void mitk::ProbeFilter::GenerateOutputInformation() { mitk::Surface::ConstPointer input = this->GetInput(); mitk::Image::ConstPointer source = this->GetSource(); mitk::Surface::Pointer output = this->GetOutput(); if(input.IsNull()) return; if(source.IsNull()) return; if(input->GetGeometry()==NULL) return; if(source->GetGeometry()==NULL) return; if( (input->GetTimeGeometry()->CountTimeSteps()==1) && (source->GetTimeGeometry()->CountTimeSteps()>1) ) { Geometry3D::Pointer geo3D = Geometry3D::New(); BaseGeometry::Pointer geometry3D = dynamic_cast<BaseGeometry*>(geo3D.GetPointer()); geometry3D->Initialize(); geometry3D->SetBounds(source->GetTimeGeometry()->GetBoundsInWorld()); ProportionalTimeGeometry::Pointer outputTimeGeometry = ProportionalTimeGeometry::New(); outputTimeGeometry->Initialize(geometry3D, source->GetTimeGeometry()->CountTimeSteps()); outputTimeGeometry->SetFirstTimePoint(source->GetTimeGeometry()->GetMinimumTimePoint()); TimePointType stepDuration = source->GetTimeGeometry()->GetMaximumTimePoint(0) - source->GetTimeGeometry()->GetMinimumTimePoint(0); outputTimeGeometry->SetStepDuration(stepDuration); output->Expand(outputTimeGeometry->CountTimeSteps()); output->SetTimeGeometry( outputTimeGeometry ); } else output->SetGeometry( static_cast<BaseGeometry*>(input->GetGeometry()->Clone().GetPointer()) ); itkDebugMacro(<<"GenerateOutputInformation()"); }
//TODO_GOETZ // Remove old function, so only this one is working. bool RenderingManager ::InitializeViews(const BaseGeometry * dataGeometry, RequestType type, bool preserveRoughOrientationInWorldSpace) { ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(dynamic_cast<BaseGeometry *>(dataGeometry->Clone().GetPointer()), 1); return InitializeViews(propTimeGeometry, type, preserveRoughOrientationInWorldSpace); }
void mitk::PlanarFigure::InitializeTimeGeometry( unsigned int timeSteps ) { mitk::PlaneGeometry::Pointer geometry2D = mitk::PlaneGeometry::New(); geometry2D->Initialize(); // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); }
void mitk::PlaneGeometryData::SetPlaneGeometry(mitk::PlaneGeometry *geometry2d) { if(geometry2d != NULL) { ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2d, 1); SetTimeGeometry(timeGeometry); Modified(); } else Superclass::SetGeometry(geometry2d); }
itk::LightObject::Pointer mitk::ProportionalTimeGeometry::InternalClone() const { itk::LightObject::Pointer parent = Superclass::InternalClone(); ProportionalTimeGeometry::Pointer newTimeGeometry = dynamic_cast<ProportionalTimeGeometry * > (parent.GetPointer()); newTimeGeometry->m_FirstTimePoint = this->m_FirstTimePoint; newTimeGeometry->m_StepDuration = this->m_StepDuration; newTimeGeometry->m_GeometryVector.clear(); newTimeGeometry->Expand(this->CountTimeSteps()); for (TimeStepType i =0; i < CountTimeSteps(); ++i) { BaseGeometry::Pointer tempGeometry = GetGeometryForTimeStep(i)->Clone(); newTimeGeometry->SetTimeStepGeometry(tempGeometry, i); } return parent; }
void mitk::PlanarFigure::InitializeTimeGeometry( unsigned int timeSteps ) { mitk::Geometry2D::Pointer geometry2D = mitk::Geometry2D::New(); geometry2D->Initialize(); if ( timeSteps > 1 ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; geometry2D->SetTimeBounds( timeBounds ); } // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); }
void mitk::PlaneFit::GenerateOutputInformation() { mitk::PointSet::ConstPointer input = this->GetInput(); mitk::GeometryData::Pointer output = this->GetOutput(); itkDebugMacro(<<"GenerateOutputInformation()"); if (input.IsNull()) return; if ( m_PointSet == NULL ) { return; } bool update = false; if ( output->GetGeometry() == NULL || output->GetTimeGeometry() == NULL ) update = true; if ( ( ! update ) && ( output->GetTimeGeometry()->CountTimeSteps() != input->GetTimeGeometry()->CountTimeSteps() ) ) update = true; if ( update ) { mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); ProportionalTimeGeometry::Pointer timeGeometry = dynamic_cast<ProportionalTimeGeometry *>(m_TimeGeometry.GetPointer()); timeGeometry->Initialize(planeGeometry, m_PointSet->GetPointSetSeriesSize()); //m_TimeGeometry->InitializeEvenlyTimed( // planeGeometry, m_PointSet->GetPointSetSeriesSize() ); TimeStepType timeStep; for ( timeStep = 0; (timeStep < m_PointSet->GetPointSetSeriesSize()) && (timeStep < m_Planes.size()); ++timeStep ) { timeGeometry->SetTimeStepGeometry( m_Planes[timeStep], timeStep ); } output->SetTimeGeometry( m_TimeGeometry ); } }
mitk::ExtrudedContour::ExtrudedContour() : m_Contour(NULL), m_ClippingGeometry(NULL), m_AutomaticVectorGeneration(false) { ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(1); SetTimeGeometry(timeGeometry); FillVector3D(m_Vector, 0.0, 0.0, 1.0); m_RightVector.Fill(0.0); m_ExtrusionFilter = vtkLinearExtrusionFilter::New(); m_ExtrusionFilter->CappingOff(); m_ExtrusionFilter->SetExtrusionTypeToVectorExtrusion(); double vtkvector[3]={0,0,1}; // set extrusion vector m_ExtrusionFilter->SetVector(vtkvector); m_TriangleFilter = vtkTriangleFilter::New(); m_TriangleFilter->SetInputConnection(m_ExtrusionFilter->GetOutputPort()); m_SubdivisionFilter = vtkLinearSubdivisionFilter::New(); m_SubdivisionFilter->SetInputConnection(m_TriangleFilter->GetOutputPort()); m_SubdivisionFilter->SetNumberOfSubdivisions(4); m_ClippingBox = vtkPlanes::New(); m_ClipPolyDataFilter = vtkClipPolyData::New(); m_ClipPolyDataFilter->SetInputConnection(m_SubdivisionFilter->GetOutputPort()); m_ClipPolyDataFilter->SetClipFunction(m_ClippingBox); m_ClipPolyDataFilter->InsideOutOn(); m_Polygon = vtkPolygon::New(); m_ProjectionPlane = mitk::PlaneGeometry::New(); }
void mitk::SlicedData::SetGeometry(BaseGeometry* aGeometry3D) { if(aGeometry3D!=NULL) { ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); SlicedGeometry3D::Pointer slicedGeometry = dynamic_cast<SlicedGeometry3D*>(aGeometry3D); if(slicedGeometry.IsNull()) { PlaneGeometry* geometry2d = dynamic_cast<PlaneGeometry*>(aGeometry3D); if(geometry2d!=NULL) { if((GetSlicedGeometry()->GetPlaneGeometry(0)==geometry2d) && (GetSlicedGeometry()->GetSlices()==1)) return; slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(geometry2d, 1); } else { slicedGeometry = SlicedGeometry3D::New(); PlaneGeometry::Pointer planeGeometry = PlaneGeometry::New(); planeGeometry->InitializeStandardPlane(aGeometry3D); slicedGeometry->InitializeEvenlySpaced(planeGeometry, (unsigned int)(aGeometry3D->GetExtent(2))); } } assert(slicedGeometry.IsNotNull()); timeGeometry->Initialize(slicedGeometry, 1); Superclass::SetTimeGeometry(timeGeometry); } else { if(GetGeometry()==NULL) return; Superclass::SetGeometry(NULL); } }
std::vector<BaseData::Pointer> ItkImageIO::Read() { std::vector<BaseData::Pointer> result; mitk::LocaleSwitch localeSwitch("C"); Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. m_ImageIO->SetFileName(path); m_ImageIO->ReadImageInformation(); unsigned int ndim = m_ImageIO->GetNumberOfDimensions(); if (ndim < MINDIM || ndim > MAXDIM) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion(ndim); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[MAXDIM]; dimensions[0] = 0; dimensions[1] = 0; dimensions[2] = 0; dimensions[3] = 0; ScalarType spacing[MAXDIM]; spacing[0] = 1.0f; spacing[1] = 1.0f; spacing[2] = 1.0f; spacing[3] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for (i = 0; i < ndim; ++i) { ioStart[i] = 0; ioSize[i] = m_ImageIO->GetDimensions(i); if (i < MAXDIM) { dimensions[i] = m_ImageIO->GetDimensions(i); spacing[i] = m_ImageIO->GetSpacing(i); if (spacing[i] <= 0) spacing[i] = 1.0f; } if (i < 3) { origin[i] = m_ImageIO->GetOrigin(i); } } ioRegion.SetSize(ioSize); ioRegion.SetIndex(ioStart); MITK_INFO << "ioRegion: " << ioRegion << std::endl; m_ImageIO->SetIORegion(ioRegion); void *buffer = new unsigned char[m_ImageIO->GetImageSizeInBytes()]; m_ImageIO->Read(buffer); image->Initialize(MakePixelType(m_ImageIO), ndim, dimensions); image->SetImportChannel(buffer, 0, Image::ManageMemory); const itk::MetaDataDictionary &dictionary = m_ImageIO->GetMetaDataDictionary(); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3 ? 3 : ndim); for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = m_ImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry *planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D *slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false, false, false); MITK_INFO << slicedGeometry->GetCornerPoint(true, true, true); // re-initialize TimeGeometry TimeGeometry::Pointer timeGeometry; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE) || dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TYPE)) { // also check for the name because of backwards compatibility. Past code version stored with the name and not with // the key itk::MetaDataObject<std::string>::ConstPointer timeGeometryTypeData = nullptr; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE)) { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TYPE)); } else { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TYPE)); } if (timeGeometryTypeData->GetMetaDataObjectValue() == ArbitraryTimeGeometry::GetStaticNameOfClass()) { MITK_INFO << "used time geometry: " << ArbitraryTimeGeometry::GetStaticNameOfClass() << std::endl; typedef std::vector<TimePointType> TimePointVector; TimePointVector timePoints; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)); } else if (dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)); } if (timePoints.size() - 1 != image->GetDimension(3)) { MITK_ERROR << "Stored timepoints (" << timePoints.size() - 1 << ") and size of image time dimension (" << image->GetDimension(3) << ") do not match. Switch to ProportionalTimeGeometry fallback" << std::endl; } else { ArbitraryTimeGeometry::Pointer arbitraryTimeGeometry = ArbitraryTimeGeometry::New(); TimePointVector::const_iterator pos = timePoints.begin(); TimePointVector::const_iterator prePos = pos++; for (; pos != timePoints.end(); ++prePos, ++pos) { arbitraryTimeGeometry->AppendTimeStepClone(slicedGeometry, *pos, *prePos); } timeGeometry = arbitraryTimeGeometry; } } } if (timeGeometry.IsNull()) { // Fallback. If no other valid time geometry has been created, create a ProportionalTimeGeometry MITK_INFO << "used time geometry: " << ProportionalTimeGeometry::GetStaticNameOfClass() << std::endl; ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); timeGeometry = propTimeGeometry; } image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: " << image->GetPixelType().GetNumberOfComponents() << std::endl; for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { const std::string &key = iter->first; std::string assumedPropertyName = key; std::replace(assumedPropertyName.begin(), assumedPropertyName.end(), '_', '.'); std::string mimeTypeName = GetMimeType()->GetName(); // Check if there is already a info for the key and our mime type. IPropertyPersistence::InfoResultType infoList = mitk::CoreServices::GetPropertyPersistence()->GetInfoByKey(key); auto predicate = [mimeTypeName](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == mimeTypeName; }; auto finding = std::find_if(infoList.begin(), infoList.end(), predicate); if (finding == infoList.end()) { auto predicateWild = [](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == PropertyPersistenceInfo::ANY_MIMETYPE_NAME(); }; finding = std::find_if(infoList.begin(), infoList.end(), predicateWild); } PropertyPersistenceInfo::ConstPointer info; if (finding != infoList.end()) { assumedPropertyName = (*finding)->GetName(); info = *finding; } else { // we have not found anything suitable so we generate our own info PropertyPersistenceInfo::Pointer newInfo = PropertyPersistenceInfo::New(); newInfo->SetNameAndKey(assumedPropertyName, key); newInfo->SetMimeTypeName(PropertyPersistenceInfo::ANY_MIMETYPE_NAME()); info = newInfo; } std::string value = dynamic_cast<itk::MetaDataObject<std::string> *>(iter->second.GetPointer())->GetMetaDataObjectValue(); mitk::BaseProperty::Pointer loadedProp = info->GetDeserializationFunction()(value); image->SetProperty(assumedPropertyName.c_str(), loadedProp); // Read properties should be persisted unless they are default properties // which are written anyway bool isDefaultKey(false); for (const auto &defaultKey : m_DefaultMetaDataKeys) { if (defaultKey.length() <= assumedPropertyName.length()) { // does the start match the default key if (assumedPropertyName.substr(0, defaultKey.length()).find(defaultKey) != std::string::npos) { isDefaultKey = true; break; } } } if (!isDefaultKey) { mitk::CoreServices::GetPropertyPersistence()->AddInfo(info); } } } MITK_INFO << "...finished!" << std::endl; result.push_back(image.GetPointer()); return result; }
std::vector<BaseData::Pointer> LabelSetImageIO::Read() { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { mitkThrow() << "Could not set locale."; } } // begin regular image loading, adapted from mitkItkImageIO itk::NrrdImageIO::Pointer nrrdImageIO = itk::NrrdImageIO::New(); Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. nrrdImageIO->SetFileName(path); nrrdImageIO->ReadImageInformation(); unsigned int ndim = nrrdImageIO->GetNumberOfDimensions(); if (ndim < MINDIM || ndim > MAXDIM) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion(ndim); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[MAXDIM]; dimensions[0] = 0; dimensions[1] = 0; dimensions[2] = 0; dimensions[3] = 0; ScalarType spacing[MAXDIM]; spacing[0] = 1.0f; spacing[1] = 1.0f; spacing[2] = 1.0f; spacing[3] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for (i = 0; i < ndim; ++i) { ioStart[i] = 0; ioSize[i] = nrrdImageIO->GetDimensions(i); if (i<MAXDIM) { dimensions[i] = nrrdImageIO->GetDimensions(i); spacing[i] = nrrdImageIO->GetSpacing(i); if (spacing[i] <= 0) spacing[i] = 1.0f; } if (i<3) { origin[i] = nrrdImageIO->GetOrigin(i); } } ioRegion.SetSize(ioSize); ioRegion.SetIndex(ioStart); MITK_INFO << "ioRegion: " << ioRegion << std::endl; nrrdImageIO->SetIORegion(ioRegion); void* buffer = new unsigned char[nrrdImageIO->GetImageSizeInBytes()]; nrrdImageIO->Read(buffer); image->Initialize(MakePixelType(nrrdImageIO), ndim, dimensions); image->SetImportChannel(buffer, 0, Image::ManageMemory); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3 ? 3 : ndim); for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = nrrdImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D* slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false, false, false); MITK_INFO << slicedGeometry->GetCornerPoint(true, true, true); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: " << image->GetPixelType().GetNumberOfComponents() << std::endl; const itk::MetaDataDictionary& dictionary = nrrdImageIO->GetMetaDataDictionary(); for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { std::string key = std::string("meta.") + iter->first; if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { std::string value = dynamic_cast<itk::MetaDataObject<std::string>*>(iter->second.GetPointer())->GetMetaDataObjectValue(); image->SetProperty(key.c_str(), mitk::StringProperty::New(value)); } } // end regular image loading LabelSetImage::Pointer output = LabelSetImageConverter::ConvertImageToLabelSetImage(image); // get labels and add them as properties to the image char keybuffer[256]; unsigned int numberOfLayers = GetIntByKey(dictionary, "layers"); std::string _xmlStr; mitk::Label::Pointer label; for (unsigned int layerIdx = 0; layerIdx < numberOfLayers; layerIdx++) { sprintf(keybuffer, "layer_%03d", layerIdx); int numberOfLabels = GetIntByKey(dictionary, keybuffer); mitk::LabelSet::Pointer labelSet = mitk::LabelSet::New(); for (int labelIdx = 0; labelIdx < numberOfLabels; labelIdx++) { TiXmlDocument doc; sprintf(keybuffer, "label_%03d_%05d", layerIdx, labelIdx); _xmlStr = GetStringByKey(dictionary, keybuffer); doc.Parse(_xmlStr.c_str()); TiXmlElement * labelElem = doc.FirstChildElement("Label"); if (labelElem == 0) mitkThrow() << "Error parsing NRRD header for mitk::LabelSetImage IO"; label = LoadLabelFromTiXmlDocument(labelElem); if (label->GetValue() == 0) // set exterior label is needed to hold exterior information output->SetExteriorLabel(label); labelSet->AddLabel(label); labelSet->SetLayer(layerIdx); } output->AddLabelSetToLayer(layerIdx, labelSet); } MITK_INFO << "...finished!" << std::endl; try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { mitkThrow() << "Could not reset locale!"; } std::vector<BaseData::Pointer> result; result.push_back(output.GetPointer()); return result; }
void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim, int pDim) { if(vtkimagedata==nullptr) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;i<m_Dimension;++i) tmpDimensions[i]=vtkimagedata->GetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(pDim>=0) { tmpDimensions[1]=pDim; if(m_Dimension < 2) m_Dimension = 2; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } mitk::PixelType pixelType(MakePixelType(vtkimagedata)); Initialize(pixelType, m_Dimension, tmpDimensions, channels); const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast<PlaneGeometry*>(slicedGeometry->GetPlaneGeometry(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete [] tmpDimensions; }
mitk::ProportionalTimeGeometry::Pointer mitk::ProportionalTimeGeometryToXML::FromXML(TiXmlElement *timeGeometryElement) { if (!timeGeometryElement) { MITK_ERROR << "Cannot deserialize ProportionalTimeGeometry from nullptr."; return nullptr; } int numberOfTimeSteps = 0; if (TIXML_SUCCESS != timeGeometryElement->QueryIntAttribute("NumberOfTimeSteps", &numberOfTimeSteps)) { MITK_WARN << "<ProportionalTimeGeometry> found without NumberOfTimeSteps attribute. Counting..."; } // might be missing! TimePointType firstTimePoint; std::string firstTimePoint_s; TimePointType stepDuration; std::string stepDuration_s; try { if (TIXML_SUCCESS == timeGeometryElement->QueryStringAttribute("FirstTimePoint", &firstTimePoint_s)) { firstTimePoint = boost::lexical_cast<double>(firstTimePoint_s); } else { firstTimePoint = -std::numeric_limits<TimePointType>::max(); } if (TIXML_SUCCESS == timeGeometryElement->QueryStringAttribute("StepDuration", &stepDuration_s)) { stepDuration = boost::lexical_cast<double>(stepDuration_s); } else { stepDuration = std::numeric_limits<TimePointType>::infinity(); } } catch (boost::bad_lexical_cast &e) { MITK_ERROR << "Could not parse string as number: " << e.what(); return nullptr; } // list of all geometries with their time steps std::multimap<TimeStepType, BaseGeometry::Pointer> allReadGeometries; int indexForUnlabeledTimeStep(-1); for (TiXmlElement *currentElement = timeGeometryElement->FirstChildElement(); currentElement != nullptr; currentElement = currentElement->NextSiblingElement()) { // different geometries could have been inside a ProportionalTimeGeometry. // By now, we only support Geometry3D std::string tagName = currentElement->Value(); if (tagName == "Geometry3D") { Geometry3D::Pointer restoredGeometry = Geometry3DToXML::FromXML(currentElement); if (restoredGeometry.IsNotNull()) { int timeStep(-1); if (TIXML_SUCCESS != currentElement->QueryIntAttribute("TimeStep", &timeStep)) { timeStep = indexForUnlabeledTimeStep--; // decrement index for next one MITK_WARN << "Found <Geometry3D> without 'TimeStep' attribute in <ProportionalTimeGeometry>. No guarantees " "on order anymore."; } if (allReadGeometries.count(static_cast<TimeStepType>(timeStep)) > 0) { MITK_WARN << "Found <Geometry3D> tags with identical 'TimeStep' attribute in <ProportionalTimeGeometry>. No " "guarantees on order anymore."; } allReadGeometries.insert(std::make_pair(static_cast<TimeStepType>(timeStep), restoredGeometry.GetPointer())); } } else { MITK_WARN << "Found unsupported tag <" << tagName << "> inside <ProportionalTimeGeometry>. Ignoring."; } } // now add all BaseGeometries that were read to a new instance // of ProportionalTimeGeometry ProportionalTimeGeometry::Pointer newTimeGeometry = ProportionalTimeGeometry::New(); newTimeGeometry->SetFirstTimePoint(firstTimePoint); newTimeGeometry->SetStepDuration(stepDuration); newTimeGeometry->ReserveSpaceForGeometries(allReadGeometries.size()); TimeStepType t(0); for (auto entry : allReadGeometries) { // We add items with newly assigned time steps. // This avoids great confusion when a file contains // bogus numbers. newTimeGeometry->SetTimeStepGeometry(entry.second, t++); } // Need to re-calculate global bounding box. // This is neither stored in a file, nor done by SetTimeStepGeometry newTimeGeometry->UpdateBoundingBox(); return newTimeGeometry; }
std::vector<itk::SmartPointer<mitk::BaseData>> mitk::GeometryDataReaderService::Read() { // Switch the current locale to "C" LocaleSwitch localeSwitch("C"); std::vector<itk::SmartPointer<BaseData>> result; InputStream stream(this); TiXmlDocument doc; stream >> doc; if (!doc.Error()) { TiXmlHandle docHandle(&doc); for (TiXmlElement *geomDataElement = docHandle.FirstChildElement("GeometryData").ToElement(); geomDataElement != nullptr; geomDataElement = geomDataElement->NextSiblingElement()) { for (TiXmlElement *currentElement = geomDataElement->FirstChildElement(); currentElement != nullptr; currentElement = currentElement->NextSiblingElement()) { // different geometries could have been serialized from a GeometryData // object: std::string tagName = currentElement->Value(); if (tagName == "Geometry3D") { Geometry3D::Pointer restoredGeometry = Geometry3DToXML::FromXML(currentElement); if (restoredGeometry.IsNotNull()) { GeometryData::Pointer newGeometryData = GeometryData::New(); newGeometryData->SetGeometry(restoredGeometry); result.push_back(newGeometryData.GetPointer()); } else { MITK_ERROR << "Invalid <Geometry3D> tag encountered. Skipping."; } } else if (tagName == "ProportionalTimeGeometry") { ProportionalTimeGeometry::Pointer restoredTimeGeometry = ProportionalTimeGeometryToXML::FromXML(currentElement); if (restoredTimeGeometry.IsNotNull()) { GeometryData::Pointer newGeometryData = GeometryData::New(); newGeometryData->SetTimeGeometry(restoredTimeGeometry); result.push_back(newGeometryData.GetPointer()); } else { MITK_ERROR << "Invalid <ProportionalTimeGeometry> tag encountered. Skipping."; } } } // for child of <GeometryData> } // for <GeometryData> } else { mitkThrow() << "Parsing error at line " << doc.ErrorRow() << ", col " << doc.ErrorCol() << ": " << doc.ErrorDesc(); } if (result.empty()) { mitkThrow() << "Did not read a single GeometryData object from input."; } return result; }
std::vector<BaseData::Pointer> ItkImageIO::Read() { std::vector<BaseData::Pointer> result; const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. m_ImageIO->SetFileName( path ); m_ImageIO->ReadImageInformation(); unsigned int ndim = m_ImageIO->GetNumberOfDimensions(); if ( ndim < MINDIM || ndim > MAXDIM ) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion( ndim ); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[ MAXDIM ]; dimensions[ 0 ] = 0; dimensions[ 1 ] = 0; dimensions[ 2 ] = 0; dimensions[ 3 ] = 0; ScalarType spacing[ MAXDIM ]; spacing[ 0 ] = 1.0f; spacing[ 1 ] = 1.0f; spacing[ 2 ] = 1.0f; spacing[ 3 ] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for ( i = 0; i < ndim ; ++i ) { ioStart[ i ] = 0; ioSize[ i ] = m_ImageIO->GetDimensions( i ); if(i<MAXDIM) { dimensions[ i ] = m_ImageIO->GetDimensions( i ); spacing[ i ] = m_ImageIO->GetSpacing( i ); if(spacing[ i ] <= 0) spacing[ i ] = 1.0f; } if(i<3) { origin[ i ] = m_ImageIO->GetOrigin( i ); } } ioRegion.SetSize( ioSize ); ioRegion.SetIndex( ioStart ); MITK_INFO << "ioRegion: " << ioRegion << std::endl; m_ImageIO->SetIORegion( ioRegion ); void* buffer = new unsigned char[m_ImageIO->GetImageSizeInBytes()]; m_ImageIO->Read( buffer ); image->Initialize( MakePixelType(m_ImageIO), ndim, dimensions ); image->SetImportChannel( buffer, 0, Image::ManageMemory ); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3? 3 : ndim); for ( i=0; i < itkDimMax3; ++i) for( j=0; j < itkDimMax3; ++j ) matrix[i][j] = m_ImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D* slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false,false,false); MITK_INFO << slicedGeometry->GetCornerPoint(true,true,true); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: "<< image->GetPixelType().GetNumberOfComponents() << std::endl; const itk::MetaDataDictionary& dictionary = m_ImageIO->GetMetaDataDictionary(); for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { std::string key = std::string("meta.") + iter->first; if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { std::string value = dynamic_cast<itk::MetaDataObject<std::string>*>(iter->second.GetPointer())->GetMetaDataObjectValue(); image->SetProperty(key.c_str(), mitk::StringProperty::New(value)); } } MITK_INFO << "...finished!" << std::endl; try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } result.push_back(image.GetPointer()); return result; }
void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension=dimension; if(!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for(i=0;i<dimension;++i) { if(dimensions[i]<1) itkExceptionMacro(<< "invalid dimension[" << i << "]: " << dimensions[i]); } // create new array since the old was deleted m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; // initialize the first four dimensions to 1, the remaining 4 to 0 FILL_C_ARRAY(m_Dimensions, 4, 1u); FILL_C_ARRAY((m_Dimensions+4), 4, 0u); // copy in the passed dimension information std::memcpy(m_Dimensions, dimensions, sizeof(unsigned int)*m_Dimension); this->m_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); for(i=0;i<4;++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize (i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if(m_LargestPossibleRegion.GetNumberOfPixels()==0) { delete [] m_Dimensions; m_Dimensions = NULL; return; } for( unsigned int i=0u; i<channels; i++) { this->m_ImageDescriptor->AddNewChannel( type ); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); if(dimension>=4) { TimeBounds timebounds; timebounds[0] = 0.0; timebounds[1] = 1.0; slicedGeometry->SetTimeBounds(timebounds); } ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->CountTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull=NULL; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels()*m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels()*m_Dimensions[3]*m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; }
bool RenderingManager::InitializeView(vtkRenderWindow * renderWindow, const BaseGeometry * geometry, bool initializeGlobalTimeSNC) { ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(dynamic_cast<BaseGeometry *>(geometry->Clone().GetPointer()), 1); return InitializeView(renderWindow, propTimeGeometry, initializeGlobalTimeSNC); }
mitk::Image::Pointer mitk::PicFileReader::CreateImage() { Image::Pointer output = Image::New(); std::string fileName = this->GetLocalFileName(); mitkIpPicDescriptor *header = mitkIpPicGetHeader(const_cast<char *>(fileName.c_str()), NULL); if (!header) { mitkThrow() << "File could not be read."; } header = mitkIpPicGetTags(const_cast<char *>(fileName.c_str()), header); int channels = 1; mitkIpPicTSV_t *tsv; if ((tsv = mitkIpPicQueryTag(header, "SOURCE HEADER")) != NULL) { if (tsv->n[0] > 1e+06) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag(header, "SOURCE HEADER"); mitkIpPicFreeTag(tsvSH); } } if ((tsv = mitkIpPicQueryTag(header, "ICON80x80")) != NULL) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag(header, "ICON80x80"); mitkIpPicFreeTag(tsvSH); } if ((tsv = mitkIpPicQueryTag(header, "VELOCITY")) != NULL) { ++channels; mitkIpPicDelTag(header, "VELOCITY"); } if (header == NULL || header->bpe == 0) { mitkThrow() << " Could not read file " << fileName; } // if pic image only 2D, the n[2] value is not initialized unsigned int slices = 1; if (header->dim == 2) { header->n[2] = slices; } // First initialize the geometry of the output image by the pic-header SlicedGeometry3D::Pointer slicedGeometry = mitk::SlicedGeometry3D::New(); PicHelper::InitializeEvenlySpaced(header, header->n[2], slicedGeometry); // if pic image only 3D, the n[3] value is not initialized unsigned int timesteps = 1; if (header->dim > 3) { timesteps = header->n[3]; } slicedGeometry->ImageGeometryOn(); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, timesteps); // Cast the pic descriptor to ImageDescriptor and initialize the output output->Initialize(CastToImageDescriptor(header)); output->SetTimeGeometry(timeGeometry); mitkIpPicFree(header); return output; }
void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim, int pDim) { if(vtkimagedata==NULL) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;i<m_Dimension;++i) tmpDimensions[i]=vtkimagedata->GetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(pDim>=0) { tmpDimensions[1]=pDim; if(m_Dimension < 2) m_Dimension = 2; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } switch ( vtkimagedata->GetScalarType() ) { case VTK_BIT: case VTK_CHAR: //pixelType.Initialize(typeid(char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<char>(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_CHAR: //pixelType.Initialize(typeid(unsigned char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<unsigned char>(), m_Dimension, tmpDimensions, channels); break; case VTK_SHORT: //pixelType.Initialize(typeid(short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<short>(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_SHORT: //pixelType.Initialize(typeid(unsigned short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<unsigned short>(), m_Dimension, tmpDimensions, channels); break; case VTK_INT: //pixelType.Initialize(typeid(int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<int>(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_INT: //pixelType.Initialize(typeid(unsigned int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<unsigned int>(), m_Dimension, tmpDimensions, channels); break; case VTK_LONG: //pixelType.Initialize(typeid(long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<long>(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_LONG: //pixelType.Initialize(typeid(unsigned long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<unsigned long>(), m_Dimension, tmpDimensions, channels); break; case VTK_FLOAT: //pixelType.Initialize(typeid(float), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<float>(), m_Dimension, tmpDimensions, channels); break; case VTK_DOUBLE: //pixelType.Initialize(typeid(double), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType<double>(), m_Dimension, tmpDimensions, channels); break; default: break; } /* Initialize(pixelType, m_Dimension, tmpDimensions, channels); */ const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; double vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast<PlaneGeometry*>(slicedGeometry->GetGeometry2D(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete [] tmpDimensions; }
void mitk::ExtrudedContour::BuildGeometry() { if(m_Contour.IsNull()) return; // Initialize(1); Vector3D nullvector; nullvector.Fill(0.0); float xProj[3]; unsigned int i; unsigned int numPts = 20; //m_Contour->GetNumberOfPoints(); mitk::Contour::PathPointer path = m_Contour->GetContourPath(); mitk::Contour::PathType::InputType cstart = path->StartOfInput(); mitk::Contour::PathType::InputType cend = path->EndOfInput(); mitk::Contour::PathType::InputType cstep = (cend-cstart)/numPts; mitk::Contour::PathType::InputType ccur; // Part I: guarantee/calculate legal vectors m_Vector.Normalize(); itk2vtk(m_Vector, m_Normal); // check m_Vector if(mitk::Equal(m_Vector, nullvector) || m_AutomaticVectorGeneration) { if ( m_AutomaticVectorGeneration == false) itkWarningMacro("Extrusion vector is 0 ("<< m_Vector << "); trying to use normal of polygon"); vtkPoints *loopPoints = vtkPoints::New(); //mitk::Contour::PointsContainerIterator pointsIt = m_Contour->GetPoints()->Begin(); double vtkpoint[3]; unsigned int i=0; for(i=0, ccur=cstart; i<numPts; ++i, ccur+=cstep) { itk2vtk(path->Evaluate(ccur), vtkpoint); loopPoints->InsertNextPoint(vtkpoint); } // Make sure points define a loop with a m_Normal vtkPolygon::ComputeNormal(loopPoints, m_Normal); loopPoints->Delete(); vtk2itk(m_Normal, m_Vector); if(mitk::Equal(m_Vector, nullvector)) { itkExceptionMacro("Cannot calculate normal of polygon"); } } // check m_RightVector if((mitk::Equal(m_RightVector, nullvector)) || (mitk::Equal(m_RightVector*m_Vector, 0.0)==false)) { if(mitk::Equal(m_RightVector, nullvector)) { itkDebugMacro("Right vector is 0. Calculating."); } else { itkWarningMacro("Right vector ("<<m_RightVector<<") not perpendicular to extrusion vector "<<m_Vector<<": "<<m_RightVector*m_Vector); } // calculate a legal m_RightVector if( mitk::Equal( m_Vector[1], 0.0f ) == false ) { FillVector3D( m_RightVector, 1.0f, -m_Vector[0]/m_Vector[1], 0.0f ); m_RightVector.Normalize(); } else { FillVector3D( m_RightVector, 0.0f, 1.0f, 0.0f ); } } // calculate down-vector VnlVector rightDV = m_RightVector.GetVnlVector(); rightDV.normalize(); vnl2vtk(rightDV, m_Right); VnlVector downDV = vnl_cross_3d( m_Vector.GetVnlVector(), rightDV ); downDV.normalize(); vnl2vtk(downDV, m_Down); // Part II: calculate plane as base for extrusion, project the contour // on this plane and store as polygon for IsInside test and BoundingBox calculation // initialize m_ProjectionPlane, yet with origin at 0 m_ProjectionPlane->InitializeStandardPlane(rightDV, downDV); // create vtkPolygon from contour and simultaneously determine 2D bounds of // contour projected on m_ProjectionPlane //mitk::Contour::PointsContainerIterator pointsIt = m_Contour->GetPoints()->Begin(); m_Polygon->Points->Reset(); m_Polygon->Points->SetNumberOfPoints(numPts); m_Polygon->PointIds->Reset(); m_Polygon->PointIds->SetNumberOfIds(numPts); mitk::Point2D pt2d; mitk::Point3D pt3d; mitk::Point2D min, max; min.Fill(ScalarTypeNumericTraits::max()); max.Fill(ScalarTypeNumericTraits::min()); xProj[2]=0.0; for(i=0, ccur=cstart; i<numPts; ++i, ccur+=cstep) { pt3d.CastFrom(path->Evaluate(ccur)); m_ProjectionPlane->Map(pt3d, pt2d); xProj[0]=pt2d[0]; if(pt2d[0]<min[0]) min[0]=pt2d[0]; if(pt2d[0]>max[0]) max[0]=pt2d[0]; xProj[1]=pt2d[1]; if(pt2d[1]<min[1]) min[1]=pt2d[1]; if(pt2d[1]>max[1]) max[1]=pt2d[1]; m_Polygon->Points->SetPoint(i, xProj); m_Polygon->PointIds->SetId(i, i); } // shift parametric origin to (0,0) for(i=0; i<numPts; ++i) { double * pt = this->m_Polygon->Points->GetPoint(i); pt[0]-=min[0]; pt[1]-=min[1]; itkDebugMacro( << i << ": (" << pt[0] << "," << pt[1] << "," << pt[2] << ")" ); } this->m_Polygon->GetBounds(m_ProjectedContourBounds); //m_ProjectedContourBounds[4]=-1.0; m_ProjectedContourBounds[5]=1.0; // calculate origin (except translation along the normal) and bounds // of m_ProjectionPlane: // origin is composed of the minimum x-/y-coordinates of the polygon, // bounds from the extent of the polygon, both after projecting on the plane mitk::Point3D origin; m_ProjectionPlane->Map(min, origin); ScalarType bounds[6]={0, max[0]-min[0], 0, max[1]-min[1], 0, 1}; m_ProjectionPlane->SetBounds(bounds); m_ProjectionPlane->SetOrigin(origin); // Part III: initialize geometry if(m_ClippingGeometry.IsNotNull()) { ScalarType min_dist=ScalarTypeNumericTraits::max(), max_dist=ScalarTypeNumericTraits::min(), dist; unsigned char i; for(i=0; i<8; ++i) { dist = m_ProjectionPlane->SignedDistance( m_ClippingGeometry->GetCornerPoint(i) ); if(dist<min_dist) min_dist=dist; if(dist>max_dist) max_dist=dist; } //incorporate translation along the normal into origin origin = origin+m_Vector*min_dist; m_ProjectionPlane->SetOrigin(origin); bounds[5]=max_dist-min_dist; } else bounds[5]=20; itk2vtk(origin, m_Origin); mitk::Geometry3D::Pointer g3d = GetGeometry( 0 ); assert( g3d.IsNotNull() ); g3d->SetBounds(bounds); g3d->SetIndexToWorldTransform(m_ProjectionPlane->GetIndexToWorldTransform()); g3d->TransferItkToVtkTransform(); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(g3d,1); SetTimeGeometry(timeGeometry); }