inline
void setupKeyholeMesh2D_case2(stk::mesh::BulkData& bulk)
{
//
//   proc 0      proc 1
//            |
//            | block_2 block_3
//            |
// block_1    |         12---11
//            |         | 4  |
//    4----3  | 3----6  6----10
//    | 1  |  | |  2 |
//    1----2  | 2----5  5----9
//            |         | 3  |
//            |         7----8
//            |
//
//nodes 5 and 6 are ghosts (aura) on proc 0,
//and should be members of block_2 and block_3 on proc 0
//if edges are added, the edge between nodes 5 and 6 should
//be a member of block_2 not block_3.
//

  stk::mesh::MetaData& meta = bulk.mesh_meta_data();

  stk::mesh::Part& block_1 = meta.declare_part_with_topology("block_1", stk::topology::QUAD_4_2D);
  stk::mesh::Part& block_2 = meta.declare_part_with_topology("block_2", stk::topology::QUAD_4_2D);
  stk::mesh::Part& block_3 = meta.declare_part_with_topology("block_3", stk::topology::QUAD_4_2D);
  meta.commit();

  bulk.modification_begin();

  stk::mesh::EntityIdVector elem1_nodes {1, 2, 3, 4};
  stk::mesh::EntityIdVector elem2_nodes {2, 5, 6, 3};
  stk::mesh::EntityIdVector elem3_nodes {7, 8, 9, 5};
  stk::mesh::EntityIdVector elem4_nodes {6, 10, 11, 12};

  stk::mesh::EntityId elemId = 1;
  if (bulk.parallel_rank() == 0) {
    stk::mesh::declare_element(bulk, block_1, elemId, elem1_nodes);
    stk::mesh::Entity node2 = bulk.get_entity(stk::topology::NODE_RANK, 2);
    stk::mesh::Entity node3 = bulk.get_entity(stk::topology::NODE_RANK, 3);
    bulk.add_node_sharing(node2, 1);
    bulk.add_node_sharing(node3, 1);
  }
  else if (bulk.parallel_rank() == 1) {
    elemId = 2;
    stk::mesh::declare_element(bulk, block_2, elemId, elem2_nodes);
    elemId = 3;
    stk::mesh::declare_element(bulk, block_3, elemId, elem3_nodes);
    elemId = 4;
    stk::mesh::declare_element(bulk, block_3, elemId, elem4_nodes);
    stk::mesh::Entity node2 = bulk.get_entity(stk::topology::NODE_RANK, 2);
    stk::mesh::Entity node3 = bulk.get_entity(stk::topology::NODE_RANK, 3);
    bulk.add_node_sharing(node2, 0);
    bulk.add_node_sharing(node3, 0);
  }

  bulk.modification_end();
}
void heterogeneous_mesh_bulk_data(
  stk::mesh::BulkData & bulk_data ,
  const VectorFieldType & node_coord )
{
  static const char method[] =
    "stk_mesh::fixtures::heterogenous_mesh_bulk_data" ;

  bulk_data.modification_begin();

  const stk::mesh::MetaData & meta_data = stk::mesh::MetaData::get(bulk_data);

  stk::mesh::Part & hex_block        = * meta_data.get_part("hexes",method);
  stk::mesh::Part & wedge_block      = * meta_data.get_part("wedges",method);
  stk::mesh::Part & tetra_block      = * meta_data.get_part("tets",method);
  stk::mesh::Part & pyramid_block    = * meta_data.get_part("pyramids",method);
  stk::mesh::Part & quad_shell_block = * meta_data.get_part("quad_shells",method);
  stk::mesh::Part & tri_shell_block  = * meta_data.get_part("tri_shells",method);

  unsigned elem_id = 1 ;

  for ( unsigned i = 0 ; i < number_hex ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, hex_block, elem_id, hex_node_ids[i] );
  }

  for ( unsigned i = 0 ; i < number_wedge ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, wedge_block, elem_id, wedge_node_ids[i] );
  }

  for ( unsigned i = 0 ; i < number_tetra ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, tetra_block, elem_id, tetra_node_ids[i] );
  }

  for ( unsigned i = 0 ; i < number_pyramid ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, pyramid_block, elem_id, pyramid_node_ids[i] );
  }

  for ( unsigned i = 0 ; i < number_shell_quad ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, quad_shell_block, elem_id, shell_quad_node_ids[i]);
  }

  for ( unsigned i = 0 ; i < number_shell_tri ; ++i , ++elem_id ) {
    stk::mesh::declare_element( bulk_data, tri_shell_block, elem_id, shell_tri_node_ids[i] );
  }
  
  for ( unsigned i = 0 ; i < node_count ; ++i ) {

    stk::mesh::Entity const node = bulk_data.get_entity( stk::topology::NODE_RANK , i + 1 );

    double * const coord = stk::mesh::field_data( node_coord , node );

    coord[0] = node_coord_data[i][0] ;
    coord[1] = node_coord_data[i][1] ;
    coord[2] = node_coord_data[i][2] ;
  }

  bulk_data.modification_end();
}
inline void deactivate_elements(const stk::mesh::EntityVector &deactivated_elems, stk::mesh::BulkData &bulkData, stk::mesh::Part& active)
{
    bulkData.modification_begin();

    for(size_t i = 0; i < deactivated_elems.size(); ++i)
    {
        bulkData.change_entity_parts(deactivated_elems[i], stk::mesh::PartVector(), stk::mesh::PartVector(1, &active));
    }

    bulkData.modification_end();
}
Exemple #4
0
void setupKeyholeMesh2D_case1(stk::mesh::BulkData& bulk)
{
//
//   proc 0      proc 1
//            |
//            |  block_2 block_3
//            |
//  block_1   |  10---9  9----12
//            |  | 3  |  |  4  |
//    4----3  |  3----8  8----11
//    | 1  |  |
//    1----2  |  2----7
//            |  | 2  |
//            |  5----6
//            |
//
//shared nodes 2 and 3 should be members of block_1 and block_2 on both procs
//nodes 8 and 9 are ghosts on proc 0, and should be members of block_2 and block_3
//
//if edges are added, the edge between nodes 2 and 3 should be a member of block_1 not block_2.
//
//also, the edge between nodes 8 and 9 should be a member of block_2 and block_3 on both procs.

  stk::mesh::MetaData& meta = bulk.mesh_meta_data();

  stk::mesh::Part& block_1 = meta.declare_part_with_topology("block_1", stk::topology::QUAD_4_2D);
  stk::mesh::Part& block_2 = meta.declare_part_with_topology("block_2", stk::topology::QUAD_4_2D);
  stk::mesh::Part& block_3 = meta.declare_part_with_topology("block_3", stk::topology::QUAD_4_2D);
  meta.commit();

  bulk.modification_begin();

  const int nodesPerElem = 4;
  stk::mesh::EntityId elem1_nodes[nodesPerElem] = {1, 2, 3, 4};
  stk::mesh::EntityId elem2_nodes[nodesPerElem] = {5, 6, 7, 2};
  stk::mesh::EntityId elem3_nodes[nodesPerElem] = {3, 8, 9, 10};
  stk::mesh::EntityId elem4_nodes[nodesPerElem] = {8, 11, 12, 9};

  stk::mesh::EntityId elemId = 1;
  if (bulk.parallel_rank() == 0) {
    stk::mesh::declare_element(bulk, block_1, elemId, elem1_nodes);
  }
  else if (bulk.parallel_rank() == 1) {
    elemId = 2;
    stk::mesh::declare_element(bulk, block_2, elemId, elem2_nodes);
    elemId = 3;
    stk::mesh::declare_element(bulk, block_2, elemId, elem3_nodes);
    elemId = 4;
    stk::mesh::declare_element(bulk, block_3, elemId, elem4_nodes);
  }

  bulk.modification_end();
}
inline
void setupKeyholeMesh3D_case2(stk::mesh::BulkData& bulk)
{
    ThrowRequire(bulk.parallel_size() == 3);
    stk::io::fill_mesh("generated:3x1x3", bulk);

    stk::mesh::EntityProcVec elementProcChanges;
    if (bulk.parallel_rank() == 1) {
        elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,4),2));
        elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,6),2));
    }
    bulk.change_entity_owner(elementProcChanges);
    bulk.modification_begin();
    if (bulk.parallel_rank() == 1) {
        stk::mesh::Entity local_element5 = bulk.get_entity(stk::topology::ELEM_RANK,5);
        const bool delete_success = bulk.destroy_entity(local_element5);
        ThrowRequire(delete_success);
    }
    bulk.modification_end();
}
void use_case_5_generate_mesh(
  const std::string& mesh_options ,
  stk::mesh::BulkData & mesh ,
  const VectorFieldType & node_coord ,
  stk::mesh::Part & hex_block ,
  stk::mesh::Part & quad_shell_block )
{
  mesh.modification_begin();

  const unsigned parallel_size = mesh.parallel_size();
  const unsigned parallel_rank = mesh.parallel_rank();

  double t = 0 ;
  size_t num_hex = 0 ;
  size_t num_shell = 0 ;
  size_t num_nodes = 0 ;
  size_t num_block = 0 ;
  int error_flag = 0 ;

  try {

    Iogn::GeneratedMesh gmesh( mesh_options, parallel_size, parallel_rank );

    num_nodes = gmesh.node_count_proc();
    num_block = gmesh.block_count();

    t = stk::wall_time();

    std::vector<int> node_map( num_nodes , 0 );

    gmesh.node_map( node_map );

    {

      for ( size_t i = 1 ; i <= num_block ; ++i ) {
        const size_t                        num_elem = gmesh.element_count_proc(i);
        const std::pair<std::string,int> top_info = gmesh.topology_type(i);

	std::vector<int> elem_map( num_elem , 0 );
        std::vector<int> elem_conn( num_elem * top_info.second );

	gmesh.element_map( i, elem_map );
        gmesh.connectivity( i , elem_conn );

        if ( top_info.second == 8 ) {

          for ( size_t j = 0 ; j < num_elem ; ++j ) {

            const int * const local_node_id = & elem_conn[ j * 8 ] ;

            const stk::mesh::EntityId node_id[8] = {
              local_node_id[0] ,
              local_node_id[1] ,
              local_node_id[2] ,
              local_node_id[3] ,
              local_node_id[4] ,
              local_node_id[5] ,
              local_node_id[6] ,
              local_node_id[7]
            };

            const stk::mesh::EntityId elem_id = elem_map[ j ];

            stk::mesh::fem::declare_element( mesh , hex_block , elem_id , node_id );

            ++num_hex ;
          }
        }
        else if ( top_info.second == 4 ) {

          for ( size_t j = 0 ; j < num_elem ; ++j ) {

            const int * const local_node_id = & elem_conn[ j * 4 ] ;

            const stk::mesh::EntityId node_id[4] = {
              local_node_id[0] ,
              local_node_id[1] ,
              local_node_id[2] ,
              local_node_id[3]
            };

            const stk::mesh::EntityId elem_id = elem_map[ j ];

            stk::mesh::fem::declare_element( mesh , quad_shell_block , elem_id , node_id );

            ++num_shell ;
          }
        }
      }
    }

    std::vector<double> node_coordinates( 3 * node_map.size() );

    gmesh.coordinates( node_coordinates );

    if ( 3 * node_map.size() != node_coordinates.size() ) {
      std::ostringstream msg ;
      msg << "  P" << mesh.parallel_rank()
          << ": ERROR, node_map.size() = "
          << node_map.size()
          << " , node_coordinates.size() / 3 = "
          << ( node_coordinates.size() / 3 );
      throw std::runtime_error( msg.str() );
    }

    for ( unsigned i = 0 ; i < node_map.size() ; ++i ) {
      const unsigned i3 = i * 3 ;

      stk::mesh::Entity * const node = mesh.get_entity( stk::mesh::fem::FEMMetaData::NODE_RANK , node_map[i] );

      if ( NULL == node ) {
        std::ostringstream msg ;
        msg << "  P:" << mesh.parallel_rank()
            << " ERROR, Node not found: "
            << node_map[i] << " = node_map[" << i << "]" ;
        throw std::runtime_error( msg.str() );
      }

      double * const data = field_data( node_coord , *node );
      data[0] = node_coordinates[ i3 + 0 ];
      data[1] = node_coordinates[ i3 + 1 ];
      data[2] = node_coordinates[ i3 + 2 ];
    }
  }
  catch ( const std::exception & X ) {
    std::cout << "  P:" << mesh.parallel_rank() << ": " << X.what()
              << std::endl ;
    std::cout.flush();
    error_flag = 1 ;
  }
  catch( ... ) {
    std::cout << "  P:" << mesh.parallel_rank()
              << " Caught unknown exception"
              << std::endl ;
    std::cout.flush();
    error_flag = 1 ;
  }

  stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & error_flag ) );

  if ( error_flag ) {
    std::string msg( "Failed mesh generation" );
    throw std::runtime_error( msg );
  }

  mesh.modification_end();

  double dt = stk::wall_dtime( t );

  stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & dt ) );

  std::cout << "  P" << mesh.parallel_rank()
            << ": Meshed Hex = " << num_hex
            << " , Shell = " << num_shell
            << " , Node = " << num_nodes
            << " in " << dt << " sec"
            << std::endl ;
  std::cout.flush();
}
void verify_unbuildable_element(stk::mesh::BulkData &bulk,
                                const stk::topology topo,
                                const stk::mesh::EntityIdVector & elem_node_ids,
                                const stk::mesh::EntityIdVector & side_ids,
                                const std::vector < std::vector < unsigned > > &gold_side_node_ids,
                                bool *sides_connectibility_check,
                                const stk::mesh::EntityIdVector & edge_ids,
                                const std::vector < std::vector < unsigned > > &gold_edge_node_ids,
                                bool *edges_connectibility_check)
{
  stk::mesh::EntityId element_id[1] = {1};
  stk::mesh::MetaData &meta = bulk.mesh_meta_data();
  stk::mesh::Part &elem_part = meta.declare_part_with_topology("elem_part", topo);

  meta.commit();
  bulk.modification_begin();

  stk::mesh::Entity elem = stk::mesh::declare_element(bulk, elem_part, element_id[0], elem_node_ids);

  stk::mesh::EntityVector side_nodes;
  uint num_sides = topo.num_sides();
  stk::topology::rank_t sub_topo_rank = topo.side_rank();

  for(uint i = 0; i < num_sides; ++i)
  {
    stk::topology sub_topo = topo.side_topology(i);
    side_nodes.clear();

    stk::mesh::Entity side = bulk.declare_entity(sub_topo_rank, side_ids[i], meta.get_topology_root_part(sub_topo));

    for (uint j = 0; j < sub_topo.num_nodes(); ++j)
    {
      stk::mesh::Entity side_node = bulk.get_entity(stk::topology::NODE_RANK, gold_side_node_ids[i][j]);
      side_nodes.push_back(side_node);
      bulk.declare_relation(side, side_node, j);
    }

    std::pair<stk::mesh::ConnectivityOrdinal, stk::mesh::Permutation> ordinalAndPermutation
      = stk::mesh::get_ordinal_and_permutation(bulk, elem, sub_topo_rank, side_nodes);

    if (sides_connectibility_check[i])
    {
      EXPECT_NE(ordinalAndPermutation.first, stk::mesh::ConnectivityOrdinal::INVALID_CONNECTIVITY_ORDINAL);
      EXPECT_NE(ordinalAndPermutation.second, stk::mesh::Permutation::INVALID_PERMUTATION);
    }
    else
    {
      EXPECT_EQ(ordinalAndPermutation.first, stk::mesh::ConnectivityOrdinal::INVALID_CONNECTIVITY_ORDINAL);
      EXPECT_EQ(ordinalAndPermutation.second, stk::mesh::Permutation::INVALID_PERMUTATION);
    }
  }

  if (edge_ids.empty()) {
    bulk.modification_end();
    return;
  }

  stk::mesh::EntityVector edge_nodes;
  uint num_edges = topo.num_edges();

  for(uint i = 0; i < num_edges; ++i)
  {
    edge_nodes.clear();

    stk::mesh::Entity edge = bulk.declare_entity(stk::topology::EDGE_RANK, edge_ids[i],
                                                 meta.get_topology_root_part(topo.edge_topology()));

    for (uint j = 0; j < topo.edge_topology().num_nodes(); ++j)
    {
      stk::mesh::Entity edge_node = bulk.get_entity(stk::topology::NODE_RANK, gold_edge_node_ids[i][j]);
      edge_nodes.push_back(edge_node);
      bulk.declare_relation(edge, edge_node, j);
    }

    std::pair<stk::mesh::ConnectivityOrdinal, stk::mesh::Permutation> ordinalAndPermutation
      = stk::mesh::get_ordinal_and_permutation(bulk, elem, stk::topology::EDGE_RANK, edge_nodes);

    if (edges_connectibility_check[i])
    {
      EXPECT_NE(ordinalAndPermutation.first, stk::mesh::ConnectivityOrdinal::INVALID_CONNECTIVITY_ORDINAL);
      EXPECT_NE(ordinalAndPermutation.second, stk::mesh::Permutation::INVALID_PERMUTATION);
    }
    else
    {
      EXPECT_EQ(ordinalAndPermutation.first, stk::mesh::ConnectivityOrdinal::INVALID_CONNECTIVITY_ORDINAL);
      EXPECT_EQ(ordinalAndPermutation.second, stk::mesh::Permutation::INVALID_PERMUTATION);
    }
  }

  bulk.modification_end();
}
void build_element_from_topology_verify_ordinals_and_permutations(stk::mesh::BulkData &bulk,
                                                                 const stk::topology topo,
                                                                 const stk::mesh::EntityIdVector & elem_node_ids,
                                                                 const stk::mesh::EntityIdVector & edge_ids,
                                                                 const std::vector < std::vector < unsigned > > &gold_side_node_ids,
                                                                 const unsigned * gold_side_permutations,
                                                                 const std::vector < std::vector < unsigned > > &gold_edge_node_ids,
                                                                 const unsigned * gold_edge_permutations)
{
  stk::mesh::EntityId element_id[1] = {1};
  stk::mesh::MetaData &meta = bulk.mesh_meta_data();
  stk::mesh::Part &elem_part = meta.declare_part_with_topology("elem_part", topo);

  meta.commit();
  bulk.modification_begin();

  stk::mesh::Entity elem = stk::mesh::declare_element(bulk, elem_part, element_id[0], elem_node_ids);

  stk::mesh::EntityVector side_nodes;
  uint num_sides = topo.num_sides();
  stk::topology::rank_t sub_topo_rank = topo.side_rank();

  for(uint i = 0; i < num_sides; ++i)
  {
    stk::topology sub_topo = topo.side_topology(i);
    bulk.declare_element_side(elem, i, {&meta.get_topology_root_part(sub_topo)});

    side_nodes.clear();

    for (uint j = 0; j < sub_topo.num_nodes(); ++j)
    {
      stk::mesh::Entity side_node = bulk.get_entity(stk::topology::NODE_RANK, gold_side_node_ids[i][j]);
      side_nodes.push_back(side_node);
    }

    stk::mesh::OrdinalAndPermutation ordinalAndPermutation = stk::mesh::get_ordinal_and_permutation(bulk, elem, sub_topo_rank, side_nodes);

    EXPECT_EQ(ordinalAndPermutation.second, gold_side_permutations[i]) << topo;
    EXPECT_EQ(ordinalAndPermutation.first, i) << topo;
  }

  if (edge_ids.empty()) {
    bulk.modification_end();
    return;
  }

  stk::mesh::EntityVector edge_nodes;
  uint num_edges = topo.num_edges();

  for(uint i = 0; i < num_edges; ++i)
  {
    edge_nodes.clear();

    stk::mesh::Entity edge = bulk.declare_entity(stk::topology::EDGE_RANK, edge_ids[i],
                                                 meta.get_topology_root_part(topo.edge_topology()));

    for (uint j = 0; j < topo.edge_topology().num_nodes(); ++j)
    {
      stk::mesh::Entity edge_node = bulk.get_entity(stk::topology::NODE_RANK, gold_edge_node_ids[i][j]);
      edge_nodes.push_back(edge_node);
      bulk.declare_relation(edge, edge_node, j);
    }

    std::pair<stk::mesh::ConnectivityOrdinal, stk::mesh::Permutation> ordinalAndPermutation
      = stk::mesh::get_ordinal_and_permutation(bulk, elem, stk::topology::EDGE_RANK, edge_nodes);

    EXPECT_EQ(ordinalAndPermutation.second, gold_edge_permutations[i]) << topo;
    EXPECT_EQ(ordinalAndPermutation.first, i) << topo;
  }

  bulk.modification_end();
}
inline
void setup2Block2HexMesh(stk::mesh::BulkData& bulk)
{
//
//   proc 0      proc 1
//             |
//    block_1  |  block_2
//             |
//      8----7 |    7----12
//     /    /| |   /    / |
//    5----6 3 |  6----11 10
//    | 1  |/  |  | 2  | /
//    1----2   |  2----9
//             |
//             |
//             |
//
//shared nodes 2, 3, 6, 7
//

  if (bulk.parallel_size() > 2) {
    return;
  }

  stk::mesh::MetaData& meta = bulk.mesh_meta_data();

  stk::topology hex = stk::topology::HEX_8;
  stk::mesh::Part& block_1 = meta.declare_part_with_topology("block_1", hex);
  stk::mesh::Part& block_2 = meta.declare_part_with_topology("block_2", hex);
  meta.commit();

  bulk.modification_begin();

  stk::mesh::EntityIdVector elem1_nodes {1, 2, 3, 4, 5, 6, 7, 8};
  stk::mesh::EntityIdVector elem2_nodes {2, 9, 10, 3, 6, 11, 12, 7};

  stk::mesh::EntityId elemId = 1;
  if (bulk.parallel_rank() == 0) {
    stk::mesh::declare_element(bulk, block_1, elemId, elem1_nodes);
  }
  if (bulk.parallel_rank() == 1 || bulk.parallel_size() == 1) {
    elemId = 2;
    stk::mesh::declare_element(bulk, block_2, elemId, elem2_nodes);
  }
  if(bulk.parallel_rank() == 0 && bulk.parallel_size() == 2)
  {
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 2), 1);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 3), 1);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 6), 1);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 7), 1);
  }
  if(bulk.parallel_rank() == 1 && bulk.parallel_size() == 2)
  {
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 2), 0);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 3), 0);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 6), 0);
    bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 7), 0);
  }

  bulk.modification_end();
}
void make_small_hybrid_mesh(stk::mesh::MetaData &meta, stk::mesh::BulkData &mesh,
                            bool user_attempt_no_induce = false, bool user_parts_force_no_induce = true)
{
    stk::ParallelMachine pm = MPI_COMM_WORLD;
    int p_size = stk::parallel_machine_size(pm);

    if(p_size > 2)
    {
        return;
    }

    const unsigned p_rank = mesh.parallel_rank();

    stk::mesh::Part * hexPart = &meta.get_topology_root_part(stk::topology::HEX_8);
    stk::mesh::Part * pyrPart = &meta.get_topology_root_part(stk::topology::PYRAMID_5);
    stk::mesh::Part * tetPart = &meta.get_topology_root_part(stk::topology::TET_4);

    if (user_attempt_no_induce)
    {
        hexPart = &meta.declare_part_with_topology("my_hex_part",stk::topology::HEX_8, user_parts_force_no_induce);
        pyrPart = &meta.declare_part_with_topology("my_pyr_part",stk::topology::PYRAMID_5, user_parts_force_no_induce);
        tetPart = &meta.declare_part_with_topology("my_tet_part",stk::topology::TET_4, user_parts_force_no_induce);

        EXPECT_EQ(user_parts_force_no_induce, hexPart->force_no_induce());
        EXPECT_EQ(user_parts_force_no_induce, pyrPart->force_no_induce());
        EXPECT_EQ(user_parts_force_no_induce, tetPart->force_no_induce());
    }

    meta.commit();

    const size_t numHex = 1;
    stk::mesh::EntityIdVector hexNodeIDs[] {
        { 1, 2, 3, 4, 5, 6, 7, 8 }
    };
    stk::mesh::EntityId hexElemIDs[] = { 1 };

    const size_t numPyr = 1;
    stk::mesh::EntityIdVector pyrNodeIDs[] {
        { 5, 6, 7, 8, 9 }
    };
    stk::mesh::EntityId pyrElemIDs[] = { 2 };

    const size_t numTet = 4;
    stk::mesh::EntityIdVector tetNodeIDs[] {
        { 7, 8, 9, 12 },
        { 6, 9, 10, 7 },
        { 7, 9, 10, 12 },
        { 7, 12, 10, 11 }
    };
    stk::mesh::EntityId tetElemIDs[] = { 3, 4, 5, 6 };

    // list of triplets: (owner-proc, shared-nodeID, sharing-proc)
    std::vector< std::vector<unsigned> > shared_nodeIDs_and_procs
    {
        { 0, 5, 1 },  // proc 0
        { 0, 6, 1 },
        { 0, 7, 1 },
        { 0, 8, 1 },
        { 1, 5, 0 },  // proc 1
        { 1, 6, 0 },
        { 1, 7, 0 },
        { 1, 8, 0 }
    };

    mesh.modification_begin();

    if (0 == p_rank) {
        for (size_t i = 0; i < numHex; ++i) {
          stk::mesh::declare_element(mesh, *hexPart, hexElemIDs[i], hexNodeIDs[i]);
        }
    }
    if ( (1 == p_rank) || (1 == p_size) )  { // setup the pyramids/tets for either np 2 or serial
        for (size_t i = 0; i < numPyr; ++i) {
          stk::mesh::declare_element(mesh, *pyrPart, pyrElemIDs[i], pyrNodeIDs[i]);
        }
        for (size_t i = 0; i < numTet; ++i) {
          stk::mesh::declare_element(mesh, *tetPart, tetElemIDs[i], tetNodeIDs[i]);
        }
    }

    if (p_size > 1)
    {
        for (size_t nodeIdx = 0, end = shared_nodeIDs_and_procs.size(); nodeIdx < end; ++nodeIdx) {
            if (p_rank == shared_nodeIDs_and_procs[nodeIdx][0]) {
                stk::mesh::EntityId nodeID = shared_nodeIDs_and_procs[nodeIdx][1];
                int sharingProc = shared_nodeIDs_and_procs[nodeIdx][2];
                stk::mesh::Entity node = mesh.get_entity(stk::topology::NODE_RANK, nodeID);
                mesh.add_node_sharing(node, sharingProc);
            }
        }
    }

    mesh.modification_end();
}