionalLightRefPtr l = OSG::DirectionalLight::create(); l->setDirection(0, 0, 1); // a little cylinder to show where the light is geo_node = OSG::makeCylinder(.1f, .03f, 8, true, true, true); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; /* The SpotLight adds a direction to the PointLight and a spotCutOff angle to define the area that's lit. To define the light intensity fallof within that area the spotExponent field is used. Spot lights are very expensive to compute, use them sparingly. */ case 2: { OSG::SpotLightRefPtr l = OSG::SpotLight::create(); l->setPosition (OSG::Pnt3f(0, 0, 0)); l->setDirection (OSG::Vec3f(0, -1, 0)); l->setSpotExponent (2); l->setSpotCutOff (OSG::osgDegree2Rad(45)); l->setConstantAttenuation (1); l->setLinearAttenuation (0); l->setQuadraticAttenuation (3); // a little cone to show where the light is geo_node = OSG::makeCone(.2f, .2f, 8, true, true); OSG::GeometryRefPtr geo = dynamic_cast<OSG::Geometry *>(geo_node->getCore()); OSG::SimpleMaterialRefPtr sm = OSG::SimpleMaterial::create(); sm->setLit(false); sm->setDiffuse(OSG::Color3f( colors[i][0], colors[i][1], colors[i][2] )); geo->setMaterial(sm); light_core = l; } break; } // create the beacon and attach it to the scene OSG::NodeRefPtr beacon = OSG::Node::create(); OSG::TransformRefPtr beacon_core = OSG::Transform::create(); lightBeacons[i] = beacon_core; beacon->setCore(beacon_core); beacon->addChild(geo_node); scene->addChild(beacon); light_core->setAmbient (colors[i][0] / scale, colors[i][1] / scale, colors[i][2] / scale, 1); light_core->setDiffuse (colors[i][0] / scale, colors[i][1] / scale, colors[i][2] / scale, 1); light_core->setSpecular(1 / scale, 1 / scale, 1 / scale, 1); light_core->setBeacon (beacon); light->setCore(light_core); light->addChild(lastnode); lights[i] = light_core; lastnode = light; } scene->addChild(lastnode); OSG::commitChanges(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); // switch the headlight off, we have enough lights as is mgr->setHeadlight(false); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// react to keys void keyboard(unsigned char k, int x, int y) { switch(k) { case 27: { // clean up global variables mgr = NULL; OSG::osgExit(); exit(1); } break; case 'a': // activate all lights { for(OSG::UInt16 i = 0; i < nlights; ++i) { lights[i]->setOn(true); } } break; case 's': // deactivate all but the spot lights { for(OSG::UInt16 i = 0; i < nlights; ++i) { if(lights[i]->getTypeId() != OSG::SpotLight::getClassTypeId()) { lights[i]->setOn(false); } else { lights[i]->setOn(true); } } OSG::commitChanges(); } break; case 'd': // deactivate all but the directional lights { for(OSG::UInt16 i = 0; i < nlights; ++i) { if(lights[i]->getTypeId() != OSG::DirectionalLight::getClassTypeId()) { lights[i]->setOn(false); } else { lights[i]->setOn(true); } } OSG::commitChanges(); } break; case 'p': // deactivate all but the point lights { for(OSG::UInt16 i = 0; i < nlights; ++i) { if(lights[i]->getTypeId() != OSG::PointLight::getClassTypeId()) { lights[i]->setOn(false); } else { lights[i]->setOn(true); } } OSG::commitChanges(); } break; case 'S': { mgr->setStatistics(!mgr->getStatistics()); } break; } }
int main(int argc, char **argv) { g_error = 0.01f; if ( argc == 2 ) { g_error = atof( argv[1] ); } if ( g_error < 0.001 ) { g_error = 0.001f; } OSG::osgInit(argc,argv); // GLUT init glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE); int winid = glutCreateWindow("OpenSG"); glutReshapeFunc(reshape); glutDisplayFunc(display); glutIdleFunc(display); glutMouseFunc(mouse); glutMotionFunc(motion); glutKeyboardFunc(keyboard); { OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene OSG::NodeRefPtr scene; scene = makeScene( ); if ( scene == NULL ) { std::cerr<<"makeScene returned NullFC, exiting..."<<std::endl; return -1; } // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // create the window and initial camera/viewport mgr->setWindow( gwin ); // tell the manager what to manage mgr->setRoot ( scene ); // show the whole scene mgr->showAll(); mgr->redraw(); OSG::SolidBackgroundRefPtr bgr = OSG::SolidBackground::create(); bgr->setColor( OSG::Color3f( 0.7f, 0.7f, 0.7f )); mgr->getWindow()->getPort(0)->setBackground( bgr ); } // GLUT main loop glutMainLoop(); return 0; }
// // Initialize GLUT & OpenSG and set up the scene // int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); // open a new scope, because the pointers below should go out of scope // before entering glutMainLoop. // Otherwise OpenSG will complain about objects being alive after shutdown. { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); mgr->setWindow(gwin); // create a pretty simple graph: a Group with two Transforms as children, // each of which carries a single Geometry. // The scene OSG::NodeRefPtr scene = OSG::Node::create(); // The cylinder and its transformation OSG::NodeRefPtr cyl = OSG::Node::create(); OSG::GeometryRefPtr cylgeo = OSG::makeCylinderGeo( 1.4f, .3f, 24, true, true, true ); cyl->setCore(cylgeo); cyltrans = OSG::Transform::create(); OSG::NodeRefPtr cyltransnode = OSG::Node::create(); cyltransnode->setCore (cyltrans); cyltransnode->addChild(cyl ); // add it to the scene scene->addChild(cyltransnode); // The torus and its transformation OSG::NodeRefPtr torus = OSG::Node::create(); OSG::GeometryRefPtr torusgeo = OSG::makeTorusGeo( .2f, 1, 24, 36 ); torus->setCore(torusgeo); tortrans = OSG::Transform::create(); OSG::NodeRefPtr tortransnode = OSG::Node::create(); tortransnode->setCore (tortrans); tortransnode->addChild(torus ); // add it to the scene scene->addChild(tortransnode); // // create the shader program // OSG::ShaderProgramChunkRefPtr prog_chunk = OSG::ShaderProgramChunk::create(); OSG::ShaderProgramRefPtr vertShader = OSG::ShaderProgram::createVertexShader(); OSG::ShaderProgramRefPtr fragShader = OSG::ShaderProgram::createFragmentShader(); vertShader->setProgram(get_vp_program()); fragShader->setProgram(get_fp_program()); // // binding the unifrom block to a buffer binding point can be performed // either by calling the shaders's addUniformBlock method or by // adding a 'uniform block' variable to a ShaderProgramVariableChunk. // In the following we use both variants for illustration. // fragShader->addUniformBlock("Materials", 1); // block binding point fragShader->addUniformBlock("Lights", 2); // block binding point // // The following is replaced by adding ShaderProgramVariableChunk objects // to the chunk material. See below... // // fragShader->addUniformBlock("GeomState", 3); // block binding point prog_chunk->addShader(vertShader); prog_chunk->addShader(fragShader); // // create uniform buffer objects and corresponding materials // OSG::UniformBufferObjChunkRefPtr ubo_material_database = create_material_database_state(materials); ubo_light_state = create_light_state(lights); OSG::PolygonChunkRefPtr polygon_chunk = OSG::PolygonChunk::create(); polygon_chunk->setFrontMode(GL_FILL); polygon_chunk->setBackMode(GL_FILL); polygon_chunk->setCullFace(GL_NONE); OSG::DepthChunkRefPtr depth_chunk = OSG::DepthChunk::create(); depth_chunk->setEnable(true); OSG::ChunkMaterialRefPtr prog_state = OSG::ChunkMaterial::create(); prog_state->addChunk(ubo_material_database, 1); // buffer binding point 1 prog_state->addChunk(ubo_light_state, 2); // buffer binding point 2 prog_state->addChunk(prog_chunk); prog_state->addChunk(polygon_chunk); prog_state->addChunk(depth_chunk); OSG::ShaderProgramVariableChunkRefPtr shader_var_chunk = OSG::ShaderProgramVariableChunk::create(); shader_var_chunk->addUniformBlock("GeomState", 3); GeomState geom1; geom1.material_index = dist(generator); OSG::ChunkMaterialRefPtr geom1_state = OSG::ChunkMaterial::create(); ubo_geom_state_1 = create_geometry_material_state(geom1); geom1_state->addChunk(ubo_geom_state_1, 3); // buffer binding point 3 geom1_state->addChunk(shader_var_chunk); // block binding point GeomState geom2; geom2.material_index = dist(generator); OSG::ChunkMaterialRefPtr geom2_state = OSG::ChunkMaterial::create(); ubo_geom_state_2 = create_geometry_material_state(geom2); geom2_state->addChunk(ubo_geom_state_2, 3); // buffer binding point 3 geom1_state->addChunk(shader_var_chunk); // block binding point cylgeo ->setMaterial(geom1_state); torusgeo->setMaterial(geom2_state); OSG::MaterialChunkOverrideGroupRefPtr mgrp = OSG::MaterialChunkOverrideGroup::create(); mgrp->setMaterial(prog_state); scene->setCore(mgrp); OSG::commitChanges(); mgr->setRoot(scene); // show the whole scene mgr->showAll(); } // GLUT main loop glutMainLoop(); return 0; }
// react to size changes void reshape(int w, int h) { mgr->resize(w,h); glutPostRedisplay(); }
// Initialize GLUT & OpenSG and set up the scene int main(int argc, char **argv) { // OSG init OSG::osgInit(argc,argv); // GLUT init int winid = setupGLUT(&argc, argv); { // the connection between GLUT and OpenSG OSG::GLUTWindowRefPtr gwin = OSG::GLUTWindow::create(); gwin->setGlutId(winid); gwin->init(); // create the scene OSG::NodeRefPtr torus = OSG::makeTorus( .5, 2, 16, 32 ); OSG::NodeRefPtr scene = OSG::Node::create(); trans = OSG::Transform::create(); scene->setCore(trans); scene->addChild(torus); // Create the parts needed for the video background OSG::UInt32 width = 640; OSG::UInt32 height = 480; // get the desired size from the command line if(argc >= 3) { width = atoi(argv[1]); height = atoi(argv[2]); } // To check OpenGL extensions, the Window needs to have run through // frameInit at least once. This automatically happens when rendering, // but we can't wait for that here. gwin->activate (); gwin->frameInit(); // Now we can check for OpenGL extensions hasNPOT = gwin->hasExtension("GL_ARB_texture_non_power_of_two"); // Print what we've got SLOG << "Got " << (isPOT?"":"non-") << "power-of-two images and " << (hasNPOT?"can":"cannot") << " use NPOT textures, changing " << (changeOnlyPart?"part":"all") << " of the screen" << std::endl; // Ok, now for the meat of the code... // first we need an Image to hold the picture(s) to show image = OSG::Image::create(); // set the image's size and type, and allocate memory // this example uses RGB. On some systems (e.g. Windows) BGR // or BGRA might be faster, it depends on how the images are // acquired image->set(OSG::Image::OSG_RGB_PF, width, height); // Now create the texture to be used for the background texObj = OSG::TextureObjChunk::create(); // Associate image and texture texObj->setImage(image); // Set filtering modes. LINEAR is cheap and good if the image size // changes very little (i.e. the window is about the same size as // the images). texObj->setMinFilter(GL_LINEAR); texObj->setMagFilter(GL_LINEAR); // Set the wrapping modes. We don't need repetition, it might actually // introduce artifactes at the borders, so switch it off. texObj->setWrapS(GL_CLAMP_TO_EDGE); texObj->setWrapT(GL_CLAMP_TO_EDGE); // Newer versions of OpenGL can handle NPOT textures directly. // OpenSG will do that internally automatically. // // Older versions need POT textures. By default OpenSG // will scale an NPOT texture to POT while defining it. // For changing textures that's too slow. // So tell OpenSG not to scale the image and adjust the texture // coordinates used by the TextureBackground (see below). texObj->setScale(false); // Create the background OSG::TextureBackgroundRefPtr back = OSG::TextureBackground::create(); // Set the texture to use back->setTexture(texObj); // if the image is NPOT and we don't have hardware support for it // adjust the texture coordinates. if(isPOT == false && hasNPOT == false) { OSG::UInt32 potWidth = OSG::osgNextPower2(width ); OSG::UInt32 potHeight = OSG::osgNextPower2(height); OSG::Real32 tcRight = OSG::Real32(width ) / OSG::Real32(potWidth ); OSG::Real32 tcTop = OSG::Real32(height) / OSG::Real32(potHeight); back->editMFTexCoords()->push_back(OSG::Vec2f( 0.f, 0.f)); back->editMFTexCoords()->push_back(OSG::Vec2f(tcRight, 0.f)); back->editMFTexCoords()->push_back(OSG::Vec2f(tcRight, tcTop)); back->editMFTexCoords()->push_back(OSG::Vec2f( 0.f, tcTop)); } OSG::commitChanges(); // create the SimpleSceneManager helper mgr = OSG::SimpleSceneManager::create(); // tell the manager what to manage mgr->setWindow(gwin ); mgr->setRoot (scene); mgr->setStatistics(true); // replace the background // This has to be done after the viewport has been created, which the // SSM does in setRoot(). OSG::ViewportRefPtr vp = gwin->getPort(0); vp->setBackground(back); } // show the whole scene mgr->showAll(); // GLUT main loop glutMainLoop(); return 0; }