synfig::ValueBase synfig::ValueNode_Range::get_inverse(Time t, const synfig::Vector &target_value) const { Type &type(get_type()); if (type == type_integer) { int max_value((*max_)(t).get(int())); int min_value((*min_)(t).get(int())); return std::max(min_value, std::min(max_value, int(target_value.mag()))); } else if (type == type_real) { Real max_value((*max_)(t).get(Real())); Real min_value((*min_)(t).get(Real())); return std::max(min_value, std::min(max_value, target_value.mag())); } else if (type == type_angle) { Angle max_value((*max_)(t).get(Angle())); Angle min_value((*min_)(t).get(Angle())); Angle target_angle(Angle::tan(target_value[1],target_value[0])); return target_angle>max_value?max_value:target_angle<min_value?min_value:target_angle; } else if (type == type_time) { Real max_value((*max_)(t).get(Time())); Real min_value((*min_)(t).get(Time())); return std::max(min_value, std::min(max_value, target_value.mag())); } return target_value; }
synfig::ValueBase synfig::ValueNode_Scale::get_inverse(Time t, const synfig::Vector &target_value) const { Real scalar_value((*scalar)(t).get(Real())); if(scalar_value==0) throw runtime_error(strprintf("ValueNode_Scale: %s",_("Attempting to get the inverse of a non invertible Valuenode"))); else { if (get_type() == type_real) return target_value.mag() / scalar_value; if (get_type() == type_angle) return Angle::tan(target_value[1] / scalar_value ,target_value[0] / scalar_value); return target_value / scalar_value; } return ValueBase(); }
synfig::ValueBase synfig::ValueNode_Scale::get_inverse(Time t, const synfig::Vector &target_value) const { Real scalar_value((*scalar)(t).get(Real())); if(scalar_value==0) throw runtime_error(strprintf("ValueNode_Scale: %s",_("Attempting to get the inverse of a non invertible Valuenode"))); else { switch (get_type()) { case ValueBase::TYPE_REAL: return target_value.mag() / scalar_value; case ValueBase::TYPE_ANGLE: return Angle::tan(target_value[1] / scalar_value ,target_value[0] / scalar_value); default: return target_value / scalar_value; } } return ValueBase(); }
bool DuckDrag_SmoothMove::end_duck_drag(Duckmatic* duckmatic) { //synfig::info("end_duck_drag(): Diff= %f",last_translate_.mag()); if(last_translate_.mag()>0.0001) { const DuckList selected_ducks(duckmatic->get_selected_ducks()); DuckList::const_iterator iter; int i; smart_ptr<OneMoment> wait;if(selected_ducks.size()>20)wait.spawn(); for(i=0,iter=selected_ducks.begin();iter!=selected_ducks.end();++iter,i++) { if(last_[i].mag()>0.0001) { if ((*iter)->get_type() == Duck::TYPE_ANGLE) { if(!(*iter)->signal_edited()(**iter)) { throw String("Bad edit"); } } else if (App::restrict_radius_ducks && (*iter)->is_radius()) { Point point((*iter)->get_point()); bool changed = false; if (point[0] < 0) { point[0] = 0; changed = true; } if (point[1] < 0) { point[1] = 0; changed = true; } if (changed) (*iter)->set_point(point); if(!(*iter)->signal_edited()(point)) { throw String("Bad edit"); } } else { if(!(*iter)->signal_edited()((*iter)->get_point())) { throw String("Bad edit"); } } } } //duckmatic->get_selected_ducks()=new_set; //duckmatic->refresh_selected_ducks(); return true; } else { duckmatic->signal_user_click_selected_ducks(0); return false; } }