//============================================================================== int Ifpack_Chebyshev:: ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const { if (!IsComputed()) IFPACK_CHK_ERR(-3); if (PolyDegree_ == 0) return 0; int nVec = X.NumVectors(); int len = X.MyLength(); if (nVec != Y.NumVectors()) IFPACK_CHK_ERR(-2); Time_->ResetStartTime(); // AztecOO gives X and Y pointing to the same memory location, // need to create an auxiliary vector, Xcopy Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy; if (X.Pointers()[0] == Y.Pointers()[0]) Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) ); else Xcopy = Teuchos::rcp( &X, false ); double **xPtr = 0, **yPtr = 0; Xcopy->ExtractView(&xPtr); Y.ExtractView(&yPtr); #ifdef HAVE_IFPACK_EPETRAEXT EpetraExt_PointToBlockDiagPermute* IBD=0; if (UseBlockMode_) IBD=&*InvBlockDiagonal_; #endif //--- Do a quick solve when the matrix is identity double *invDiag=0; if(!UseBlockMode_) invDiag=InvDiagonal_->Values(); if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) { #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) IBD->ApplyInverse(*Xcopy,Y); else #endif if (nVec == 1) { double *yPointer = yPtr[0], *xPointer = xPtr[0]; for (int i = 0; i < len; ++i) yPointer[i] = xPointer[i]*invDiag[i]; } else { int i, k; for (i = 0; i < len; ++i) { double coeff = invDiag[i]; for (k = 0; k < nVec; ++k) yPtr[k][i] = xPtr[k][i] * coeff; } } // if (nVec == 1) return 0; } // if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) //--- Initialize coefficients // Note that delta stores the inverse of ML_Cheby::delta double alpha = LambdaMax_ / EigRatio_; double beta = 1.1 * LambdaMax_; double delta = 2.0 / (beta - alpha); double theta = 0.5 * (beta + alpha); double s1 = theta * delta; //--- Define vectors // In ML_Cheby, V corresponds to pAux and W to dk Epetra_MultiVector V(X); Epetra_MultiVector W(X); #ifdef HAVE_IFPACK_EPETRAEXT Epetra_MultiVector Temp(X); #endif double *vPointer = V.Values(), *wPointer = W.Values(); double oneOverTheta = 1.0/theta; int i, j, k; //--- If solving normal equations, multiply RHS by A^T if(SolveNormalEquations_){ Apply_Transpose(Operator_,Y,V); Y=V; } // Do the smoothing when block scaling is turned OFF // --- Treat the initial guess if (ZeroStartingSolution_ == false) { Operator_->Apply(Y, V); // Compute W = invDiag * ( X - V )/ Theta #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { Temp.Update(oneOverTheta,X,-oneOverTheta,V,0.0); IBD->ApplyInverse(Temp,W); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(W,Temp); Apply_Transpose(Operator_,Temp,W); } } else #endif if (nVec == 1) { double *xPointer = xPtr[0]; for (i = 0; i < len; ++i) wPointer[i] = invDiag[i] * (xPointer[i] - vPointer[i]) * oneOverTheta; } else { for (i = 0; i < len; ++i) { double coeff = invDiag[i]*oneOverTheta; double *wi = wPointer + i, *vi = vPointer + i; for (k = 0; k < nVec; ++k) { *wi = (xPtr[k][i] - (*vi)) * coeff; wi = wi + len; vi = vi + len; } } } // if (nVec == 1) // Update the vector Y Y.Update(1.0, W, 1.0); } else { // Compute W = invDiag * X / Theta #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { IBD->ApplyInverse(X,W); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(W,Temp); Apply_Transpose(Operator_,Temp,W); } W.Scale(oneOverTheta); Y.Update(1.0, W, 0.0); } else #endif if (nVec == 1) { double *xPointer = xPtr[0]; for (i = 0; i < len; ++i){ wPointer[i] = invDiag[i] * xPointer[i] * oneOverTheta; } memcpy(yPtr[0], wPointer, len*sizeof(double)); } else { for (i = 0; i < len; ++i) { double coeff = invDiag[i]*oneOverTheta; double *wi = wPointer + i; for (k = 0; k < nVec; ++k) { *wi = xPtr[k][i] * coeff; wi = wi + len; } } for (k = 0; k < nVec; ++k) memcpy(yPtr[k], wPointer + k*len, len*sizeof(double)); } // if (nVec == 1) } // if (ZeroStartingSolution_ == false) //--- Apply the polynomial double rhok = 1.0/s1, rhokp1; double dtemp1, dtemp2; int degreeMinusOne = PolyDegree_ - 1; if (nVec == 1) { double *xPointer = xPtr[0]; for (k = 0; k < degreeMinusOne; ++k) { Operator_->Apply(Y, V); rhokp1 = 1.0 / (2.0*s1 - rhok); dtemp1 = rhokp1 * rhok; dtemp2 = 2.0 * rhokp1 * delta; rhok = rhokp1; // Compute W = dtemp1 * W W.Scale(dtemp1); // Compute W = W + dtemp2 * invDiag * ( X - V ) #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { //NTS: We can clobber V since it will be reset in the Apply V.Update(dtemp2,X,-dtemp2); IBD->ApplyInverse(V,Temp); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(V,Temp); Apply_Transpose(Operator_,Temp,V); } W.Update(1.0,Temp,1.0); } else{ #endif for (i = 0; i < len; ++i) wPointer[i] += dtemp2* invDiag[i] * (xPointer[i] - vPointer[i]); #ifdef HAVE_IFPACK_EPETRAEXT } #endif // Update the vector Y Y.Update(1.0, W, 1.0); } // for (k = 0; k < degreeMinusOne; ++k) } else { for (k = 0; k < degreeMinusOne; ++k) { Operator_->Apply(Y, V); rhokp1 = 1.0 / (2.0*s1 - rhok); dtemp1 = rhokp1 * rhok; dtemp2 = 2.0 * rhokp1 * delta; rhok = rhokp1; // Compute W = dtemp1 * W W.Scale(dtemp1); // Compute W = W + dtemp2 * invDiag * ( X - V ) #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { //We can clobber V since it will be reset in the Apply V.Update(dtemp2,X,-dtemp2); IBD->ApplyInverse(V,Temp); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(V,Temp); Apply_Transpose(Operator_,Temp,V); } W.Update(1.0,Temp,1.0); } else{ #endif for (i = 0; i < len; ++i) { double coeff = invDiag[i]*dtemp2; double *wi = wPointer + i, *vi = vPointer + i; for (j = 0; j < nVec; ++j) { *wi += (xPtr[j][i] - (*vi)) * coeff; wi = wi + len; vi = vi + len; } } #ifdef HAVE_IFPACK_EPETRAEXT } #endif // Update the vector Y Y.Update(1.0, W, 1.0); } // for (k = 0; k < degreeMinusOne; ++k) } // if (nVec == 1) // Flops are updated in each of the following. ++NumApplyInverse_; ApplyInverseTime_ += Time_->ElapsedTime(); return(0); }
int Ifpack_SORa::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{ if(!IsComputed_) return -1; Time_.ResetStartTime(); bool initial_guess_is_zero=false; int NumMyRows=W_->NumMyRows(); int NumVectors = X.NumVectors(); Epetra_MultiVector Temp(A_->RowMatrixRowMap(),NumVectors); double omega=GetOmega(); // need to create an auxiliary vector, Xcopy Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy; if (X.Pointers()[0] == Y.Pointers()[0]){ Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) ); // Since the user didn't give us anything better, our initial guess is zero. Y.Scale(0.0); initial_guess_is_zero=true; } else Xcopy = Teuchos::rcp( &X, false ); Teuchos::RefCountPtr< Epetra_MultiVector > T2; // Note: Assuming that the matrix has an importer. Ifpack_PointRelaxation doesn't do this, but given that // I have a CrsMatrix, I'm probably OK. // Note: This is the lazy man's version sacrificing a few extra flops for avoiding if statements to determine // if things are on or off processor. // Note: T2 must be zero'd out if (IsParallel_ && W_->Importer()) T2 = Teuchos::rcp( new Epetra_MultiVector(W_->Importer()->TargetMap(),NumVectors,true)); else T2 = Teuchos::rcp( new Epetra_MultiVector(A_->RowMatrixRowMap(),NumVectors,true)); // Pointer grabs int* rowptr,*colind; double *values; double **t_ptr,** y_ptr, ** t2_ptr, **x_ptr,*d_ptr; T2->ExtractView(&t2_ptr); Y.ExtractView(&y_ptr); Temp.ExtractView(&t_ptr); Xcopy->ExtractView(&x_ptr); Wdiag_->ExtractView(&d_ptr); IFPACK_CHK_ERR(W_->ExtractCrsDataPointers(rowptr,colind,values)); for(int i=0; i<NumSweeps_; i++){ // Calculate b-Ax if(!initial_guess_is_zero || i > 0) { A_->Apply(Y,Temp); Temp.Update(1.0,*Xcopy,-1.0); } else Temp.Update(1.0,*Xcopy,0.0); // Note: The off-processor entries of T2 never get touched (they're always zero) and the other entries are updated // in this sweep before they are used, so we don't need to reset T2 to zero here. // Do backsolve & update // x = x + W^{-1} (b - A x) for(int j=0; j<NumMyRows; j++){ double diag=d_ptr[j]; for (int m=0 ; m<NumVectors; m++) { double dtmp=0.0; // Note: Since the diagonal is in the matrix, we need to zero that entry of T2 here to make sure it doesn't contribute. t2_ptr[m][j]=0.0; for(int k=rowptr[j];k<rowptr[j+1];k++){ dtmp+= values[k]*t2_ptr[m][colind[k]]; } // Yes, we need to update both of these. t2_ptr[m][j] = (t_ptr[m][j]- dtmp)/diag; y_ptr[m][j] += omega*t2_ptr[m][j]; } } } // Counter update NumApplyInverse_++; ApplyInverseTime_ += Time_.ElapsedTime(); return 0; }