Exemple #1
0
int wam_main(int argc, char** argv, ProductManager& pm,
		systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

	std::string filename(argv[1]);

	printf("\nMoving to start configuration \n");

	jp_type jp(0.0);
	jp[1] = -1.967;
	jp[3] = 2.5;
	jp[5] = -0.5;
	wam.moveTo(jp);

	printf("Opening hands\n");

	// Open hands.
	barrett::Hand& hand = *pm.getHand();
	hand.initialize();

	// wam.idle();

	Teach<DOF> teach(wam, pm, filename);

	teach.init();

	printf("\nPress [Enter] to start teaching.\n");
	waitForEnter();
	teach.record();
	//boost::thread t(&Teach<DOF>::display, &teach);

	printf("Press [Enter] to stop teaching.\n");
	waitForEnter();
	teach.createSpline();

	// Move to start and close hands.
	wam.moveTo(jp);
	hand.close();
	hand.idle();

	wam.idle();

	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);

	return 0;
}
void moveToStr(systems::Wam<DOF>& wam, math::Matrix<R,C, Units>* dest,
		const std::string& description, const std::string& str)
{
	if (parseDoubles(dest, str)) {
		std::cout << "Moving to " << description << ": " << *dest << std::endl;
		wam.moveTo(*dest);
	} else {
		printf("ERROR: Please enter exactly %d numbers separated by "
				"whitespace.\n", dest->size());
	}
}
template <size_t DOF> void wamThread0(ProductManager& pm0, systems::Wam<DOF>& wam0) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

	wam0.gravityCompensate();

	jp_type jp(0.0);
	while (pm0.getSafetyModule()->getMode() == SafetyModule::ACTIVE) {
		wam0.moveTo(jp);
		sleep(1);
		wam0.moveHome();
		sleep(1);
	}
}
int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);
	typedef boost::tuple<double, jp_type> jp_sample_type;

	char tmpFile[] = "/tmp/btXXXXXX";
	if (mkstemp(tmpFile) == -1) {
		printf("ERROR: Couldn't create temporary file!\n");
		return 1;
	}

	const double T_s = pm.getExecutionManager()->getPeriod();


	wam.gravityCompensate();

	systems::Ramp time(pm.getExecutionManager());

	systems::TupleGrouper<double, jp_type> jpLogTg;

	// Record at 1/10th of the loop rate
	systems::PeriodicDataLogger<jp_sample_type> jpLogger(pm.getExecutionManager(),
			new barrett::log::RealTimeWriter<jp_sample_type>(tmpFile, 10*T_s), 10);


	printf("Press [Enter] to start teaching.\n");
	waitForEnter();
	{
		// Make sure the Systems are connected on the same execution cycle
		// that the time is started. Otherwise we might record a bunch of
		// samples all having t=0; this is bad because the Spline requires time
		// to be monotonic.
		BARRETT_SCOPED_LOCK(pm.getExecutionManager()->getMutex());

		connect(time.output, jpLogTg.template getInput<0>());
		connect(wam.jpOutput, jpLogTg.template getInput<1>());
		connect(jpLogTg.output, jpLogger.input);
		time.start();
	}

	printf("Press [Enter] to stop teaching.\n");
	waitForEnter();
	jpLogger.closeLog();
	disconnect(jpLogger.input);


	// Build spline between recorded points
	log::Reader<jp_sample_type> lr(tmpFile);
	std::vector<jp_sample_type> vec;
	for (size_t i = 0; i < lr.numRecords(); ++i) {
		vec.push_back(lr.getRecord());
	}
	math::Spline<jp_type> spline(vec);

	printf("Press [Enter] to play back the recorded trajectory.\n");
	waitForEnter();

	// First, move to the starting position
	wam.moveTo(spline.eval(spline.initialS()));

	// Then play back the recorded motion
	time.stop();
	time.setOutput(spline.initialS());

	systems::Callback<double, jp_type> trajectory(boost::ref(spline));
	connect(time.output, trajectory.input);
	wam.trackReferenceSignal(trajectory.output);

	time.start();

	while (trajectory.input.getValue() < spline.finalS()) {
		usleep(100000);
	}


	printf("Press [Enter] to idle the WAM.\n");
	waitForEnter();
	wam.idle();


	std::remove(tmpFile);
	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);

	return 0;
}
int wam_main(int argc, char** argv, ProductManager& pm,
		systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

//
	typedef boost::tuple<double, jp_type, jv_type, ja_type, jt_type, jt_type> tuple_type;
	typedef systems::TupleGrouper<double, jp_type, jv_type, ja_type, jt_type,
			jt_type> tg_type;
	tg_type tg;

	char tmpFile[] = "btXXXXXX";
	if (mkstemp(tmpFile) == -1) {
		printf("ERROR: Couldn't create temporary file!\n");
		return 1;
	}

	double Frequency;
	double Amplitude;

	double omega1;
	double offset;

	if (argc == 2) {
		Frequency = 0.1;
		Amplitude = 0.525;
		offset = 0;
	}
	if (argc == 3) {
		Amplitude = 0.525;
		offset = 0;
	}
	if (argc == 4) {
		offset = 0;
	}

	else {
		Frequency = boost::lexical_cast<double>(argv[2]);
		Amplitude = boost::lexical_cast<double>(argv[3]);
		offset = boost::lexical_cast<double>(argv[4]);
	}





	const double JT_AMPLITUDE = Amplitude;
	const double FREQUENCY = Frequency;
	const double OFFSET = offset;

	omega1 = 120;

	wam.gravityCompensate();

	const double TRANSITION_DURATION = 0.5; // seconds

	jp_type startpos(0.0);
	startpos[3] = +3.14;
	startpos[1] = offset;

	systems::Ramp time(pm.getExecutionManager(), 1.0);
	printf("Press [Enter] to turn on torque control to go to zero position");
	wam.moveTo(startpos);

	printf("Press [Enter] to turn on torque control to joint 2.");
	waitForEnter();

	// Joint acc calculator
	systems::FirstOrderFilter<jv_type> filter;
	wam.jvFilter.setLowPass(jv_type(omega1));
	filter.setHighPass(jp_type(omega1), jp_type(omega1));
	pm.getExecutionManager()->startManaging(filter);
	systems::Gain<jv_type, double, ja_type> changeUnits1(1.0);
	systems::connect(wam.jvOutput, filter.input);
	systems::connect(filter.output, changeUnits1.input);

	//
	const size_t PERIOD_MULTIPLIER = 1;
	systems::PeriodicDataLogger<tuple_type> logger(pm.getExecutionManager(),
			new log::RealTimeWriter<tuple_type>(tmpFile,
					PERIOD_MULTIPLIER * pm.getExecutionManager()->getPeriod()),
			PERIOD_MULTIPLIER);
	//

	J2control<DOF> jtc(startpos, JT_AMPLITUDE, FREQUENCY, OFFSET);
	systems::connect(tg.output, logger.input);
	systems::connect(time.output, jtc.input);
	systems::connect(time.output, tg.template getInput<0>());
	systems::connect(wam.jpOutput, tg.template getInput<1>());
	systems::connect(wam.jvOutput, tg.template getInput<2>());
	systems::connect(changeUnits1.output, tg.template getInput<3>());
	systems::connect(wam.supervisoryController.output,
			tg.template getInput<4>());
	systems::connect(wam.gravity.output, tg.template getInput<5>());

	wam.trackReferenceSignal(jtc.output);
	time.smoothStart(TRANSITION_DURATION);

	printf("Press [Enter] to stop.");
	waitForEnter();
	logger.closeLog();
	time.smoothStop(TRANSITION_DURATION);
	wam.idle();

	// Wait for the user to press Shift-idle
	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
	log::Reader<boost::tuple<tuple_type> > lr(tmpFile);
	lr.exportCSV(argv[1]);
	printf("Output written to %s.\n", argv[1]);
	std::remove(tmpFile);
	return 0;
}
  int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam)
  {
    BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

    cp_type cartSetPoint;
    wam.gravityCompensate();

    /////////////////////////////////////////////////////////////////////////////////////
    // Add the following to our system to make our Cartesian controller much more robust.
    /////////////////////////////////////////////////////////////////////////////////////

    // Set up singularity avoidance springs
    jp_type joint_center(0.0); // Initialize our joint centers to 0.0 on all joints
    std::vector<double> spring_constants(DOF); // create spring constants
    std::vector<double> damping_constants(DOF); // create damping constants
    joint_center[0] = 0.0;
    joint_center[1] = 0.0;
    joint_center[2] = 0.0;
    joint_center[3] = 1.1; // J4 Joint Range Center at 1.1 Radians
    spring_constants[0] = 15.0;
    spring_constants[1] = 5.0;
    spring_constants[2] = 5.0;
    spring_constants[3] = 5.0;
    damping_constants[0] = 10.0;
    damping_constants[1] = 20.0;
    damping_constants[2] = 10.0;
    damping_constants[3] = 6.0;

    if (DOF == 7)
    {
      joint_center[4] = -1.76; // J5 Joint Range Center at -1.76 Radians
      joint_center[5] = 0.0;
      joint_center[6] = 0.0;
      spring_constants[4] = 0.5;
      spring_constants[5] = 0.25;
      spring_constants[6] = 0.25;
      damping_constants[4] = 0.05;
      damping_constants[5] = 0.05;
      damping_constants[6] = 0.0;
    }

    printf("Press Enter to Turn on Haptic Singularity Avoidance.\n");
    detail::waitForEnter();

    //Initialization Move
    jp_type wam_init = wam.getHomePosition();
    wam_init[3] -= .35;
    wam.moveTo(wam_init); // Adjust the elbow, moving the end-effector out of the haptic boundary and hold position for haptic force initialization.

    // Change decrease our tool position controller gains slightly
    cp_type cp_kp, cp_kd;
    for (size_t i = 0; i < 3; i++)
    {
      cp_kp[i] = 1500;
      cp_kd[i] = 5.0;
    }
    wam.tpController.setKp(cp_kp);
    wam.tpController.setKd(cp_kd);

    //Torque Summer from our three systems
    systems::Summer<jt_type, 4> singJTSum(true);

    // Our singularity avoidance system
    SingularityAvoid<DOF> singularityAvoid(joint_center);
    systems::connect(wam.jpOutput, singularityAvoid.input);
    systems::connect(singularityAvoid.output, singJTSum.getInput(0));

    // Attach our joint stop springs
    JointStopSprings<DOF> jointStopSprings(joint_center, spring_constants);
    systems::connect(wam.jpOutput, jointStopSprings.input);
    systems::connect(jointStopSprings.output, singJTSum.getInput(1));

    // Joint velocity damper for kinematic solutions causing velocity faults
    JVDamper<DOF> jvDamper(damping_constants);
    systems::connect(wam.jvOutput, jvDamper.input);
    systems::connect(jvDamper.output, singJTSum.getInput(2));

    // Haptic collision avoidance boundary portion
    HapticCollisionAvoid<DOF> hapticCollisionAvoid(2000);
    systems::ToolForceToJointTorques<DOF> tf2jt;
    systems::connect(wam.kinematicsBase.kinOutput, tf2jt.kinInput);
    systems::connect(wam.toolPosition.output, hapticCollisionAvoid.input);
    systems::connect(hapticCollisionAvoid.output, tf2jt.input);
    systems::connect(tf2jt.output, singJTSum.getInput(3));

    systems::connect(singJTSum.output, wam.input);

    // New system watchdogs to monitor and stop trajectories if expecting a fault
    TorqueWatchdog<DOF> torqueWatchdog;
    VelocityWatchdog<DOF> velocityWatchdog;
    pm.getExecutionManager()->startManaging(torqueWatchdog);
    pm.getExecutionManager()->startManaging(velocityWatchdog);

    systems::connect(wam.jtSum.output, torqueWatchdog.input);
    systems::connect(wam.jvOutput, velocityWatchdog.input);

    /////////////////////////////////////////////////////////////////////////////////////
    // End of robust cartesian setup
    /////////////////////////////////////////////////////////////////////////////////////

    printf("Press Enter to start test.\n");
    detail::waitForEnter();

    int i;
    for (i = 1; i < 31; i++) //from random.cc
    {
      srand(time(NULL));
      double x = -1 + 2 * ((double)rand()) / RAND_MAX;
      double y = -1 + 2 * (((double)rand()) / ((double)RAND_MAX));
      double z = ((double)rand()) / ((double)RAND_MAX);
      cartSetPoint[0] = x;
      cartSetPoint[1] = y;
      cartSetPoint[2] = z;

      double reach = sqrt(x * x + y * y + z * z);

      if (reach < 0.95)
      {
        std::cout << i << ": Moving to coordinate " << x << ", " << y << ", " << z << ".\n";
        std::cout << reach << "\n";
        wam.moveTo(cartSetPoint, false);
        torqueWatchdog.activate();
        velocityWatchdog.activate(); // The situation here is interesting. A velocity fault can present itself from Cartesian end-effector or elbow velocities,
        // However, in its current capacity, we can only monitor joint velocities, or end-effector velocities.
        bool faulted = false;
        while (!wam.moveIsDone() && !faulted)
        {
          //Check our velocity and torque output to see if crossing threshold (approaching a fault situation)
          jt_type curJT = torqueWatchdog.getCurrentTorque();
          jv_type curJV = velocityWatchdog.getCurrentVelocity();
          for (size_t i = 0; i < DOF; i++)
          {
            if (curJT[i] > 30.0 || curJV[i] > 0.9)
            {
              wam.idle();
              printf("Stopping Move - Fault presented on Joint %zu - Torque: %f, Velocity: %f\n", i, curJT[i],
                     curJV[i]);
              faulted = true;
              wam.moveTo(wam.getJointPositions());
            }
          }
          btsleep(0.01);
        }
        torqueWatchdog.deactivate();
        velocityWatchdog.deactivate();
        continue;
      }
      else
        i--;

      continue;

    }

    systems::disconnect(wam.input);
    wam.moveHome();
    pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
    return 0;

  }
int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam) {
	wam.gravityCompensate();
	printMenu();

	std::string line;
	bool going = true;
	while (going) {
		printf(">>> ");
		std::getline(std::cin, line);

		switch (line[0]) {
		case 'j':
			printf("Holding joint positions.\n");
			wam.moveTo(wam.getJointPositions());
			break;

		case 'p':
			printf("Holding tool position.\n");
			wam.moveTo(wam.getToolPosition());
			break;

		case 'o':
			printf("Holding tool orientation.\n");
			wam.moveTo(wam.getToolOrientation());
			break;

		case 'b':
			printf("Holding both tool position and orientation.\n");
			wam.moveTo(wam.getToolPose());
			break;

		case 'i':
			printf("WAM idled.\n");

			// Note that this use of the word "idle" does not mean "Shift-idle".
			// Calling Wam::idle() will disable any of the controllers that may
			// be connected (joint position, tool position, tool orientation,
			// etc.) leaving only gravity compensation. (More specifically,
			// Wam::idle() disconnects any inputs that were connected using
			// Wam::trackReferenceSignal().)
			wam.idle();
			break;

		case 'q':
		case 'x':
			printf("Quitting.\n");
			wam.moveHome();
			going = false;
			break;

		default:
			if (line.size() != 0) {
				printf("Unrecognized option.\n");
				printMenu();
			}
			break;
		}
	}

	// Release the WAM if we're holding. This is convenient because it allows
	// users to move the WAM back to some collapsed position before exiting, if
	// they want.
	wam.idle();

	// Wait for the user to press Shift-idle
	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
	return 0;
}
int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam) {
    BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);
    typedef Hand::jp_type hjp_t;
    const char* path = pm.getWamDefaultConfigPath();
    std::cout<<"got configuration "<<std::endl;
    size_t i=0;
    while(path[i]!='\0'){
      std::cout<<path[i];
      i++;
    }
    jp_type zero(0.0);

    double O = 0.0;
    double C = 2.4;
    double SC = M_PI;
    hjp_t open(O);
    hjp_t closed(C);
    closed[3] = SC;

    jp_type PickPos, placePos;
    PickPos<<-0.002,  1.200,  0.002,  1.536, -0.054, -1.262, -1.517;
    placePos<<0.545,  1.199,  0.532,  1.481, -0.478, -0.917, -1.879;
    double OR = -0.75;
    double CR = 0.75;
    Hand::jv_type opening(OR);
    Hand::jv_type closing(CR);
    wam.gravityCompensate();
    wam.moveTo(zero);

    if ( !pm.foundHand() ) {
        printf("ERROR: No Hand found on bus!\n");
        return 1;
    }
    Hand& hand = *pm.getHand();
    std::cout<<"[Enter] to initialize Hand"<<std::endl;
    detail::waitForEnter();
    hand.initialize();


    std::cout<<"operate on Hand"<<std::endl;
    detail::waitForEnter();
    {
            assertPosition(hand, open);
            std::cout<<"[Enter] to close Hand"<<std::endl;
            detail::waitForEnter();
            hand.close();
            assertPosition(hand, closed);
            std::cout<<"[Enter] to open Hand"<<std::endl;
            detail::waitForEnter();
            hand.open();
            assertPosition(hand, open);
            std::cout<<"[Enter] to close spread Hand"<<std::endl;
            detail::waitForEnter();
            hand.close(Hand::SPREAD);
            assertPosition(hand, hjp_t(O,O,O,SC));
            std::cout<<"[Enter] to close grasp Hand"<<std::endl;
            detail::waitForEnter();
            hand.close(Hand::GRASP);
            assertPosition(hand, closed);
            std::cout<<"[Enter] to open spread Hand"<<std::endl;
            detail::waitForEnter();
            hand.open(Hand::GRASP, false);
            btsleep(0.5);
            assertPosition(hand, hjp_t(1.6,1.6,1.6,SC));
            std::cout<<"[Enter] to open Hand"<<std::endl;
            detail::waitForEnter();
            hand.open();
            assertPosition(hand, open);
            wam.moveTo(PickPos );
            btsleep(0.5);
            assertPosition(hand, open);
            std::cout<<"[Enter] to close Hand"<<std::endl;
            detail::waitForEnter();
            hand.close();
        }
    std::cout<<"[Enter] to move home"<<std::endl;
    detail::waitForEnter();

    wam.moveHome();


    std::cout<<"configuration should be printed"<<std::endl;
    pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
    return 0;
}
Exemple #9
0
int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

	wam.gravityCompensate();
	bool gComp = true;
	pm.getSafetyModule()->setVelocityLimit(0.3);

	jp_type jp;
	size_t joint = 0;
	systems::ExposedOutput<jp_type> setPoint;

	std::string line;
	bool going = true;
	while (going) {
		printf(">>> ");
		std::getline(std::cin, line);

		if (line.size() == 0) {
			wam.moveTo(jp);

			libconfig::Config config;
			config.readFile("tuning.conf");
			systems::PIDController<jp_type, jt_type> jpc(config.lookup(pm.getWamDefaultConfigPath())["joint_position_control"]);
			systems::connect(setPoint.output, jpc.referenceInput);
			systems::connect(wam.jpOutput, jpc.feedbackInput);

			wam.idle();
			usleep(100000);
			systems::connect(jpc.controlOutput, wam.input);
			printf("Controller updated.\n");

			printf("Press enter for step.\n");
			std::getline(std::cin, line);
			jp[joint] += 0.02;
			setPoint.setValue(jp);

			std::getline(std::cin, line);
			systems::disconnect(wam.input);
			wam.moveTo(jp);
			printf("Original controller now in use.\n");

			continue;
		}

		switch (line[0]) {
		case 'h':
			printf("Set point updated.\n");
			jp = wam.getJointPositions();
			wam.moveTo(jp);
			setPoint.setValue(jp);
			break;

		case 'i':
			printf("WAM idled.\n");
			wam.idle();
			break;

		case 'j':
			joint = (joint + 1) % DOF;
			printf("Step joint %zu.\n", joint+1);
			break;

		case 'g':
			gComp = ! gComp;
			wam.gravityCompensate(gComp);
			break;

		case 'q':
		case 'x':
			printf("Quitting.\n");
			going = false;
			break;

		default:
			printf("Unrecognized option.\n");
			break;
		}
	}


	wam.idle();
	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
	return 0;
}
int wam_main(int argc, char** argv, ProductManager& pm,
		systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);

	Eigen::MatrixXd Lamda;

	Eigen::MatrixXd Coeff;
	Eigen::VectorXd Delta;
	Eigen::VectorXd Amp;
	Eigen::VectorXd Freq;
	Eigen::VectorXd StartPos;
	Eigen::VectorXd dist_K_tmp;
	Eigen::VectorXd state_intg;
	Eigen::VectorXd A_tmp;


	Sam::initEigenMat<double>(Lamda, Sam::readFile<double>("lamda.txt"));
	Sam::initEigenMat<double>(Coeff, Sam::readFile<double>("coeff.txt"));
	Sam::initEigenVec<double>(Delta, Sam::readFile<double>("delta.txt"));
	Sam::initEigenVec<double>(Amp, Sam::readFile<double>("amp.txt"));
	Sam::initEigenVec<double>(Freq, Sam::readFile<double>("freq.txt"));
	Sam::initEigenVec<double>(StartPos, Sam::readFile<double>("start.txt"));
	Sam::initEigenVec<double>(dist_K_tmp, Sam::readFile<double>("dist_K.txt"));
	Sam::initEigenVec<double>(state_intg, Sam::readFile<double>("integrator_state.txt"));
	Sam::initEigenVec<double>(A_tmp, Sam::readFile<double>("A.txt"));



	std::cout << "Lamda is" << Lamda << "\n" << "Coeff is" << Coeff << "\n"
			<< "Delta is" << Delta << "\n" << std::endl;
	typedef boost::tuple<double, jp_type, jv_type, jp_type, jv_type, jt_type,
			jt_type, double, jp_type> tuple_type;
	typedef systems::TupleGrouper<double, jp_type, jv_type, jp_type, jv_type,
			jt_type, jt_type, double, jp_type> tg_type;
	tg_type tg;
	char tmpFile[] = "btXXXXXX";
	if (mkstemp(tmpFile) == -1) {
		printf("ERROR: Couldn't create temporary file!\n");
		return 1;
	}
	const double TRANSITION_DURATION = 0.5;
//	double amplitude1, omega1;
	const Eigen::Matrix4d lamda = Lamda;

	const Eigen::Matrix4d coeff = Coeff;
	const Eigen::Vector4d delta = Delta;
	jp_type startpos(0.0);

	startpos[0] = StartPos[0];
	startpos[1] = StartPos[1];
	startpos[2] = StartPos[2];
	startpos[3] = StartPos[3];

	const Eigen::Vector4d JP_AMPLITUDE = Amp;
	const Eigen::Vector4d OMEGA = Freq;
	Eigen::Vector4d tmp_velocity;
	tmp_velocity[0] = Amp[0]*Freq[0];
	tmp_velocity[1] = Amp[1]*Freq[1];
	tmp_velocity[2] = Amp[2]*Freq[2];
	tmp_velocity[3] = Amp[3]*Freq[3];
	bool status = true;
	const double dist_K =  dist_K_tmp[0];
	const int state = state_intg[0];
	const Eigen::Vector4d initial_velocity = tmp_velocity;

	const float A = A_tmp[0];

	J_ref<DOF> joint_ref(JP_AMPLITUDE, OMEGA, startpos);
	Slidingmode_Controller<DOF> slide(status, lamda, coeff, delta);
	Dynamics<DOF> nilu_dynamics;
	disturbance_observer<DOF> nilu_disturbance(dist_K,state, initial_velocity,A);
	Dummy<DOF> nilu_dummy;

	wam.gravityCompensate();
	printf("Press [Enter] to turn on torque control to go to zero position");
	waitForEnter();

	wam.moveTo(startpos);
	printf("Press [Enter] to turn on torque control to joint 2.");
	waitForEnter();
	printf("Error 1 \n");

	systems::Ramp time(pm.getExecutionManager(), 1.0);
	const size_t PERIOD_MULTIPLIER = 1;
	systems::PeriodicDataLogger<tuple_type> logger(pm.getExecutionManager(),
			new log::RealTimeWriter<tuple_type>(tmpFile,
					PERIOD_MULTIPLIER * pm.getExecutionManager()->getPeriod()),
			PERIOD_MULTIPLIER);
	printf("Error 2 \n");

	systems::connect(tg.output, logger.input);
	systems::connect(time.output, joint_ref.timef);
	systems::connect(wam.jpOutput, slide.feedbackjpInput);
	systems::connect(wam.jvOutput, slide.feedbackjvInput);
	systems::connect(wam.jpOutput, nilu_dynamics.jpInputDynamics);
	systems::connect(wam.jvOutput, nilu_dynamics.jvInputDynamics);
	systems::connect(nilu_dynamics.MassMAtrixOutput, slide.M);
	systems::connect(nilu_dynamics.CVectorOutput, slide.C);
	systems::connect(joint_ref.referencejpTrack, slide.referencejpInput);
	systems::connect(joint_ref.referencejvTrack, slide.referencejvInput);
	systems::connect(joint_ref.referencejaTrack, slide.referencejaInput);

	systems::connect(time.output, nilu_disturbance.time);
	systems::connect(nilu_dynamics.MassMAtrixOutput, nilu_disturbance.M);
	systems::connect(nilu_dynamics.CVectorOutput, nilu_disturbance.C);
	systems::connect(wam.jpOutput, nilu_disturbance.inputactual_pos);
	systems::connect(wam.jvOutput, nilu_disturbance.inputactual_vel);
	systems::connect(slide.controlOutput, nilu_disturbance.SMC);

	systems::connect(slide.controlOutput, nilu_dummy.ControllerInput);
	systems::connect(nilu_disturbance.disturbance_torque_etimate,
			nilu_dummy.CompensatorInput);

	wam.trackReferenceSignal(nilu_dummy.Total_torque);
	printf("Error 3 \n");

	systems::connect(time.output, tg.template getInput<0>());
	systems::connect(joint_ref.referencejpTrack, tg.template getInput<1>());
	systems::connect(joint_ref.referencejvTrack, tg.template getInput<2>());
	systems::connect(wam.jpOutput, tg.template getInput<3>());
	systems::connect(wam.jvOutput, tg.template getInput<4>());
	systems::connect(nilu_disturbance.disturbance_torque_etimate,
			tg.template getInput<5>());
	systems::connect(slide.controlOutput, tg.template getInput<6>());
	systems::connect(nilu_disturbance.Test, tg.template getInput<7>());
	systems::connect(nilu_disturbance.InverseTest, tg.template getInput<8>());



	printf("Error 4 \n");

	time.smoothStart(TRANSITION_DURATION);
	printf("Press [Enter] to stop.");
	waitForEnter();
	logger.closeLog();
	time.smoothStop(TRANSITION_DURATION);
	wam.idle();
	printf("Error 5 \n");

	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
	log::Reader<boost::tuple<tuple_type> > lr(tmpFile);
	lr.exportCSV(argv[1]);
	printf("Error 6 \n");

	printf("Output written to %s.\n", argv[1]);
	std::remove(tmpFile);

	return 0;
}
int wam_main(int argc, char** argv, ProductManager& pm,
		systems::Wam<DOF>& wam) {
	BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF);


	Eigen::MatrixXd Coeff;
	Eigen::VectorXd Delta;
	Eigen::VectorXd Amp;
	Eigen::VectorXd Freq;
	Eigen::VectorXd StartPos;
	Eigen::MatrixXd A;
	Eigen::MatrixXd B;
	Eigen::VectorXd P;
	Eigen::VectorXd Q;

	Sam::initEigenMat<double>(A, Sam::readFile<double>("A.txt"));
	Sam::initEigenMat<double>(B, Sam::readFile<double>("B.txt"));
	Sam::initEigenVec<double>(P, Sam::readFile<double>("P.txt"));
	Sam::initEigenVec<double>(Q, Sam::readFile<double>("Q.txt"));

	Sam::initEigenMat<double>(Coeff, Sam::readFile<double>("coeff.txt"));
	Sam::initEigenVec<double>(Delta, Sam::readFile<double>("delta.txt"));
	Sam::initEigenVec<double>(Amp, Sam::readFile<double>("amp.txt"));
	Sam::initEigenVec<double>(Freq, Sam::readFile<double>("freq.txt"));
	Sam::initEigenVec<double>(StartPos, Sam::readFile<double>("start.txt"));

	typedef boost::tuple<double, jp_type, jv_type, jp_type, jv_type, jt_type> tuple_type;
	typedef systems::TupleGrouper<double, jp_type, jv_type, jp_type, jv_type,
			jt_type> tg_type;
	tg_type tg;
	char tmpFile[] = "btXXXXXX";
	if (mkstemp(tmpFile) == -1) {
		printf("ERROR: Couldn't create temporary file!\n");
		return 1;
	}
	const double TRANSITION_DURATION = 0.5;
	double amplitude1, omega1;
	const Eigen::Matrix4d coeff = Coeff;
	const Eigen::Vector4d delta = Delta;
	jp_type startpos(0.0);


	startpos[0] = StartPos[0];
	startpos[1] = StartPos[1];
	startpos[2] = StartPos[2];
	startpos[3] = StartPos[3];

	const Eigen::Vector4d JP_AMPLITUDE = Amp;
	const Eigen::Vector4d OMEGA = Freq;
	bool status = true;
	const Eigen::Matrix4d A1 = A;
	const Eigen::Matrix4d B1 = B;
	const float P1 = P[0];
	const float Q1 = Q[0];

	J_ref<DOF> joint_ref(JP_AMPLITUDE, OMEGA, startpos);
	SMC_higher_order<DOF> slide(status, coeff, delta , A1, B1,P1, Q1 );
	Dynamics<DOF> nilu_dynamics;

	wam.gravityCompensate();
	printf("Press [Enter] to turn on torque control to go to zero position");
	waitForEnter();

	wam.moveTo(startpos);
	printf("Press [Enter] to turn on torque control to joint 2.");
	waitForEnter();
	printf("Error 1 \n");

	systems::Ramp time(pm.getExecutionManager(), 1.0);
	const size_t PERIOD_MULTIPLIER = 1;
	systems::PeriodicDataLogger<tuple_type> logger(pm.getExecutionManager(),
			new log::RealTimeWriter<tuple_type>(tmpFile,
					PERIOD_MULTIPLIER * pm.getExecutionManager()->getPeriod()),
			PERIOD_MULTIPLIER);
	printf("Error 2 \n");

	systems::connect(tg.output, logger.input);
	systems::connect(time.output, joint_ref.timef);
	systems::connect(wam.jpOutput, slide.feedbackjpInput);
	systems::connect(wam.jvOutput, slide.feedbackjvInput);
	systems::connect(wam.jpOutput, nilu_dynamics.jpInputDynamics);
	systems::connect(wam.jvOutput, nilu_dynamics.jvInputDynamics);
	systems::connect(nilu_dynamics.MassMAtrixOutput, slide.M);
	systems::connect(nilu_dynamics.CVectorOutput, slide.C);
	systems::connect(joint_ref.referencejpTrack, slide.referencejpInput);
	systems::connect(joint_ref.referencejvTrack, slide.referencejvInput);
	systems::connect(joint_ref.referencejaTrack, slide.referencejaInput);

	wam.trackReferenceSignal(slide.controlOutput);
	printf("Error 3 \n");

	systems::connect(time.output, tg.template getInput<0>());
	systems::connect(joint_ref.referencejpTrack, tg.template getInput<1>());
	systems::connect(joint_ref.referencejvTrack, tg.template getInput<2>());
	systems::connect(wam.jpOutput, tg.template getInput<3>());
	systems::connect(wam.jvOutput, tg.template getInput<4>());
	systems::connect(slide.controlOutput, tg.template getInput<5>());
	printf("Error 4 \n");

	time.smoothStart(TRANSITION_DURATION);
	printf("Press [Enter] to stop.");
	waitForEnter();
	logger.closeLog();
	time.smoothStop(TRANSITION_DURATION);
	wam.idle();
	printf("Error 5 \n");

	pm.getSafetyModule()->waitForMode(SafetyModule::IDLE);
	log::Reader<boost::tuple<tuple_type> > lr(tmpFile);
	lr.exportCSV(argv[1]);
	printf("Error 6 \n");

	printf("Output written to %s.\n", argv[1]);
	std::remove(tmpFile);

	return 0;
}