void Piro::LOCASolver<Scalar>::evalModelImpl( const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs, const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const { const int l = 0; // TODO: Allow user to select parameter index const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l); // Forward parameter values to the LOCA stepper { const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal = Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l); const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal); const Teuchos_Ordinal p_entry_count = p_init_values.subDim(); TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length())); for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) { paramVector_[k] = p_init_values[k]; } group_->setParams(paramVector_); } stepper_->reset(globalData_, group_, locaStatusTests_, noxStatusTests_, piroParams_); const LOCA::Abstract::Iterator::IteratorStatus status = stepper_->run(); if (status == LOCA::Abstract::Iterator::Finished) { std::cerr << "Continuation Stepper Finished.\n"; } else if (status == LOCA::Abstract::Iterator::NotFinished) { std::cerr << "Continuation Stepper did not reach final value.\n"; } else { std::cerr << "Nonlinear solver failed to converge.\n"; outArgs.setFailed(); } const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g()); const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final = Teuchos::nonnull(x_outargs) ? x_outargs : Thyra::createMember(this->get_g_space(this->num_g())); { // Deep copy final solution from LOCA group NOX::Thyra::Vector finalSolution(x_final); finalSolution = group_->getX(); } // Compute responses for the final solution { Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = this->getModel().createInArgs(); { modelInArgs.set_x(x_final); modelInArgs.set_p(l, p_inargs); } this->evalConvergedModel(modelInArgs, outArgs); } }
TEUCHOS_UNIT_TEST( Rythmos_ExplicitRKStepper, basePoint ) { RCP<SinCosModel> model = sinCosModel(false); { RCP<ParameterList> pl = Teuchos::parameterList(); pl->set("Accept model parameters",true); model->setParameterList(pl); } Thyra::ModelEvaluatorBase::InArgs<double> ic = model->getNominalValues(); // t_ic double t_ic = 1.0; // not used // x_ic RCP<VectorBase<double> > x_ic = Thyra::createMember(*model->get_x_space()); { Thyra::DetachedVectorView<double> x_ic_view( *x_ic ); x_ic_view[0] = 5.0; x_ic_view[1] = 6.0; } // parameter 0 ic RCP<VectorBase<double> > p_ic = Thyra::createMember(*model->get_p_space(0)); { Thyra::DetachedVectorView<double> p_ic_view( *p_ic ); p_ic_view[0] = 2.0; // a p_ic_view[1] = 3.0; // f p_ic_view[2] = 4.0; // L } ic.set_p(0,p_ic); ic.set_x(x_ic); ic.set_t(t_ic); RCP<ExplicitRKStepper<double> > stepper = explicitRKStepper<double>(); stepper->setModel(model); stepper->setInitialCondition(ic); stepper->setRKButcherTableau(createRKBT<double>("Forward Euler")); double dt = 0.2; double dt_taken; dt_taken = stepper->takeStep(dt,STEP_TYPE_FIXED); TEST_EQUALITY_CONST( dt_taken, 0.2 ); const StepStatus<double> status = stepper->getStepStatus(); TEST_ASSERT( !is_null(status.solution) ); double tol = 1.0e-10; { Thyra::ConstDetachedVectorView<double> x_new_view( *(status.solution) ); TEST_FLOATING_EQUALITY( x_new_view[0], 5.0 + 0.2*(6.0), tol ); TEST_FLOATING_EQUALITY( x_new_view[1], 6.0 + 0.2*( (3.0/4.0)*(3.0/4.0)*(2.0-5.0) ), tol ); } }
void Piro::RythmosSolver<Scalar>::evalModelImpl( #endif const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs, const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const { using Teuchos::RCP; using Teuchos::rcp; // TODO: Support more than 1 parameter and 1 response const int j = 0; const int l = 0; // Parse InArgs RCP<const Thyra::VectorBase<Scalar> > p_in; if (num_p > 0) { p_in = inArgs.get_p(l); } RCP<const Thyra::VectorBase<Scalar> > p_in2; //JF add for multipoint if (num_p > 1) { p_in2 = inArgs.get_p(l+1); } // Parse OutArgs RCP<Thyra::VectorBase<Scalar> > g_out; if (num_g > 0) { g_out = outArgs.get_g(j); } const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g); Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues(); // Set initial time in ME if needed if(t_initial > 0.0 && state_ic.supports(Thyra::ModelEvaluatorBase::IN_ARG_t)) state_ic.set_t(t_initial); if (Teuchos::nonnull(initialConditionModel)) { // The initial condition depends on the parameter // It is found by querying the auxiliary model evaluator as the last response const RCP<Thyra::VectorBase<Scalar> > initialState = Thyra::createMember(model->get_x_space()); { Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs(); if (num_p > 0) { initCondInArgs.set_p(l, inArgs.get_p(l)); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs(); initCondOutArgs.set_g(initCondOutArgs.Ng() - 1, initialState); initialConditionModel->evalModel(initCondInArgs, initCondOutArgs); } state_ic.set_x(initialState); } // Set paramters p_in as part of initial conditions if (num_p > 0) { if (Teuchos::nonnull(p_in)) { state_ic.set_p(l, p_in); } } if (num_p > 1) { //JF added for multipoint if (Teuchos::nonnull(p_in2)) { state_ic.set_p(l+1, p_in2); } } *out << "\nstate_ic:\n" << Teuchos::describe(state_ic, solnVerbLevel); //JF may need a version of the following for multipoint, i.e. num_p>1, l+1, if we want sensitivities RCP<Thyra::MultiVectorBase<Scalar> > dgxdp_out; Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv_out; if (num_p > 0) { const Thyra::ModelEvaluatorBase::DerivativeSupport dgxdp_support = outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g, l); if (dgxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) { const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgxdp_deriv = outArgs.get_DgDp(num_g, l); dgxdp_out = dgxdp_deriv.getMultiVector(); } if (num_g > 0) { const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support = outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l); if (!dgdp_support.none()) { dgdp_deriv_out = outArgs.get_DgDp(j, l); } } } const bool requestedSensitivities = Teuchos::nonnull(dgxdp_out) || !dgdp_deriv_out.isEmpty(); RCP<const Thyra::VectorBase<Scalar> > finalSolution; if (!requestedSensitivities) { // *out << "\nE) Solve the forward problem ...\n"; // fwdStateStepper->setInitialCondition(state_ic); fwdStateIntegrator->setStepper(fwdStateStepper, t_final, true); *out << "T final : " << t_final << " \n"; Teuchos::Array<RCP<const Thyra::VectorBase<Scalar> > > x_final_array; fwdStateIntegrator->getFwdPoints( Teuchos::tuple<Scalar>(t_final), &x_final_array, NULL, NULL); finalSolution = x_final_array[0]; if (Teuchos::VERB_MEDIUM <= solnVerbLevel) { std::cout << "Final Solution\n" << *finalSolution << std::endl; } } else { // Computing sensitivities // *out << "\nE) Solve the forward problem with Sensitivities...\n"; // RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper = Rythmos::forwardSensitivityStepper<Scalar>(); stateAndSensStepper->initializeSyncedSteppers( model, l, model->getNominalValues(), fwdStateStepper, fwdTimeStepSolver); // // Set the initial condition for the state and forward sensitivities // const RCP<Thyra::VectorBase<Scalar> > s_bar_init = Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); const RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init = Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); if (Teuchos::is_null(initialConditionModel)) { // The initial condition is assumed to be independent from the parameters // Therefore, the initial condition for the sensitivity is zero Thyra::assign(s_bar_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero()); } else { // Use initialConditionModel to compute initial condition for sensitivity Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs(); initCondInArgs.set_p(l, inArgs.get_p(l)); Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs(); typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV; const RCP<DMVPV> s_bar_init_downcasted = Teuchos::rcp_dynamic_cast<DMVPV>(s_bar_init); const Thyra::ModelEvaluatorBase::Derivative<Scalar> initCond_deriv( s_bar_init_downcasted->getNonconstMultiVector(), Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM); initCondOutArgs.set_DgDp(initCondOutArgs.Ng() - 1, l, initCond_deriv); initialConditionModel->evalModel(initCondInArgs, initCondOutArgs); } Thyra::assign(s_bar_dot_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero()); RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> > stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel(); Thyra::ModelEvaluatorBase::InArgs<Scalar> state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs(); // Copy time, parameters etc. state_and_sens_ic.setArgs(state_ic); // Set initial condition for x_bar = [ x; s_bar ] state_and_sens_ic.set_x(stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init)); // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ] state_and_sens_ic.set_x_dot(stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init)); stateAndSensStepper->setInitialCondition(state_and_sens_ic); // // Use a StepperAsModelEvaluator to integrate the state+sens // const RCP<Rythmos::StepperAsModelEvaluator<Scalar> > stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator( Teuchos::rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper), Teuchos::rcp_implicit_cast<Rythmos::IntegratorBase<Scalar> >(fwdStateIntegrator), state_and_sens_ic); // StepperAsModelEvaluator outputs the solution as its last response const int stateAndSensModelStateResponseIndex = stateAndSensIntegratorAsModel->Ng() - 1; *out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,t_final) ... \n"; Teuchos::OSTab tab(out); // Solution sensitivity in column-oriented (Jacobian) MultiVector form RCP<const Thyra::MultiVectorBase<Scalar> > dxdp; const RCP<Thyra::VectorBase<Scalar> > x_bar_final = Thyra::createMember(stateAndSensIntegratorAsModel->get_g_space(stateAndSensModelStateResponseIndex)); // Extract pieces of x_bar_final to prepare output { const RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_final_downcasted = Thyra::productVectorBase<Scalar>(x_bar_final); // Solution const int solutionBlockIndex = 0; finalSolution = x_bar_final_downcasted->getVectorBlock(solutionBlockIndex); // Sensitivity const int sensitivityBlockIndex = 1; const RCP<const Thyra::VectorBase<Scalar> > s_bar_final = x_bar_final_downcasted->getVectorBlock(sensitivityBlockIndex); { typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV; const RCP<const DMVPV> s_bar_final_downcasted = Teuchos::rcp_dynamic_cast<const DMVPV>(s_bar_final); dxdp = s_bar_final_downcasted->getMultiVector(); } } Thyra::eval_g( *stateAndSensIntegratorAsModel, l, *state_ic.get_p(l), t_final, stateAndSensModelStateResponseIndex, x_bar_final.get() ); *out << "\nx_bar_final = x_bar(p,t_final) evaluated using " << "stateAndSensIntegratorAsModel:\n" << Teuchos::describe(*x_bar_final,solnVerbLevel); if (Teuchos::nonnull(dgxdp_out)) { Thyra::assign(dgxdp_out.ptr(), *dxdp); } if (!dgdp_deriv_out.isEmpty()) { RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_out; { const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv_out.getLinearOp(); if (Teuchos::nonnull(dgdp_op)) { dgdp_op_out = Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op); dgdp_op_out.assert_not_null(); } } Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs(); { modelInArgs.set_x(finalSolution); if (num_p > 0) { modelInArgs.set_p(l, p_in); } } // require dgdx, dgdp from model Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs(); { const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv(model->create_DgDx_op(j)); modelOutArgs.set_DgDx(j, dgdx_deriv); Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv; if (Teuchos::nonnull(dgdp_op_out)) { dgdp_deriv = model->create_DgDp_op(j, l); } else { dgdp_deriv = dgdp_deriv_out; } modelOutArgs.set_DgDp(j, l, dgdp_deriv); } model->evalModel(modelInArgs, modelOutArgs); const RCP<const Thyra::LinearOpBase<Scalar> > dgdx = modelOutArgs.get_DgDx(j).getLinearOp(); // dgdp_out = dgdp + <dgdx, dxdp> if (Teuchos::nonnull(dgdp_op_out)) { Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2); { op_args[0] = modelOutArgs.get_DgDp(j, l).getLinearOp(); op_args[1] = Thyra::multiply<Scalar>(dgdx, dxdp); } dgdp_op_out->initialize(op_args); } else { const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv_out = dgdp_deriv_out.getMultiVector(); Thyra::apply( *dgdx, Thyra::NOTRANS, *dxdp, dgdp_mv_out.ptr(), Teuchos::ScalarTraits<Scalar>::one(), Teuchos::ScalarTraits<Scalar>::one()); } } } *out << "\nF) Check the solution to the forward problem ...\n"; // As post-processing step, calculate responses at final solution { Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs(); { modelInArgs.set_x(finalSolution); if (num_p > 0) { modelInArgs.set_p(l, p_in); } if (num_p > 1) { //JF added for multipoint modelInArgs.set_p(l+1, p_in2); } //Set time to be final time at which the solve occurs (< t_final in the case we don't make it to t_final). modelInArgs.set_t(fwdStateStepper->getTimeRange().lower()); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs(); if (Teuchos::nonnull(g_out)) { Thyra::put_scalar(Teuchos::ScalarTraits<Scalar>::zero(), g_out.ptr()); modelOutArgs.set_g(j, g_out); } model->evalModel(modelInArgs, modelOutArgs); } // Return the final solution as an additional g-vector, if requested if (Teuchos::nonnull(gx_out)) { Thyra::copy(*finalSolution, gx_out.ptr()); } }
void Piro::LOCAAdaptiveSolver<Scalar>::evalModelImpl( const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs, const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const { const int l = 0; // TODO: Allow user to select parameter index const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l); // Forward parameter values to the LOCAAdaptive stepper { const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal = Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l); const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal); const Teuchos_Ordinal p_entry_count = p_init_values.subDim(); TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length())); for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) { paramVector_[k] = p_init_values[k]; } // solMgr_->getSolutionGroup()->setParams(paramVector_); Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState()) ->getSolutionGroup()->setParams(paramVector_); } LOCA::Abstract::Iterator::IteratorStatus status; status = stepper_->run(); if (status == LOCA::Abstract::Iterator::Finished) { utils_.out() << "Continuation Stepper Finished.\n"; } else if (status == LOCA::Abstract::Iterator::NotFinished) { utils_.out() << "Continuation Stepper did not reach final value.\n"; } else { utils_.out() << "Nonlinear solver failed to converge.\n"; outArgs.setFailed(); } // The time spent globalData_->locaUtils->out() << std::endl << "#### Statistics ########" << std::endl; // Check number of steps int numSteps = stepper_->getStepNumber(); globalData_->locaUtils->out() << std::endl << " Number of continuation Steps = " << numSteps << std::endl; // Check number of failed steps int numFailedSteps = stepper_->getNumFailedSteps(); globalData_->locaUtils->out() << std::endl << " Number of failed continuation Steps = " << numFailedSteps << std::endl; globalData_->locaUtils->out() << std::endl; // Note: the last g is used to store the final solution. It can be null - if it is just // skip the store. If adaptation has occurred, g is not the correct size. const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g()); Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final; int x_args_dim = 0; int f_sol_dim = 0; // Pardon the nasty cast to resize the last g in outArgs - need to fit the solution Thyra::ModelEvaluatorBase::OutArgs<Scalar>* mutable_outArgsPtr = const_cast<Thyra::ModelEvaluatorBase::OutArgs<Scalar>* >(&outArgs); if(Teuchos::nonnull(x_outargs)){ // g has been allocated, calculate the sizes of g and the solution x_args_dim = x_outargs->space()->dim(); // f_sol_dim = solMgr_->getSolutionGroup()->getX().length(); f_sol_dim = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState()) ->getSolutionGroup()->getX().length(); } if(Teuchos::is_null(x_outargs) || (x_args_dim != f_sol_dim)){ // g is not the right size x_final = Thyra::createMember(this->get_g_space(this->num_g())); mutable_outArgsPtr->set_g(this->num_g(), x_final); } else { // g is OK, use it x_final = x_outargs; } { // Deep copy final solution from LOCA group NOX::Thyra::Vector finalSolution(x_final); // finalSolution = solMgr_->getSolutionGroup()->getX(); finalSolution = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState()) ->getSolutionGroup()->getX(); } // If the arrays need resizing if(x_args_dim != f_sol_dim){ const int parameterCount = this->Np(); for (int pc = 0; pc < parameterCount; ++pc) { const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support = outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, this->num_g(), pc); const Thyra::ModelEvaluatorBase::EDerivativeMultiVectorOrientation dgdp_orient = Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM; if (dgdp_support.supports(dgdp_orient)) { const Thyra::ModelEvaluatorBase::DerivativeMultiVector<Scalar> dgdp = Thyra::create_DgDp_mv(*this, this->num_g(), pc, dgdp_orient); mutable_outArgsPtr->set_DgDp(this->num_g(), pc, dgdp); } } } // Compute responses for the final solution { Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = this->getModel().createInArgs(); { modelInArgs.set_x(x_final); modelInArgs.set_p(l, p_inargs); } this->evalConvergedModel(modelInArgs, outArgs); // Save the final solution TODO: this needs to be redone Teuchos::RCP<Thyra::ModelEvaluatorBase::InArgs<Scalar> > fp = Teuchos::rcp_const_cast<Thyra::ModelEvaluatorBase::InArgs<Scalar> >(finalPoint_); Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> ia; ia.setSupports(Thyra::ModelEvaluatorBase::IN_ARG_x, true); *fp = ia; fp->set_x(x_final); } }
TEUCHOS_UNIT_TEST( Rythmos_GlobalErrorEstimator, SinCos ) { typedef Teuchos::ScalarTraits<double> ST; // Forward Solve, storing data in linear interpolation buffer int storageLimit = 100; double finalTime = 0.1; double dt = 0.1; RCP<IntegratorBuilder<double> > ib = integratorBuilder<double>(); { RCP<ParameterList> ibPL = Teuchos::parameterList(); ibPL->sublist("Integrator Settings").sublist("Integrator Selection").set("Integrator Type","Default Integrator"); ibPL->sublist("Integrator Settings").set("Final Time",finalTime); ibPL->sublist("Integration Control Strategy Selection").set("Integration Control Strategy Type","Simple Integration Control Strategy"); ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Take Variable Steps",false); ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Fixed dt",dt); ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Backward Euler"); //ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Implicit RK"); //ibPL->sublist("Stepper Settings").sublist("Runge Kutta Butcher Tableau Selection").set("Runge Kutta Butcher Tableau Type","Backward Euler"); ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").set("Interpolation Buffer Type","Interpolation Buffer"); ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").sublist("Interpolation Buffer").set("StorageLimit",storageLimit); ibPL->sublist("Interpolation Buffer Settings").sublist("Interpolator Selection").set("Interpolator Type","Linear Interpolator"); ib->setParameterList(ibPL); } RCP<SinCosModel> fwdModel = sinCosModel(true); // implicit formulation Thyra::ModelEvaluatorBase::InArgs<double> fwdIC = fwdModel->getNominalValues(); RCP<Thyra::NonlinearSolverBase<double> > fwdNLSolver = timeStepNonlinearSolver<double>(); RCP<IntegratorBase<double> > fwdIntegrator = ib->create(fwdModel,fwdIC,fwdNLSolver); RCP<const VectorBase<double> > x_final; { Array<double> time_vec; time_vec.push_back(finalTime); Array<RCP<const Thyra::VectorBase<double> > > x_final_array; fwdIntegrator->getFwdPoints(time_vec,&x_final_array,NULL,NULL); x_final = x_final_array[0]; } // Verify x_final is correct { // Defaults from SinCos Model: double f = 1.0; double L = 1.0; double a = 0.0; double x_ic_0 = 0.0; double x_ic_1 = 1.0; double x_0 = dt/(1.0+std::pow(dt*f/L,2))*(x_ic_0/dt+x_ic_1+dt*std::pow(f/L,2)*a); double x_1 = dt/(1.0+std::pow(dt*f/L,2))*(-std::pow(f/L,2)*x_ic_0+x_ic_1/dt+std::pow(f/L,2)*a); double tol = 1.0e-10; Thyra::ConstDetachedVectorView<double> x_final_view( *x_final ); TEST_FLOATING_EQUALITY( x_final_view[0], x_0, tol ); TEST_FLOATING_EQUALITY( x_final_view[1], x_1, tol ); } // Copy InterpolationBuffer data into Cubic Spline interpolation buffer for use in Adjoint Solve TimeRange<double> fwdTimeRange; RCP<InterpolationBufferBase<double> > fwdCubicSplineInterpBuffer; { RCP<PointwiseInterpolationBufferAppender<double> > piba = pointwiseInterpolationBufferAppender<double>(); RCP<InterpolationBuffer<double> > sinkInterpBuffer = interpolationBuffer<double>(); sinkInterpBuffer->setStorage(storageLimit); RCP<CubicSplineInterpolator<double> > csi = cubicSplineInterpolator<double>(); sinkInterpBuffer->setInterpolator(csi); RCP<const InterpolationBufferBase<double> > sourceInterpBuffer; { RCP<TrailingInterpolationBufferAcceptingIntegratorBase<double> > tibaib = Teuchos::rcp_dynamic_cast<TrailingInterpolationBufferAcceptingIntegratorBase<double> >(fwdIntegrator,true); sourceInterpBuffer = tibaib->getTrailingInterpolationBuffer(); } fwdTimeRange = sourceInterpBuffer->getTimeRange(); piba->append(*sourceInterpBuffer, fwdTimeRange, Teuchos::outArg(*sinkInterpBuffer)); fwdCubicSplineInterpBuffer = sinkInterpBuffer; TimeRange<double> sourceRange = sourceInterpBuffer->getTimeRange(); TimeRange<double> sinkRange = sinkInterpBuffer->getTimeRange(); TEST_EQUALITY( sourceRange.lower(), sinkRange.lower() ); TEST_EQUALITY( sourceRange.upper(), sinkRange.upper() ); } // Adjoint Solve, reading forward solve data from Cubic Spline interpolation buffer { RCP<ParameterList> ibPL = Teuchos::parameterList(); ibPL->sublist("Integrator Settings").sublist("Integrator Selection").set("Integrator Type","Default Integrator"); ibPL->sublist("Integrator Settings").set("Final Time",finalTime); ibPL->sublist("Integration Control Strategy Selection").set("Integration Control Strategy Type","Simple Integration Control Strategy"); ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Take Variable Steps",false); ibPL->sublist("Integration Control Strategy Selection").sublist("Simple Integration Control Strategy").set("Fixed dt",dt); ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Backward Euler"); //ibPL->sublist("Stepper Settings").sublist("Stepper Selection").set("Stepper Type","Implicit RK"); //ibPL->sublist("Stepper Settings").sublist("Runge Kutta Butcher Tableau Selection").set("Runge Kutta Butcher Tableau Type","Implicit 1 Stage 2nd order Gauss"); ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").set("Interpolation Buffer Type","Interpolation Buffer"); ibPL->sublist("Interpolation Buffer Settings").sublist("Trailing Interpolation Buffer Selection").sublist("Interpolation Buffer").set("StorageLimit",storageLimit); ibPL->sublist("Interpolation Buffer Settings").sublist("Interpolator Selection").set("Interpolator Type","Linear Interpolator"); ib->setParameterList(ibPL); } RCP<Thyra::ModelEvaluator<double> > adjModel; { RCP<Rythmos::AdjointModelEvaluator<double> > model = Rythmos::adjointModelEvaluator<double>( fwdModel, fwdTimeRange ); //model->setFwdStateSolutionBuffer(fwdCubicSplineInterpBuffer); adjModel = model; } Thyra::ModelEvaluatorBase::InArgs<double> adjIC = adjModel->getNominalValues(); double phi_ic_0 = 2.0; double phi_ic_1 = 3.0; { // Initial conditions for adjoint: const RCP<const Thyra::VectorSpaceBase<double> > f_space = fwdModel->get_f_space(); const RCP<Thyra::VectorBase<double> > x_ic = createMember(f_space); { Thyra::DetachedVectorView<double> x_ic_view( *x_ic ); x_ic_view[0] = phi_ic_0; x_ic_view[1] = phi_ic_1; } const RCP<Thyra::VectorBase<double> > xdot_ic = createMember(f_space); V_S( Teuchos::outArg(*xdot_ic), ST::zero() ); adjIC.set_x(x_ic); adjIC.set_x_dot(xdot_ic); } RCP<Thyra::LinearNonlinearSolver<double> > adjNLSolver = Thyra::linearNonlinearSolver<double>(); RCP<IntegratorBase<double> > adjIntegrator = ib->create(adjModel,adjIC,adjNLSolver); RCP<const VectorBase<double> > phi_final; { Array<double> time_vec; time_vec.push_back(finalTime); Array<RCP<const Thyra::VectorBase<double> > > phi_final_array; adjIntegrator->getFwdPoints(time_vec,&phi_final_array,NULL,NULL); phi_final = phi_final_array[0]; } // Verify phi_final is correct { // Defaults from SinCos Model: double f = 1.0; double L = 1.0; double h = -dt; double phi_0 = 1.0/(1.0+std::pow(f*h/L,2.0))*(phi_ic_0+std::pow(f/L,2.0)*h*phi_ic_1); double phi_1 = 1.0/(1.0+std::pow(f*h/L,2.0))*(-h*phi_ic_0+phi_ic_1); double tol = 1.0e-10; Thyra::ConstDetachedVectorView<double> phi_final_view( *phi_final ); TEST_FLOATING_EQUALITY( phi_final_view[0], phi_0, tol ); TEST_FLOATING_EQUALITY( phi_final_view[1], phi_1, tol ); } // Compute error estimate //TEST_ASSERT( false ); }
void Piro::MatrixFreeLinearOp<Scalar>::applyImpl( const Thyra::EOpTransp M_trans, const Thyra::MultiVectorBase<Scalar> &X, const Teuchos::Ptr<Thyra::MultiVectorBase<Scalar> > &Y, const Scalar alpha, const Scalar beta) const { using Teuchos::RCP; using Teuchos::Ptr; TEUCHOS_TEST_FOR_EXCEPTION( !this->opSupported(M_trans), Thyra::Exceptions::OpNotSupported, this->description() << " does not support operation " << Thyra::toString(M_trans)); TEUCHOS_TEST_FOR_EXCEPTION( !X.range()->isCompatible(*this->domain()), Thyra::Exceptions::IncompatibleVectorSpaces, "Domain of " << this->description() << ": " << this->domain()->description() << " is not compatible with column space of " << X.description() << ": " << X.range()->description()); TEUCHOS_TEST_FOR_EXCEPTION( !Y->range()->isCompatible(*this->range()), Thyra::Exceptions::IncompatibleVectorSpaces, "Range of " << this->description() << ": " << this->range()->description() << " is not compatible with column space of " << Y->description() << ": " << Y->range()->description()); TEUCHOS_TEST_FOR_EXCEPTION( !Y->domain()->isCompatible(*X.domain()), Thyra::Exceptions::IncompatibleVectorSpaces, "Row space of " << Y->description() << ": " << Y->domain()->description() << " is not compatible with row space of " << X.description() << ": " << X.domain()->description()); TEUCHOS_TEST_FOR_EXCEPTION( &X == Y.get(), std::logic_error, "X and Y arguments are both aliases of " << X.description()); if (alpha == Teuchos::ScalarTraits<Scalar>::zero()) { // Y <- beta * Y Thyra::Vt_S(Y, beta); return; } typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMagnitude; RCP<const Thyra::VectorBase<Scalar> > x_dot_base; if (basePoint_.supports(Thyra::ModelEvaluatorBase::IN_ARG_x_dot)) x_dot_base = basePoint_.get_x_dot(); RCP<const Thyra::VectorBase<Scalar> > x_base = basePoint_.get_x(); if (Teuchos::is_null(x_base)) { x_base = model_->getNominalValues().get_x(); } x_base.assert_not_null(); const ScalarMagnitude norm_x_base = Thyra::norm_2(*x_base); // Number of columns common to both vectors X and Y // (X and Y have compatible row spaces) const Thyra::Ordinal colCount = X.domain()->dim(); for (Teuchos::Ordinal j = Teuchos::Ordinal(); j < colCount; ++j) { const RCP<const Thyra::VectorBase<Scalar> > X_vec = X.col(j); const RCP<Thyra::VectorBase<Scalar> > Y_vec = Y->col(j); const ScalarMagnitude norm_dx = Thyra::norm_2(*X_vec); if (norm_dx == Teuchos::ScalarTraits<ScalarMagnitude>::zero()) { if (beta == Teuchos::ScalarTraits<Scalar>::zero()) { // Y_vec <- 0 Thyra::put_scalar(Teuchos::ScalarTraits<ScalarMagnitude>::zero(), Y_vec.ptr()); } else { // Y_vec <- beta * Y_vec Thyra::scale(beta, Y_vec.ptr()); } } else { // Scalar perturbation const ScalarMagnitude relative_pert_ratio = static_cast<ScalarMagnitude>(lambda_); const ScalarMagnitude eta = (relative_pert_ratio * ((norm_x_base / norm_dx) + relative_pert_ratio)); // Compute perturbed residual // Dynamic: f_pert <- f(x_dot_base + eta * (W_alpha * X), x_base + eta * (W_beta * X)) // Static: f_pert <- f(x_base + eta * X) const RCP<Thyra::VectorBase<Scalar> > f_pert = Thyra::createMember(this->range()); { Thyra::ModelEvaluatorBase::InArgs<Scalar> pertInArgs = model_->createInArgs(); { pertInArgs.setArgs(basePoint_); const bool isDynamic = Teuchos::nonnull(x_dot_base); if (isDynamic) { const RCP<Thyra::VectorBase<Scalar> > x_dot_pert = Thyra::createMember(this->domain()); const Scalar W_alpha = pertInArgs.get_alpha(); Thyra::V_VpStV<Scalar>(x_dot_pert.ptr(), *x_dot_base, W_alpha * eta, *X_vec); pertInArgs.set_x_dot(x_dot_pert); } const RCP<Thyra::VectorBase<Scalar> > x_pert = Thyra::createMember(this->domain()); const Scalar W_beta = isDynamic ? pertInArgs.get_beta() : Teuchos::ScalarTraits<Scalar>::one(); Thyra::V_VpStV<Scalar>(x_pert.ptr(), *x_base, W_beta * eta, *X_vec); pertInArgs.set_x(x_pert); } Thyra::ModelEvaluatorBase::OutArgs<Scalar> pertOutArgs = model_->createOutArgs(); { pertOutArgs.set_f(f_pert); } model_->evalModel(pertInArgs, pertOutArgs); } // Y <- alpha * (1/eta) * (f_pert - f_base) + beta * Y const Scalar alpha_over_eta = alpha / eta; if (beta == Teuchos::ScalarTraits<Scalar>::zero()) { // Y <- alpha * (1/eta) * (f_pert - f_base) Thyra::V_StVpStV<Scalar>(Y_vec.ptr(), alpha_over_eta, *f_pert, -alpha_over_eta, *f_base_); } else { // Aliasing f_pert and alpha_op_X (f_pert == alpha_op_X) const RCP<Thyra::VectorBase<Scalar> > alpha_op_X = f_pert; // alpha_op_X <- alpha * (1/eta) * (f_pert - f_base) Thyra::Vp_StV(alpha_op_X.ptr(), -Teuchos::ScalarTraits<Scalar>::one(), *f_base_); const Scalar alpha_over_eta = alpha / eta; Thyra::Vt_S(alpha_op_X.ptr(), alpha_over_eta); // Y <- alpha_op_X + beta * Y Thyra::Vp_V<Scalar>(Y_vec.ptr(), *alpha_op_X, beta); } } } }