Exemple #1
0
/// Calculates The null pace for matrix M and places it in Vk
/// returns the number of columns in Vk
unsigned Utility::kernal( Ravelin::MatrixNd& M,Ravelin::MatrixNd& null_M){
  unsigned size_null_space = 0;
  Ravelin::MatrixNd U,V;
  Ravelin::VectorNd S;

  // SVD decomp to retrieve nullspace of Z'AZ
  LA_.svd(M,U,S,V);
  if(S.rows() != 0){
    // Calculate the tolerance for ruling that a singular value is supposed to be zero
    double ZERO_TOL = std::numeric_limits<double>::epsilon() * M.rows() * S[0];
    // Count Zero singular values
    for(int i = S.rows()-1;i>=0;i--,size_null_space++)
      if(S[i] > ZERO_TOL)
        break;
    // get the nullspace
    null_M.set_zero(V.rows(),size_null_space);
    V.get_sub_mat(0,V.rows(),V.columns()-size_null_space,V.columns(),null_M);
  }
  return size_null_space;
}
Exemple #2
0
void Robot::set_model_state(const Ravelin::VectorNd& q,const Ravelin::VectorNd& qd){
  Ravelin::VectorNd set_q,set_qd;
  if(get_data<Ravelin::VectorNd>("generalized_q", set_q)){
    set_q.set_sub_vec(0,q);
    _abrobot->set_generalized_coordinates_euler(set_q);
  }

  if(qd.rows() > 0)
  if(get_data<Ravelin::VectorNd>("generalized_qd", set_qd)){
    set_qd.set_sub_vec(0,qd);
    _abrobot->set_generalized_velocity(Ravelin::DynamicBodyd::eSpatial,set_qd);
  }
}
Exemple #3
0
bool Utility::eval_cubic_spline(const Ravelin::VectorNd& coefs,const Ravelin::VectorNd& t_limits,double t,
                       double& X, double& Xd, double& Xdd){
  int k=0;
  while(t >= t_limits[k+1]){
    k++;
    if(k == t_limits.rows()-1)
      return false;
  }
  // Spline always evaluates from t[0] = 0 in interval
  // offset t to start of interval to find t in spline
  t -= t_limits[0];
  
  X    = t*t*t*coefs[k*4] + t*t*coefs[k*4+1] + t*coefs[k*4+2] + coefs[k*4+3];
  Xd   = 3*t*t*coefs[k*4] + 2*t*coefs[k*4+1] +   coefs[k*4+2];
  Xdd  =   6*t*coefs[k*4] +   2*coefs[k*4+1] ;
  
  return true;
}
Exemple #4
0
void loop(){
boost::shared_ptr<Pacer::Controller> ctrl(ctrl_weak_ptr);
  static double start_time = t;
  
  const  std::vector<std::string>
  eef_names_ = ctrl->get_data<std::vector<std::string> >("init.end-effector.id");
  
  int NUM_FEET = eef_names_.size();
  
  boost::shared_ptr<Ravelin::Pose3d> base_frame( new Ravelin::Pose3d(ctrl->get_data<Ravelin::Pose3d>("base_link_frame")));
  
  Ravelin::VectorNd qd  = ctrl->get_joint_generalized_value(Pacer::Controller::velocity);
  Ravelin::VectorNd qdd = ctrl->get_joint_generalized_value(Pacer::Controller::acceleration);
  
  int NUM_JOINT_DOFS = qd.rows();
  
  // Initialize end effectors
  Ravelin::VectorNd local_q = ctrl->get_generalized_value(Pacer::Controller::position);

#ifdef USE_OSG_DISPLAY
  // 1 w/ base position
  ctrl->set_model_state(local_q);
  for(unsigned i=0;i<NUM_FEET;i++){
    Ravelin::Pose3d foot_pose(Ravelin::Matrix3d(link->get_pose()->q)*Ravelin::Matrix3d(0,0,-1, -1,0,0, 0,1,0),link->get_pose()->x,link->get_pose()->rpose);
    foot_pose.update_relative_pose(Pacer::GLOBAL);
    Utility::visualize.push_back( Pacer::VisualizablePtr( new Pacer::Pose(foot_pose,0.8)));    
    OUT_LOG(logERROR) << eef_names_[i] << "-orientation: " << t << " " << foot_pose.q;
  }
#endif

  // q w/o base position
  local_q.set_sub_vec(NUM_JOINT_DOFS,Utility::pose_to_vec(Ravelin::Pose3d()));
  ctrl->set_model_state(local_q);
  for(unsigned i=0;i<NUM_FEET;i++){
    Ravelin::Origin3d xd,xdd;
    //angular
    Ravelin::Origin3d rpy,axd,axdd;
   

    // Calc jacobian for AB at this EEF
    Ravelin::MatrixNd J = ctrl->calc_link_jacobian(local_q,eef_names_[i]);
    
    // Now that model state is set ffrom jacobian calculation
    const boost::shared_ptr<Ravelin::RigidBodyd>  link = ctrl->get_link(eef_names_[i]);
   
    
    Ravelin::Pose3d foot_pose(Ravelin::Matrix3d(link->get_pose()->q)*Ravelin::Matrix3d(0,0,-1, -1,0,0, 0,1,0),link->get_pose()->x,link->get_pose()->rpose);
    foot_pose.update_relative_pose(Pacer::GLOBAL);
    

//    Ravelin::Origin3d x(Ravelin::Pose3d::transform_point(Pacer::GLOBAL,Ravelin::Vector3d(0,0,0,link->get_pose())).data());
    bool new_var = ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".state.x",foot_pose.x);
    ctrl->set_data<Ravelin::Quatd>(eef_names_[i]+".state.q",foot_pose.q);
    
    J.block(0,3,0,NUM_JOINT_DOFS).mult(qd,xd);
    J.block(0,3,0,NUM_JOINT_DOFS).mult(qdd,xdd);
    J.block(3,6,0,NUM_JOINT_DOFS).mult(qd,axd);
    J.block(3,6,0,NUM_JOINT_DOFS).mult(qdd,axdd);
    
    ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".state.xd",xd);
    ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".state.xdd",xdd);
    ctrl->set_foot_value(eef_names_[i],Pacer::Controller::position,foot_pose.x);
    ctrl->set_foot_value(eef_names_[i],Pacer::Controller::velocity,xd);
    ctrl->set_foot_value(eef_names_[i],Pacer::Controller::acceleration,xdd);
    ctrl->set_foot_value(eef_names_[i],Pacer::Controller::load,Ravelin::Origin3d(0,0,0));

    if(new_var){
      ctrl->set_data<Ravelin::Quatd>(eef_names_[i]+".init.q",foot_pose.q);
      ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".init.x",foot_pose.x);
      ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".init.xd",xd);
    }

    ctrl->set_data<bool>(eef_names_[i]+".stance",false);
  }
  
  if(start_time == t){
    local_q.segment(0,qd.rows()) = Ravelin::VectorNd::zero(qd.rows());
    ctrl->set_model_state(local_q);
    std::vector<Ravelin::Origin3d> x1(NUM_FEET) ,x2(NUM_FEET);

    for(unsigned i=0;i<NUM_FEET;i++){
      Ravelin::Origin3d x,base_x;
      ctrl->get_data<Ravelin::Origin3d>(eef_names_[i]+".init.x",x);
      base_x = x;
      base_x[2] = 0;
      ctrl->set_data<Ravelin::Origin3d>(eef_names_[i]+".base",base_x);
      x2[i] = base_x;
      const boost::shared_ptr<Ravelin::RigidBodyd>  link = ctrl->get_link(eef_names_[i]);
      x1[i] = Ravelin::Origin3d(Ravelin::Pose3d::transform_point(Pacer::GLOBAL,Ravelin::Vector3d(0,0,0,link->get_pose())).data());
    }
    
    std::fill(local_q.segment(0,qd.rows()).begin(),local_q.segment(0,qd.rows()).end(),M_PI);
    ctrl->set_model_state(local_q);

    for(unsigned i=0;i<NUM_FEET;i++){
      const boost::shared_ptr<Ravelin::RigidBodyd>  link = ctrl->get_link(eef_names_[i]);
      x2[i] = Ravelin::Origin3d(Ravelin::Pose3d::transform_point(Pacer::GLOBAL,Ravelin::Vector3d(0,0,0,link->get_pose())).data());

      // write in maximum reach from limb base
      double reach = (x1[i]-x2[i]).norm();
      ctrl->set_data<double>(eef_names_[i]+".reach",reach*0.95);
    }
  }
}
Exemple #5
0
void Utility::check_finite(Ravelin::VectorNd& v){
  for(int i=0;i<v.rows();i++)
    if(!std::isfinite(v[i]))
      v[i] = 0;
}
Exemple #6
0
void Utility::calc_cubic_spline_coefs(const Ravelin::VectorNd& T_,const Ravelin::VectorNd& X,
                                           const Ravelin::Vector2d& Xd, Ravelin::VectorNd& B){
  static Ravelin::MatrixNd A;

  // Spline always solves from t[0] = 0 in interval
  static Ravelin::VectorNd T;
  T = T_;
  for(int i=0;i<T.rows();i++)
    T[i] -= T_[0];

  assert(T.rows() == X.rows());

  int N = X.rows(); //n_control_points
  // N_VIRTUAL_KNOTS= 2
  // N_SPLINES      = num_knots+N_VIRTUAL_KNOTS - 1
  // N_CONSTRAINTS  = num_knots*3 + num_knots + 2 + 2
  // N_COEFS        = 4*N_SPLINES
  B.set_zero(4*(N+1));
  A.set_zero(4*(N+1),4*(N+1));

  // ---------- start constraint ----------
  B[0] =     0;
  B[1] =  Xd[0]; // Velocity clamped spline
  B[2] =   X[0];
  // xdd
  A(0,0) = 6*T[0];
  A(0,1) = 2;
  // xd
  A(1,0) = 3*T[0]*T[0];
  A(1,1) = 2*T[0];
  A(1,2) = 1;
  // x
  A(2,0) = T[0]*T[0]*T[0];
  A(2,1) = T[0]*T[0];
  A(2,2) = T[0];
  A(2,3) = 1;

  // ---------- start Virtual constraints ----------
  double tv0 = T[0] + (T[1]-T[0])/1000.0;
  // xdd
  A(3,0) = 6*tv0;
  A(3,1) = 2;
  A(3,4) = -6*tv0;
  A(3,5) = -2;
  // xd
  A(4,0) = 3*tv0*tv0;
  A(4,1) = 2*tv0;
  A(4,2) = 1;
  A(4,4) = -3*tv0*tv0;
  A(4,5) = -2*tv0;
  A(4,6) = -1;
  // x
  A(5,0) = tv0*tv0*tv0;
  A(5,1) = tv0*tv0;
  A(5,2) = tv0;
  A(5,3) = 1;
  A(5,4) = -tv0*tv0*tv0;
  A(5,5) = -tv0*tv0;
  A(5,6) = -tv0;
  A(5,7) = -1;

  // ---------- End Virtual Constraint ----------
  double tvN = T[N-1] - (T[N-1]-T[N-2])/1000.0;
  // xddd
//  A(A.rows()-6,A.columns()-8) = 6;
//  A(A.rows()-6,A.columns()-4) = -6;
  // xdd
  A(A.rows()-6,A.columns()-8) = 6*tvN;
  A(A.rows()-6,A.columns()-7) = 2;
  A(A.rows()-6,A.columns()-4) = -6*tvN;
  A(A.rows()-6,A.columns()-3) = -2;
  // xd
  A(A.rows()-5,A.columns()-8) = 3*tvN*tvN;
  A(A.rows()-5,A.columns()-7) = 2*tvN;
  A(A.rows()-5,A.columns()-6) = 1;
  A(A.rows()-5,A.columns()-4) = -3*tvN*tvN;
  A(A.rows()-5,A.columns()-3) = -2*tvN;
  A(A.rows()-5,A.columns()-2) = -1;
  // x
  A(A.rows()-4,A.columns()-8) = tvN*tvN*tvN;
  A(A.rows()-4,A.columns()-7) = tvN*tvN;
  A(A.rows()-4,A.columns()-6) = tvN;
  A(A.rows()-4,A.columns()-5) = 1;
  A(A.rows()-4,A.columns()-4) = -tvN*tvN*tvN;
  A(A.rows()-4,A.columns()-3) = -tvN*tvN;
  A(A.rows()-4,A.columns()-2) = -tvN;
  A(A.rows()-4,A.columns()-1) = -1;

  // ---------- End constraint ----------
  B[B.rows()-3] = 0;
  B[B.rows()-2] = Xd[1]; // Velocity clamped spline
  B[B.rows()-1] = X[N-1];
  // xdd
  A(A.rows()-3,A.columns()-4) = 6*T[N-1];
  A(A.rows()-3,A.columns()-3) = 2;
  // xddd
//  A(A.rows()-3,A.columns()-4) = 6;
  // xd
  A(A.rows()-2,A.columns()-4) = 3*T[N-1]*T[N-1];
  A(A.rows()-2,A.columns()-3) = 2*T[N-1];
  A(A.rows()-2,A.columns()-2) = 1;
  // x
  A(A.rows()-1,A.columns()-4) = T[N-1]*T[N-1]*T[N-1];
  A(A.rows()-1,A.columns()-3) = T[N-1]*T[N-1];
  A(A.rows()-1,A.columns()-2) = T[N-1];
  A(A.rows()-1,A.columns()-1) = 1;

  // ---------- Fill in continuity conponents at each of N-2 knots ----------
  for(int i=0;i<N-2;i++){
    // Xdd continuity
    // \ddot{P}_i - \ddot{P}_{i+1} = 0
    A(5 + 4*i + 1,3 + 4*i     + 1) = 6*T[i+1];
    A(5 + 4*i + 1,3 + 4*i     + 2) = 2;
    A(5 + 4*i + 1,3 + 4*(i+1) + 1) = -6*T[i+1];
    A(5 + 4*i + 1,3 + 4*(i+1) + 2) = -2;

    // Xd continuity
    // \dot{P}_i - \dot{P}_{i+1} = 0
    A(5 + 4*i + 2,3 + 4*i     + 1) = 3*T[i+1]*T[i+1];
    A(5 + 4*i + 2,3 + 4*i     + 2) = 2*T[i+1];
    A(5 + 4*i + 2,3 + 4*i     + 3) = 1;
    A(5 + 4*i + 2,3 + 4*(i+1) + 1) = -3*T[i+1]*T[i+1];
    A(5 + 4*i + 2,3 + 4*(i+1) + 2) = -2*T[i+1];
    A(5 + 4*i + 2,3 + 4*(i+1) + 3) = -1;

    // X continuity
    // P_i - P_{i+1} = 0
    A(5 + 4*i + 3,3 + 4*i     + 1) = T[i+1]*T[i+1]*T[i+1];
    A(5 + 4*i + 3,3 + 4*i     + 2) = T[i+1]*T[i+1];
    A(5 + 4*i + 3,3 + 4*i     + 3) = T[i+1];
    A(5 + 4*i + 3,3 + 4*i     + 4) = 1;
    A(5 + 4*i + 3,3 + 4*(i+1) + 1) = -T[i+1]*T[i+1]*T[i+1];
    A(5 + 4*i + 3,3 + 4*(i+1) + 2) = -T[i+1]*T[i+1];
    A(5 + 4*i + 3,3 + 4*(i+1) + 3) = -T[i+1];
    A(5 + 4*i + 3,3 + 4*(i+1) + 4) = -1;

    // P_i = X[i]
    B[5 + 4*i + 4] = X[i+1];
    A(5 + 4*i + 4,3 + 4*(i+1) + 1) = T[i+1]*T[i+1]*T[i+1];
    A(5 + 4*i + 4,3 + 4*(i+1) + 2) = T[i+1]*T[i+1];
    A(5 + 4*i + 4,3 + 4*(i+1) + 3) = T[i+1];
    A(5 + 4*i + 4,3 + 4*(i+1) + 4) = 1;
  }

  workv_ = B;

  // Solve linear system (A is corrupted and workv_ has result)
  LA_.solve_fast(A,workv_);

  // Exclude virtual points from returned spline coeficients
  workv_.get_sub_vec(4,workv_.size()-4,B);
}