void Pulsar::CalibratorSpectrum::prepare (const Archive* data) { Reference::To<Archive> clone; if (plot_Ip && data->get_state() != Signal::Stokes) { clone = data -> clone(); clone->convert_state(Signal::Stokes); data = clone; } vector< vector< Estimate<double> > > hi; vector< vector< Estimate<double> > > lo; unsigned nchan = data->get_nchan(); unsigned npol = data->get_npol(); Reference::To<const Integration> subint = get_Integration(data, isubint); ReferenceCalibrator::get_levels (subint, nchan, hi, lo); assert (hi.size() == npol); unsigned ipol, ipt, npt = hi[0].size(); if (!plot_total) for (ipol=0; ipol<npol; ipol++) for (ipt=0; ipt<npt; ipt++) hi[ipol][ipt] -= lo[ipol][ipt]; if (plot_low) for (ipol=0; ipol<npol; ipol++) for (ipt=0; ipt<npt; ipt++) hi[ipol][ipt] = lo[ipol][ipt]; if (plot_Ip) { for (ipt=0; ipt<npt; ipt++) if (hi[0][ipt].get_variance() != 0) hi[1][ipt] = sqrt( sqr(hi[1][ipt]) + sqr(hi[2][ipt]) + sqr(hi[3][ipt]) ); npol = 2; } double cfreq = data->get_centre_frequency(); double bw = data->get_bandwidth(); plotter.clear (); plotter.set_xrange (cfreq-0.5*bw, cfreq+0.5*bw); for (ipol=0; ipol<npol; ipol++) plotter.add_plot (hi[ipol]); get_frame()->get_y_scale()->set_minmax (plotter.get_y_min(), plotter.get_y_max()); }
void psrflux::set_standard(Archive *arch) { // Convert stdarch = arch->total(); stdarch->convert_state(Signal::Intensity); // Set up DS calculation Reference::To<StandardFlux> flux = new StandardFlux; flux->set_fit_shift(true); // always init with true, choose later flux->set_standard(stdarch->get_Profile(0,0,0)); ds.set_flux_method(flux); }
int main (int argc, char *argv[]) try { bool verbose = false; char* metafile = 0; string ulpath; bool save = false; string ext; bool tscr = false; int tscr_fac = 0; bool fscr = false; int fscr_fac = 0; bool bscr = false; int bscr_fac = 0; bool newdm = false; double dm = 0.0; bool scattered_power_correction = false; bool defaraday = false; bool newrm = false; double rm = 0.0; bool reset_weights = false; float new_weight = 1.0; float smear_dc = 0.0; bool rotate = false; double rphase = 0.0; bool dedisperse = false; bool dededisperse = false; bool pscr = false; bool invint = false; bool stokesify = false; bool unstokesify = false; bool flipsb = false; bool flip_freq = false; double flip_freq_mhz = 0.0; Pulsar::Parameters* new_eph = 0; string command = "pam"; char* archive_class = 0; int new_nchn = 0; int new_nsub = 0; int new_nbin = 0; float tsub = 0.0; bool circ = false; bool lin = false; unsigned ronsub = 0; bool cbppo = false; bool cbpao = false; bool cblpo = false; bool cblao = false; int subint_extract_start = -1; int subint_extract_end = -1; bool new_cfreq = false; double new_fr = 0.0; Signal::Source new_type = Signal::Unknown; string instrument; bool reverse_freqs = false; string site; string name; float mult = -1.0; double new_folding_period = -1.0; bool update_dm_from_eph = false; double aux_rm = 0.0; Reference::To<Pulsar::IntegrationOrder> myio; Reference::To<Pulsar::Receiver> install_receiver; Pulsar::ReflectStokes reflections; int c = 0; const int TYPE = 1208; const int INST = 1209; const int REVERSE_FREQS = 1210; const int SITE = 1211; const int NAME = 1212; const int DD = 1213; const int RR = 1214; const int SPC = 1215; const int RM = 1216; const int MULT = 1218; const int PERIOD=1219; const int SS = 1220; const int FLIP = 1221; const int UPDATE_DM = 1222; const int AUX_RM = 1223; while (1) { int options_index = 0; static struct option long_options[] = { {"setnchn", 1, 0, 200}, {"setnsub", 1, 0, 201}, {"setnbin", 1, 0, 202}, {"binphsperi", 1, 0, 203}, {"binphsasc", 1, 0, 204}, {"binlngperi", 1, 0, 205}, {"binlngasc", 1, 0, 206}, {"receiver", 1, 0, 207}, {"settsub", 1, 0, 208}, {"type", 1, 0, TYPE}, {"inst", 1, 0, INST}, {"reverse_freqs",no_argument,0,REVERSE_FREQS}, {"flip", 1 ,0, FLIP}, {"site", 1, 0, SITE}, {"name", 1, 0, NAME}, {"DD", no_argument, 0,DD}, {"RR", no_argument, 0,RR}, {"RM", required_argument,0,RM}, {"spc", no_argument, 0,SPC}, {"mult", required_argument,0,MULT}, {"period", required_argument,0,PERIOD}, {"SS", no_argument, 0,SS}, {"update_dm", no_argument, 0,UPDATE_DM}, {"aux_rm", required_argument,0,AUX_RM}, {0, 0, 0, 0} }; c = getopt_long(argc, argv, "hqvViM:mn:a:e:E:TFpIt:f:b:d:o:s:r:u:w:DSBLCx:R:", long_options, &options_index); if (c == -1) break; switch (c) { case 'h': usage(); return (0); break; case 'q': Pulsar::Archive::set_verbosity(0); break; case 'v': verbose = true; Pulsar::Archive::set_verbosity(2); break; case 'V': verbose = true; Pulsar::Archive::set_verbosity(3); break; case 'i': cout << "$Id: pam.C,v 1.101 2010/10/05 23:59:50 jonathan_khoo Exp $" << endl; return 0; case 'm': save = true; break; case 'M': metafile = optarg; break; case 'L': lin = true; break; case 'C': circ = true; break; case 'a': archive_class = optarg; break; case 'e': ext = optarg; if( !ext.empty() ) save = true; break; case 'E': try { new_eph = factory<Pulsar::Parameters> (optarg); } catch (Error& error) { cerr << "Could not load new ephemeris from " << optarg << endl; return -1; } command += " -E"; break; case 'T': tscr = true; command += " -T"; break; case 'F': fscr = true; command += " -F"; break; case 'p': pscr = true; command += " -p"; break; case 'I': invint = true; pscr = false; command += " -I"; break; case 'f': fscr = true; if (sscanf(optarg, "%d", &fscr_fac) != 1) { cout << "That is not a valid fscrunch factor" << endl; return -1; } command += " -f "; command += optarg; break; case 'n': reflections.add_reflection( optarg[0] ); command += " -n "; command += optarg; break; case 'o': new_cfreq = true; if (sscanf(optarg, "%lf", &new_fr) != 1) { cout << "That is not a valid centre frequency" << endl; return -1; } command += " -o "; command += optarg; break; case 't': tscr = true; if (sscanf(optarg, "%d", &tscr_fac) != 1) { cout << "That is not a valid tscrunch factor" << endl; return -1; } command += " -t "; command += optarg; break; case 'b': bscr = true; if (sscanf(optarg, "%d", &bscr_fac) != 1) { cout << "That is not a valid bscrunch factor" << endl; return -1; } if (bscr_fac <= 0) { cout << "That is not a valid bscrunch factor" << endl; return -1; } command += " -b "; command += optarg; break; case 'd': newdm = true; if (sscanf(optarg, "%lf", &dm) != 1) { cout << "That is not a valid dispersion measure" << endl; return -1; } command += " -d "; command += optarg; break; case 'D': dedisperse = true; command += " -D "; break; case 'R': if (sscanf(optarg, "%lf", &rm) != 1) { cout << "That is not a valid rotation measure" << endl; return -1; } newrm = true; defaraday = true; command += " -R "; command += optarg; break; case 's': if (sscanf(optarg, "%f", &smear_dc) != 1) { cout << "That is not a valid smearing duty cycle" << endl; return -1; } command += " -s "; command += optarg; break; case 'r': rotate = true; if (sscanf(optarg, "%lf", &rphase) != 1) { cout << "That is not a valid rotation phase" << endl; return -1; } if (rphase <= -1.0 || rphase >= 1.0) { cout << "That is not a valid rotation phase" << endl; return -1; } command += " -r "; command += optarg; break; case 'u': ulpath = optarg; if( !ulpath.empty() ) { save = true; if (ulpath.substr(ulpath.length()-1,1) != "/") ulpath += "/"; } break; case 'w': reset_weights = true; if (sscanf(optarg, "%f", &new_weight) != 1) { cout << "That is not a valid weight" << endl; return -1; } command += " -w "; command += optarg; break; case 'S': stokesify = true; break; case SS: unstokesify = true; break; case 'B': flipsb = true; break; case 'x' : if (sscanf(optarg, "%d %d", &subint_extract_start, &subint_extract_end) !=2 ) { cout << "That is not a valid subint range" << endl; return -1; } subint_extract_end++; break; case 200: fscr = true; if (sscanf(optarg, "%d", &new_nchn) != 1) { cout << "That is not a valid number of channels" << endl; return -1; } if (new_nchn <= 0) { cout << "That is not a valid number of channels" << endl; return -1; } command += " --setnchn "; command += optarg; break; case 201: tscr = true; if (sscanf(optarg, "%d", &new_nsub) != 1) { cout << "That is not a valid number of subints" << endl; return -1; } if (new_nsub <= 0) { cout << "That is not a valid number of subints" << endl; return -1; } command += " --setnsub "; command += optarg; break; case 202: bscr = true; if (sscanf(optarg, "%d", &new_nbin) != 1) { cout << "That is not a valid number of bins" << endl; return -1; } if (new_nbin <= 0) { cout << "That is not a valid number of bins" << endl; return -1; } command += " --setnbin "; command += optarg; break; case 203: { if (cbpao || cblpo || cblao) { cerr << "You can only specify one re-ordering scheme!" << endl; return -1; } if (sscanf(optarg, "%ud", &ronsub) != 1) { cerr << "Invalid nsub given" << endl; return -1; } cbppo = true; break; } case 204: { if (cbppo || cblpo || cblao) { cerr << "You can only specify one re-ordering scheme!" << endl; return -1; } if (sscanf(optarg, "%ud", &ronsub) != 1) { cerr << "Invalid nsub given" << endl; return -1; } cbpao = true; break; } case 205: { if (cblao || cbppo || cbpao) { cerr << "You can only specify one re-ordering scheme!" << endl; return -1; } if (sscanf(optarg, "%ud", &ronsub) != 1) { cerr << "Invalid nsub given" << endl; return -1; } cblpo = true; break; } case 206: { if (cblpo || cbppo || cbpao) { cerr << "You can only specify one re-ordering scheme!" << endl; return -1; } if (sscanf(optarg, "%ud", &ronsub) != 1) { cerr << "Invalid nsub given" << endl; return -1; } cblao = true; break; } case 207: try { install_receiver = Pulsar::Receiver::load (optarg); break; } catch (Error& error) { cerr << "pam: Error loading Receiver from " << optarg << endl << error.get_message() << endl; return -1; } case 208: { if (sscanf(optarg, "%f", &tsub) != 1) { cerr << "Invalid tsub given" << endl; return -1; } tscr = true; break; } case TYPE: { string s = optarg; if(s=="Pulsar") new_type = Signal::Pulsar; else if(s=="PolnCal") new_type = Signal::PolnCal; else if(s=="FluxCalOn") new_type = Signal::FluxCalOn; else if(s=="FluxCalOff") new_type = Signal::FluxCalOff; else if(s=="Calibrator") new_type = Signal::Calibrator; else{ fprintf(stderr,"Unrecognised argument to --type: '%s'\n",optarg); exit(-1); } command += " --type " + s; } break; case INST: instrument = optarg; break; case REVERSE_FREQS: reverse_freqs = true; break; case SITE: site = optarg; break; case NAME: name = optarg; break; case DD: dededisperse = true; break; case RM: aux_rm = fromstring<double>(optarg); newrm = true; command += " --RM "; command += optarg; break; case SPC: scattered_power_correction = true; break; case MULT: mult = atof(optarg); break; case PERIOD: new_folding_period = fromstring<double>(optarg); break; case FLIP: flip_freq = true; flip_freq_mhz = atof(optarg); break; case UPDATE_DM: update_dm_from_eph = true; break; case AUX_RM: aux_rm = fromstring<double>(optarg); command += " --aux_rm "; command += optarg; break; default: cout << "Unrecognised option" << endl; } } if (verbose) cerr << "pam: parsing filenames" << endl; vector <string> filenames; if (metafile) stringfload (&filenames, metafile); else for (int ai=optind; ai<argc; ai++) dirglob (&filenames, argv[ai]); if (filenames.empty()) { cerr << "pam: no filenames were specified" << endl; exit(-1); } Reference::To<Pulsar::Archive> arch; if (!save) { cout << "Changes will not be saved. Use -m, -u or -e to write results to disk" << endl; } if (stokesify && unstokesify) { cerr << "pam: Both -S and --SS options were given. Poln state will not be changed!" << endl; stokesify = false; unstokesify = false; } int flip_option_count=0; if (flipsb) flip_option_count++; if (flip_freq) flip_option_count++; if (reverse_freqs) flip_option_count++; if (flip_option_count > 1) { cerr << "pam: More than one band-flip option was given, exiting." << endl; exit(-1); } for (unsigned i = 0; i < filenames.size(); i++) try { if (verbose) cerr << "Loading " << filenames[i] << endl; arch = Pulsar::Archive::load(filenames[i]); if( mult > 0.0 ){ for( unsigned isub=0; isub<arch->get_nsubint();isub++) for( unsigned ichan=0; ichan<arch->get_nchan();ichan++) for( unsigned ipol=0; ipol<arch->get_npol();ipol++) arch->get_Profile(isub,ipol,ichan)->scale( mult ); } if( new_folding_period > 0.0 ){ Pulsar::counter_drift( arch, new_folding_period, 0.0); for( unsigned isub=0; isub<arch->get_nsubint();isub++) arch->get_Integration(isub)->set_folding_period( new_folding_period ); } if (install_receiver) { if (verbose) cerr << "pam: Installing receiver: " << install_receiver->get_name() << " in archive" << endl; arch->add_extension (install_receiver); } if (lin || circ) { Pulsar::Receiver* receiver = arch->get<Pulsar::Receiver>(); if (!receiver) cerr << "No Receiver Extension in " << filenames[i] << endl; else { if (lin) { receiver->set_basis (Signal::Linear); cout << "Feed basis set to Linear" << endl; } if (circ) { receiver->set_basis (Signal::Circular); cout << "Feed basis set to Circular" << endl; } } } reflections.transform( arch ); if (new_cfreq) { double nc = arch->get_nchan(); double bw = arch->get_bandwidth(); double cw = bw / nc; double fr = new_fr - (bw / 2.0) + (cw / 2.0); for (unsigned i = 0; i < arch->get_nsubint(); i++) { for (unsigned j = 0; j < arch->get_nchan(); j++) { arch->get_Integration(i)->set_centre_frequency(j,(fr + (j*cw))); } } arch->set_centre_frequency(new_fr); } if( new_type != Signal::Unknown ) arch->set_type( new_type ); if( instrument != string() ){ Pulsar::Backend* b = arch->get<Pulsar::Backend>(); if( !b ) fprintf(stderr,"Could not change instrument name- archive does not have Backend extension\n"); else b->set_name(instrument); } if( site != string() ) arch->set_telescope( site ); if( name != string() ) arch->set_source( name ); if (new_eph) try { arch->set_ephemeris(new_eph); if (update_dm_from_eph) { update_dm(arch); } } catch (Error& error) { cerr << "Error while installing new ephemeris: " << error.get_message() << endl; continue; } if (flipsb) { for (unsigned i = 0; i < arch->get_nsubint(); i++) { vector<double> labels; labels.resize(arch->get_nchan()); for (unsigned j = 0; j < arch->get_nchan(); j++) { labels[j] = arch->get_Integration(i)->get_centre_frequency(j); } for (unsigned j = 0; j < arch->get_nchan(); j++) { double new_frequency = labels[labels.size()-1-j]; arch->get_Integration(i)->set_centre_frequency(j,new_frequency); } } arch->set_bandwidth(-1.0 * arch->get_bandwidth()); } if (flip_freq) { for (unsigned isub = 0; isub < arch->get_nsubint(); isub++) { Reference::To<Pulsar::Integration> subint = arch->get_Integration(isub); for (unsigned ichan = 0; ichan < arch->get_nchan(); ichan++) { double new_freq = flip_freq_mhz - (subint->get_centre_frequency(ichan) - flip_freq_mhz); subint->set_centre_frequency(ichan, new_freq); } } arch->set_bandwidth(-1.0 * arch->get_bandwidth()); } if( reverse_freqs ) { // Of course it would be nice to do this with pointers.... but oh well I guess copying will have to do HSK 27/8/04 unsigned nchan = arch->get_nchan(); for( unsigned isub=0; isub<arch->get_nsubint(); isub++){ for( unsigned ipol =0; ipol<arch->get_npol(); ipol++){ for( unsigned ichan=0; ichan<nchan/2; ichan++){ Reference::To<Pulsar::Profile> lo = arch->get_Profile(isub,ipol,ichan); Reference::To<Pulsar::Profile> tmp = lo->clone(); Reference::To<Pulsar::Profile> hi = arch->get_Profile(isub,ipol,nchan-1-ichan); lo->operator=(*hi); hi->operator=(*tmp); } } } arch->set_bandwidth( -1.0 * arch->get_bandwidth() ); } if (reset_weights) { arch->uniform_weight(new_weight); if (verbose) cout << "All profile weights set to " << new_weight << endl; } if (rotate) arch->rotate_phase (rphase); if (scattered_power_correction) { Pulsar::ScatteredPowerCorrection spc; if (arch->get_state() == Signal::Stokes) arch->convert_state(Signal::Coherence); spc.correct (arch); } if (newdm) { arch->set_dispersion_measure(dm); if (verbose) cout << "Archive dispersion measure set to " << dm << endl; if (arch->get_dedispersed()) { arch->dedisperse(); if (verbose) cout << "Archive re-dedipsersed" << endl; } } if (dedisperse) { arch->dedisperse(); if (verbose) cout << "Archive dedipsersed" << endl; } if (dededisperse) { Pulsar::Dispersion correction; correction.revert (arch); } if (stokesify) { if (arch->get_npol() != 4) throw Error(InvalidState, "Convert to Stokes", "Not enough polarisation information"); arch->convert_state(Signal::Stokes); if (verbose) cout << "Archive converted to Stokes parameters" << endl; } if (unstokesify) { if (arch->get_npol() != 4) throw Error(InvalidState, "Convert to coherence", "Not enough polarisation information"); arch->convert_state(Signal::Coherence); if (verbose) cout << "Archive converted to coherence parameters" << endl; } if (cbppo) { myio = new Pulsar::PeriastronOrder(); arch->add_extension(myio); myio->organise(arch, ronsub); } if (cbpao) { myio = new Pulsar::BinaryPhaseOrder(); arch->add_extension(myio); myio->organise(arch, ronsub); } if (cblpo) { myio = new Pulsar::BinLngPeriOrder(); arch->add_extension(myio); myio->organise(arch, ronsub); } if (cblao) { myio = new Pulsar::BinLngAscOrder(); arch->add_extension(myio); myio->organise(arch, ronsub); } if( subint_extract_start >= 0 && subint_extract_end >= 0 ) { vector<unsigned> subints; unsigned isub = subint_extract_start; while ( isub<arch->get_nsubint() && isub<unsigned(subint_extract_end) ) { subints.push_back( isub ); isub++; } Reference::To<Pulsar::Archive> extracted( arch->extract(subints) ); extracted->set_filename( arch->get_filename() ); arch = extracted; } if (tscr) { if (tsub > 0.0) { unsigned factor = unsigned (tsub / arch->get_Integration(0)->get_duration()); if (factor == 0) { cerr << "Warning: subints already too long" << endl; } else { arch->tscrunch(factor); } if (verbose) cout << arch->get_filename() << " tscrunched by a factor of " << factor << endl; } else if (new_nsub > 0) { arch->tscrunch_to_nsub(new_nsub); if (verbose) cout << arch->get_filename() << " tscrunched to " << new_nsub << " subints" << endl; } else if (tscr_fac > 0) { arch->tscrunch(tscr_fac); if (verbose) cout << arch->get_filename() << " tscrunched by a factor of " << tscr_fac << endl; } else { arch->tscrunch(); if (verbose) cout << arch->get_filename() << " tscrunched" << endl; } } if (pscr) { arch->pscrunch(); if (verbose) cout << arch->get_filename() << " pscrunched" << endl; } if (invint) { arch->invint(); if (verbose) cout << arch->get_filename() << " invinted" << endl; } if (newrm) { arch->set_rotation_measure (rm); if (verbose) cout << arch->get_filename() << " RM set to " << rm << endl; } if (defaraday) { arch->defaraday(); if (verbose) cout << arch->get_filename() << " defaradayed" <<endl; } if (aux_rm) { if (verbose) cout << "pam: correct auxiliary Faraday rotation; iono RM=" << aux_rm << endl; correct_auxiliary_rm (arch, aux_rm); } if (fscr) { if (new_nchn > 0) { arch->fscrunch_to_nchan(new_nchn); if (verbose) cout << arch->get_filename() << " fscrunched to " << new_nchn << " channels" << endl; } else if (fscr_fac > 0) { arch->fscrunch(fscr_fac); if (verbose) cout << arch->get_filename() << " fscrunched by a factor of " << fscr_fac << endl; } else { arch->fscrunch(); if (verbose) cout << arch->get_filename() << " fscrunched" << endl; } } if (bscr) { if (new_nbin > 0) { arch->bscrunch_to_nbin(new_nbin); if (verbose) cout << arch->get_filename() << " bscrunched to " << new_nbin << " bins" << endl; } else { arch->bscrunch(bscr_fac); if (verbose) cout << arch->get_filename() << " bscrunched by a factor of " << bscr_fac << endl; } } if (smear_dc) { for (unsigned i = 0; i < arch->get_nsubint(); i++) { for (unsigned j = 0; j < arch->get_npol(); j++) { for (unsigned k = 0; k < arch->get_nchan(); k++) { smear (arch->get_Profile(i,j,k), smear_dc); } } } } if (save) { if (archive_class) { // unload an archive of the specified class Reference::To<Pulsar::Archive> output; output = Pulsar::Archive::new_Archive (archive_class); output -> copy (*arch); output -> set_filename ( arch->get_filename() ); arch = output; } // See if the archive contains a history that should be updated: Pulsar::ProcHistory* fitsext = arch->get<Pulsar::ProcHistory>(); if (fitsext) { if (command.length() > 80) { cout << "WARNING: ProcHistory command string truncated to 80 chars" << endl; fitsext->set_command_str(command.substr(0, 80)); } else { fitsext->set_command_str(command); } } string out_filename = arch->get_filename(); if( !ext.empty() ) out_filename = replace_extension( out_filename, ext ); if( !ulpath.empty() ) out_filename = ulpath + basename(out_filename); arch->unload( out_filename ); cout << out_filename << " written to disk" << endl; } } catch (Error& error) { cerr << error << endl; } return 0; } catch(Error& er) { cerr << er << endl; return -1; } catch (string& error) { cerr << "exception thrown: " << error << endl; return -1; } catch (bad_alloc& ba) { cerr << "Caught a bad_alloc: '" << ba.what() << "'" << endl ; return -1; } catch (exception& e) { cerr << "caught an exception of type '" << typeid(e).name() << "'" << endl; return -1; } catch(...) { fprintf(stderr,"Unknown exception caught\n"); return -1; }
int main(int argc, char* argv[]) try { if (argc < 2) { usage(); return EXIT_SUCCESS; } int gotc = 0; while ((gotc = getopt(argc, argv, "hvV")) != -1) { switch (gotc) { case 'h': usage(); return EXIT_SUCCESS; case 'V': Pulsar::Archive::set_verbosity(3); break; case 'v': Pulsar::Archive::set_verbosity(2); break; } } if (optind >= argc) { cerr << "pazi: please specify filename" << endl; return -1; } string filename = argv[optind]; string extension = filename.substr(filename.length() - 2, 2); if (extension == "rf") extension = "rz"; else if (extension == "cf") extension = "cz"; else extension = "pazi"; string write_filename = filename + "."; write_filename += extension; cerr << "pazi: loading data" << endl; base_archive = Archive::load(filename); if (base_archive->get_npol() == 4) { original_state = base_archive->get_state(); base_archive->convert_state( Signal::Stokes ); } backup_archive = base_archive->clone(); cerr << "pazi: making fscrunched clone" << endl; mod_archive = base_archive->clone(); mod_archive->pscrunch(); mod_archive->remove_baseline(); mod_archive->dedisperse(); mod_archive->fscrunch(); scrunched_archive = mod_archive->clone(); scrunched_archive->tscrunch(); ranges.second = get_max_value(base_archive, plot_type); positive_direction = base_archive->get_bandwidth() < 0.0; time_orig_plot = factory.construct("time"); time_mod_plot = factory.construct("time"); time_fui = time_mod_plot->get_frame_interface(); freq_orig_plot = factory.construct("freq"); freq_mod_plot = factory.construct("freq"); freq_fui = freq_mod_plot->get_frame_interface(); total_plot = factory.construct("flux"); total_plot->configure("info=1"); subint_orig_plot = new ProfilePlot; subint_mod_plot = new ProfilePlot; subint_fui = subint_mod_plot->get_frame_interface(); subint_orig_plot->configure("info=1"); subint_mod_plot->configure("info=1"); unsigned window = 0; char device [8]; for (unsigned i=0; i<2; i++) do { window ++; snprintf (device, 8, "%u/XS", window); } while ( cpgopen (device) < 0 ); cpgask(0); cerr << endl << "Total S/N = " << scrunched_archive->get_Profile(0,0,0)->snr() << endl << endl; total_plot->plot(scrunched_archive); cpgslct(1); time_orig_plot->plot(mod_archive); do { cpgswin(0, 1, 0, 1); // plot: // frequency = horizontal mouse band // time = horizontal mouse band // profile = vertical mouse band int band = 0; if (prune_start != UNDEF_MOUSE) { band = BOX_ANCHOR; mouse_ref = prune_start; } else if (mouse_ref != UNDEF_MOUSE) { if (plot_type == FscrunchedSubint) band = VERTICAL_ANCHOR; else band = HORIZONTAL_ANCHOR; } else { if (plot_type == FscrunchedSubint) band = VERTICAL_LINE; else band = HORIZONTAL_LINE; } cpgband(band, 0, mouse_ref.first, mouse_ref.second, &(mouse.first), &(mouse.second), &ch); switch (ch) { case 'A': // zoom { constrain_range(mouse.first); constrain_range(mouse.second); if (mouse_ref == UNDEF_MOUSE) { mouse_ref = mouse; continue; } // store the current range so it can be restored if the user selects // a zoom region too small const RangeType old_ranges = ranges; bool horizontal = plot_type == FscrunchedSubint ? false : true; ranges = get_range(mouse_ref, mouse, ranges, horizontal); // ignore mouse clicks if the index values are too close (< 1) if (ranges.first == ranges.second) { ranges = old_ranges; break; } zoomed = true; const unsigned max_value = get_max_value(base_archive, plot_type); const string zoom_option = get_zoom_option(ranges, max_value); switch (plot_type) { case PhaseVsTime: time_fui->set_value("y:range", zoom_option); redraw(mod_archive, time_orig_plot, time_mod_plot, zoomed); break; case PhaseVsFrequency: freq_fui->set_value("y:range", zoom_option); freq_redraw(mod_archive, base_archive, freq_orig_plot, freq_mod_plot, zoomed); break; case FscrunchedSubint: subint_fui->set_value("x:range", zoom_option); redraw(mod_archive, subint_orig_plot, subint_mod_plot, zoomed); break; } } break; // case 'A' case 'h': usage(); break; case 'b': // plot specific subint if (plot_type == PhaseVsTime) { plot_type = FscrunchedSubint; zoomed = false; *mod_archive = *base_archive; mod_archive->set_dispersion_measure(0); mod_archive->fscrunch(); mod_archive->pscrunch(); mod_archive->remove_baseline(); subint = get_indexed_value(mouse); ranges.first = 0; ranges.second = get_max_value(base_archive, plot_type); char add[3]; sprintf(add, "%d", subint); string subint_option = "subint="; subint_option += add; subint_orig_plot->configure(subint_option); subint_mod_plot->configure(subint_option); cpgeras(); subint_orig_plot->plot(mod_archive); update_total(scrunched_archive, base_archive, total_plot); } break; /*case 'c': // center pulse set_centre(mod_archive, base_archive, centered, plot_type, dedispersed); if (plot_type == "freq") redraw(mod_archive, freq_orig_plot, freq_mod_plot, zoomed); else if (plot_type == "time") redraw(mod_archive, time_orig_plot, time_mod_plot, zoomed); update_total(scrunched_archive, base_archive, total_plot); break;*/ case 'd': // toggle dedispersion on/off set_dedispersion(mod_archive, base_archive, dedispersed); if (plot_type == PhaseVsFrequency) { mod_archive->tscrunch(); redraw(mod_archive, freq_orig_plot, freq_mod_plot, zoomed); } else if (plot_type == PhaseVsTime) { mod_archive->fscrunch(); redraw(mod_archive, time_orig_plot, time_mod_plot, zoomed); } update_total(scrunched_archive, base_archive, total_plot); break; case 'f': // frequency plot plot_type = PhaseVsFrequency; ranges.first = 0; ranges.second = get_max_value(base_archive, plot_type); zoomed = false; freq_redraw(mod_archive, base_archive, freq_orig_plot, freq_mod_plot, zoomed); break; case 'm': if (plot_type != FscrunchedSubint) { cerr << "pazi: can only mow lawn in binzap-subint mode" << endl; continue; } cerr << "pazi: mowing lawn" << endl; mowlawn (mod_archive, base_archive, subint); cerr << "pazi: replotting" << endl; redraw(mod_archive, subint_orig_plot, subint_mod_plot, zoomed); cerr << "pazi: updating total" << endl; update_total(scrunched_archive, base_archive, total_plot); break; case 'x': // prune if (plot_type != FscrunchedSubint) { cerr << "pazi: can only prune hedge in binzap-subint mode" << endl; continue; } constrain_range(mouse.first); constrain_range(mouse.second); if (prune_start == UNDEF_MOUSE) { prune_start = mouse; continue; } prune_end = mouse; cerr << "pazi: pruning hedge" << endl; prune_hedge (mod_archive, base_archive, subint); cerr << "pazi: replotting" << endl; redraw(mod_archive, subint_orig_plot, subint_mod_plot, zoomed); cerr << "pazi: updating total" << endl; update_total(scrunched_archive, base_archive, total_plot); break; case 'o': // toggle frequency scrunching on/off if (plot_type == PhaseVsTime) { if (fscrunched) { fscrunched = false; *mod_archive = *base_archive; } else { fscrunched = true; mod_archive->fscrunch(); } redraw(mod_archive, time_orig_plot, time_mod_plot, zoomed); } break; case 'q': // quit cpgclos(); return EXIT_SUCCESS; case 'p': print_command(channels_to_zap, subints_to_zap, extension, filename); break; case 'r': // reset zoom zoomed = false; ranges.first = 0; ranges.second = get_max_value(base_archive, plot_type); switch (plot_type) { case PhaseVsTime: redraw(mod_archive, time_orig_plot, time_mod_plot, zoomed); break; case PhaseVsFrequency: freq_redraw(mod_archive, base_archive, freq_orig_plot, freq_mod_plot, zoomed); break; case FscrunchedSubint: redraw(mod_archive, subint_orig_plot, subint_mod_plot, zoomed); break; } break; case 's': // save current archive changes: { Pulsar::ProcHistory* ext = base_archive->get<Pulsar::ProcHistory>(); if (ext) { ext->set_command_str("pazi"); } if ( base_archive->get_npol() == 4 ) base_archive->convert_state( original_state ); base_archive->unload(write_filename); if ( base_archive->get_npol() == 4 ) base_archive->convert_state( Signal::Stokes ); break; } case 't': // time plot plot_type = PhaseVsTime; ranges.first = 0; ranges.second = get_max_value(base_archive, plot_type); zoomed = false; time_redraw(mod_archive, base_archive, time_orig_plot, time_mod_plot, zoomed); break; case 'u': // undo last change if (mouse_ref != UNDEF_MOUSE) { mouse_ref = UNDEF_MOUSE; continue; } switch (plot_type) { case PhaseVsTime: { const unsigned value = get_indexed_value(mouse); remove_channel(value, subints_to_zap); time_unzap_subint(base_archive, backup_archive, value); time_redraw(mod_archive, base_archive, time_orig_plot, time_mod_plot, zoomed); } break; case PhaseVsFrequency: { const unsigned value = get_indexed_value(mouse); remove_channel(value, channels_to_zap); freq_unzap_chan(base_archive, backup_archive, value); freq_redraw(mod_archive, base_archive, freq_orig_plot, freq_mod_plot, zoomed); } break; case FscrunchedSubint: if (bins_to_zap.size()) { bins_to_zap.erase(bins_to_zap.end() - 5, bins_to_zap.end()); *base_archive = *backup_archive; *mod_archive = *backup_archive; mod_archive->set_dispersion_measure(0); mod_archive->pscrunch(); mod_archive->fscrunch(); mod_archive->remove_baseline(); redraw(mod_archive, subint_orig_plot, subint_mod_plot, zoomed); } break; } update_total(scrunched_archive, base_archive, total_plot); break; case 'z': case 'X': // zap single channel if (mouse_ref == UNDEF_MOUSE) zap_single (); else zap_multiple (); break; } prune_start = UNDEF_MOUSE; mouse_ref = UNDEF_MOUSE; } while (ch != 'q'); return 0; } // end main catch (Error& error) { cerr << "pazi: " << error << endl; return -1; }
void psrspa::create_histograms ( Reference::To<Archive> archive ) { if ( verbose ) cerr << "psrspa::create_histograms entered" << endl; // ensure Stokes parameters if creating polarisation histograms if ( create_polar_degree || create_polar_angle ) { archive->convert_state ( Signal::Stokes ); if ( verbose ) cerr << "psrspa::create_histograms converted state of the archive to Stokes" << endl; } // auxillary vectors //vector< Estimate<float > > aux_vec_f; vector< Estimate<double > > aux_vec_d; // Full Stokes profile Reference::To<PolnProfile> profile; // Polarized flux Reference::To<Profile> P; P = new Profile; // Total flux float *T_amps = new float [ nbin ]; float *P_amps = new float [ nbin ]; unsigned bin_min, bin_max; if ( verbose && max_bscrunch > 1 ) cerr << "psrspa::create_histograms entering the bscrunch loop for the " << archive->get_filename () << " archive" << endl; // TODO Uh, this should be fixed up. The first idea was to enable the phase resolved histograms to be bscrunch-aware as well, but I think it doesn't make much sense so I decided to keep only the max flux bscrunch aware. This can be done much more neatly probably in such a case for ( current_bscrunch = 1 ; current_bscrunch <= max_bscrunch ; current_bscrunch *= 2 ) { // in each passage, we bscrunch by a factor of 2 if ( current_bscrunch > 1 ) { if ( verbose ) cerr << "psrspa::create_histograms bscrunching the archive " << archive->get_filename () << " by a factor of 2" << endl; archive->bscrunch ( 2 ); } if ( verbose ) cerr << "psrspa::create_histograms entering the loop through subints of the " << archive->get_filename () << " archive" << endl; // loop through subints for ( unsigned isub = 0; isub < archive->get_nsubint (); isub++ ) { if ( verbose ) cerr << "psrspa::create_histograms creating necessary profiles for subint " << isub << " of " << archive->get_filename () << endl; if ( create_polar_angle || create_polar_degree && current_bscrunch == 1 ) { profile = archive->get_Integration(isub)->new_PolnProfile(0); if ( verbose ) cerr << "psrspa::create_histograms retrieved PolnProfile for subint " << isub << " of " << archive->get_filename () << endl; } if ( create_polar_angle && current_bscrunch == 1 ) { profile->get_orientation ( aux_vec_d, 0 ); if ( verbose ) cerr << "psrspa::create_histograms retrieved polarisation angle for subint " << isub << " of " << archive->get_filename () << endl; } if ( create_polar_degree || create_flux || find_max_amp_in_range ) { stats.set_profile ( archive->get_Profile ( isub, 0, 0 ) ); b_sigma = sqrt ( stats.get_baseline_variance ().get_value () ); T_amps = archive->get_Profile ( isub, 0, 0 )->get_amps (); if ( verbose ) cerr << "psrspa::create_histograms retrieved total flux amps for subint " << isub << " of " << archive->get_filename () << endl; if ( create_polar_degree && current_bscrunch == 1 ) { profile->get_polarized ( P ); if ( verbose ) cerr << "psrspa::create_histograms retrieved polarized flux profile for subint " << isub << " of " << archive->get_filename () << endl; P_amps = P->get_amps (); if ( verbose ) cerr << "psrspa::create_histograms retrieved polarized flux amps for subint " << isub << " of " << archive->get_filename () << endl; } } if ( verbose ) cerr << "psrspa::create_histograms looping through the provided phase ranges for subint " << isub << " of " << archive->get_filename () << endl; unsigned curr_hist = 0; // loop through phase ranges for ( unsigned irange = 0; irange < phase_range.size () ; irange++ ) { if ( irange%2 == 0) { bin_min = unsigned( floor ( phase_range[irange] * float(nbin / current_bscrunch ) + 0.5 ) ); if ( verbose ) cerr << "psrspa::create_histograms set minimal bin to " << bin_min << endl; } else { bin_max = unsigned( floor ( phase_range[irange] * float(nbin / current_bscrunch ) + 0.5 ) ); if ( bin_max == nbin ) bin_max = nbin - 1 ; if ( verbose ) cerr << "psrspa::create_histograms set maximum bin to " << bin_max << endl; // loop through bins in the given phase range for ( unsigned ibin = bin_min; ibin <= bin_max; ibin++ ) { if ( create_polar_angle && current_bscrunch == 1 ) { int result = gsl_histogram_increment ( h_polar_angle_vec[curr_hist], aux_vec_d[ibin].get_value () / 180.0 * M_PI ); if ( result == GSL_EDOM ) { if ( dynamic_histogram ) { gsl_histogram *temp_hist = gsl_histogram_clone ( h_polar_angle_vec[curr_hist] ); h_flux_pr_vec[curr_hist] = update_histogram_range ( temp_hist, aux_vec_d[ibin].get_value () / 180.0 * M_PI ); } else { warn << "WARNING psrspa::create_histograms polarisation angle the histogram range for the bin " << ibin << " in the subint " << isub << " of archive " << archive->get_filename () << endl; } } } if ( create_polar_degree && current_bscrunch == 1 ) { // if P_amps[ibin] or T_amps[ibin] < 3 sigma, set polar degree to zero int result = gsl_histogram_increment ( h_polar_degree_vec[curr_hist], ( fabs ( P_amps[ibin] ) < 3.0 * b_sigma || fabs ( T_amps[ibin] ) < 3.0 * b_sigma ) ? 0.0 : P_amps[ibin] / T_amps[ibin] ); if ( result == GSL_EDOM ) { if ( dynamic_histogram ) { gsl_histogram *temp_hist = gsl_histogram_clone ( h_polar_degree_vec[curr_hist] ); h_flux_pr_vec[curr_hist] = update_histogram_range ( temp_hist, ( fabs ( P_amps[ibin] ) < 3.0 * b_sigma || fabs ( T_amps[ibin] ) < 3.0 * b_sigma ) ? 0.0 : P_amps[ibin] / T_amps[ibin] ); } else { warn << "WARNING psrspa::create_histograms polarisation degree outside the histogram range for the bin " << ibin << " in the subint " << isub << " of archive " << archive->get_filename () << endl; } } } if ( create_flux && current_bscrunch == 1 ) { int result = 0; if ( log && T_amps[ibin] > 0.0 ) { result = gsl_histogram_increment ( h_flux_pr_vec[curr_hist], log10f ( T_amps[ibin] ) ); } else if ( !log ) { result = gsl_histogram_increment ( h_flux_pr_vec[curr_hist], T_amps[ibin] ); } if ( result == GSL_EDOM ) { if ( dynamic_histogram ) { gsl_histogram *temp_hist = gsl_histogram_clone ( h_flux_pr_vec[curr_hist] ); h_flux_pr_vec[curr_hist] = update_histogram_range ( temp_hist, log ? log10f ( T_amps[ibin] ) : T_amps[ibin] ); } else { warn << "WARNING psrspa::create_histograms phase resolved flux outside the histogram range for the bin " << ibin << " in the subint " << isub << " of archive " << archive->get_filename () << " flux = " << T_amps[ibin] << endl; } } } // increment the histogram id curr_hist ++; } // loop through bins in the given phase range // find the maximum amplitude in given phase range. if ( find_max_amp_in_range ) { if ( verbose ) cerr << "psrspa::create_histograms finding the maximum amplitude in the phase range " << irange << " of the subint " << isub << " (archive " << archive->get_filename () << ")" << endl; int max_bin = archive->get_Profile ( isub, 0, 0 )->find_max_bin ( (int)bin_min, (int)bin_max ); identifier current_identifier = { archive->get_filename (), isub, bin_min, bin_max, current_bscrunch, (unsigned)max_bin, T_amps[max_bin], b_sigma }; max_amp_info.push_back ( current_identifier ); } // find maximal amplitude in the given phase range } // handle given phase range } // loop through phase ranges } // loop through subints } // bscrunch loop if ( verbose ) cerr << "psrspa::create_histograms finished" << endl; }// create_histograms