int main(int argc, char** argv) {
	google::InitGoogleLogging(argv[0]);

	// The variable to solve for with its initial value. It will be
	// mutated in place by the solver.
	double x = 0.5;
	const double initial_x = x;

	// Build the problem.
	Problem problem;

	// Set up the only cost function (also known as residual). This uses
	// auto-differentiation to obtain the derivative (jacobian).
	CostFunction* cost_function =
		new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
	problem.AddResidualBlock(cost_function, NULL, &x);

	// Run the solver!
	Solver::Options options;
	options.minimizer_progress_to_stdout = true;
	Solver::Summary summary;
	Solve(options, &problem, &summary);

	std::cout << summary.BriefReport() << "\n";
	std::cout << "x : " << initial_x
		<< " -> " << x << "\n";
	return 0;
}
Exemple #2
0
// ================================================================================================
// =============================== FUNCTIONS of CLASS BALOptimizer ================================
// ================================================================================================
void BALOptimizer::runBAL()
{
    int num_cams = visibility->rows();
    int num_features = visibility->cols();
    int step_tr = translation_and_intrinsics->rows();
    int step_st = structure->rows();
    double cost;
    quaternion_vector2eigen_vector( *quaternion, q_vector );
    
    Problem problem;
    ceres::LossFunction* loss_function = new ceres::HuberLoss(1.0);
    
    Solver::Options options;
    options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
    options.minimizer_progress_to_stdout = true;
    options.gradient_tolerance = 1e-16;
    options.function_tolerance = 1e-16;
    options.num_threads = 8;
    options.max_num_iterations = 50;
    
    for (register int cam = 0; cam < num_cams; ++cam)
    {
        for (register int ft = 0; ft < num_features ; ++ft)
        {
	  if( (*visibility)(cam,ft) == true )
	  {
	      CostFunction* cost_function = new AutoDiffCostFunction<Snavely_RE_KDQTS, 2, 4, 6, 3>( 
		new Snavely_RE_KDQTS( (*coordinates)(cam,ft)(0), (*coordinates)(cam,ft)(1)) );
	      problem.AddResidualBlock(cost_function, loss_function, q_vector[cam].data(), 
				(translation_and_intrinsics->data()+step_tr*cam), (structure->data()+step_st*ft) );
	  }
        }
    }
    
    cost = 0;
    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
    std::cout << "Initial RMS Reprojection Error is : " << std::sqrt(double(cost/num_features)) << "\n";
    
    Solver::Summary summary;
    Solve(options, &problem, &summary);
    std::cout << summary.BriefReport() << "\n";
    
    cost = 0;
    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
    std::cout << "RMS Reprojection Error is : " << std::sqrt(double(cost/num_features)) << "\n\n";
    
    update(); // update quaternion; normaliza translation 1
    return;
}
void lidarBoostEngine::build_superresolution(short coeff)
{
    std::cout<< "Num of clouds : " << Y.size() << std::endl;

//    std::cout << Y[0] << std::endl;
    beta = coeff;
    std::vector < MatrixXd > optflow = lk_optical_flow( Y[2], Y[4], 10 );
    MatrixXd D( beta*n, beta*m ); //, X( beta*n, beta*m );
//    SparseMatrix<double> W( beta*n, beta*m ), T( beta*n, beta*m );

    D = apply_optical_flow(Y[2], optflow);
    T = check_unreliable_samples(intensityMap[2], 0.0001);

    MatrixXd up_D = nearest_neigh_upsampling(D);

////    Display and Debug
    cv::Mat M(n, m, CV_32FC1);
//    MatrixXd diff1(n, m);
//    diff1 = MatrixXd::Ones(n, m) - Y[0];
    cv::eigen2cv(Y[2], M);

    cv::Mat M1(n, m, CV_32FC1);
    cv::eigen2cv(Y[4], M1);

//    MatrixXd diff(beta*n, beta*m);
//    diff = MatrixXd::Ones(beta*n, beta*m) - up_D;
    cv::Mat M2(beta*n, beta*m, CV_32FC1);
    cv::eigen2cv(up_D, M2);

    cv::namedWindow("check", cv::WINDOW_AUTOSIZE );
    cv::imshow("check", M);

    cv::namedWindow("check1", cv::WINDOW_AUTOSIZE );
    cv::imshow("check1", M1);

    cv::namedWindow("check2", cv::WINDOW_AUTOSIZE );
    cv::imshow("check2", M2);

////  Solve example equation with eigen
//    Eigen::VectorXd x(2);
//    x(0) = 10.0;
//    x(1) = 25.0;
//    std::cout << "x: " << x << std::endl;

//    my_functor functor;
//    Eigen::NumericalDiff<my_functor> numDiff(functor);
//    Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
//    lm.parameters.maxfev = 2000;
//    lm.parameters.xtol = 1.0e-10;
//    std::cout << lm.parameters.maxfev << std::endl;

//    int ret = lm.minimize(x);
//    std::cout << lm.iter << std::endl;
//    std::cout << ret << std::endl;

//    std::cout << "x that minimizes the function: " << x << std::endl;

//////    Try to solve lidarboost with Eigen
//      my_functor functor;
//      Eigen::NumericalDiff<my_functor> numDiff(functor);
//      Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
//      lm.parameters.maxfev = 2000;
//      lm.parameters.xtol = 1.0e-10;
//      std::cout << lm.parameters.maxfev << std::endl;

//    VectorXd val(2);
//    for(int i = 0; i < X.rows(); i++)
//    {
//        for(int j = 0; j < X.cols(); j++)
//        {
//            val = X(i, j);
//            int ret = lm.minimize(val);
//        }
//    }

//    std::cout << lm.iter << std::endl;
//    std::cout << ret << std::endl;

//    std::cout << "x that minimizes the function: " << X << std::endl;

////  Solve example using ceres

//         The variable to solve for with its initial value.
//        double initial_x = 5.0;
//        double x = initial_x;

        MatrixXd X(beta*n, beta*m);// init_X(beta*n, beta*m);
//        X = MatrixXd::Zero(beta*n,beta*m);
        X = up_D;
//        MatrixXd init_X( beta*n, beta*m );
//        init_X = X;
//        int M[2][2], M2[2][2];
//        M[0][0] = 5;
//        M[1][0] = 10;
//        M[0][1] = 20;
//        M[1][1] = 30;

//        M2 = *M;

        // Build the problem.
        Problem problem;

        // Set up the only cost function (also known as residual). This uses
        // auto-differentiation to obtain the derivative (jacobian).

        double val, w, t, d;

        Solver::Options options;
        options.linear_solver_type = ceres::DENSE_QR;
        options.minimizer_progress_to_stdout = false;
        Solver::Summary summary;

        for(int i = 0; i < X.rows(); i++)
        {
            for(int j = 0; j < X.cols(); j++)
            {

                val = X(i, j);
                w = W(i, j);
                t = T(i, j);
                d = up_D(i, j);

                std::cout << "i = " << i << "; j = " << j << std::endl;
                std::cout << "w = " << w << "; t = " << t << "; d = " << d << std::endl;
                CostFunction* cost_function =
                    new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor(w, t, d));

                problem.AddResidualBlock(cost_function, NULL, &val);
                // Run the solver
                Solve(options, &problem, &summary);
                X(i, j) = val;
            }
        }




        std::cout << summary.BriefReport() << "\n";
//        std::cout << "x : " << init_X
//                  << " -> " << X << "\n";

        cv::Mat M3(beta*n, beta*m, CV_32FC1);
        cv::eigen2cv(X, M3);
        cv::namedWindow("check3", cv::WINDOW_AUTOSIZE );
        cv::imshow("check3", M3);
}