static mitk::Image::Pointer GenerateMaskImage(unsigned int dimX,
                                              unsigned int dimY,
                                              unsigned int dimZ,
                                              float spacingX = 1,
                                              float spacingY = 1,
                                              float spacingZ = 1)
{
  typedef itk::Image< TPixelType, 3 > ImageType;
  typename ImageType::RegionType imageRegion;
  imageRegion.SetSize(0, dimX);
  imageRegion.SetSize(1, dimY);
  imageRegion.SetSize(2, dimZ);
  typename ImageType::SpacingType spacing;
  spacing[0] = spacingX;
  spacing[1] = spacingY;
  spacing[2] = spacingZ;

  mitk::Point3D                       origin; origin.Fill(0.0);
  itk::Matrix<double, 3, 3>           directionMatrix; directionMatrix.SetIdentity();

  typename ImageType::Pointer image = ImageType::New();
  image->SetSpacing( spacing );
  image->SetOrigin( origin );
  image->SetDirection( directionMatrix );
  image->SetLargestPossibleRegion( imageRegion );
  image->SetBufferedRegion( imageRegion );
  image->SetRequestedRegion( imageRegion );
  image->Allocate();
  image->FillBuffer(1);

  mitk::Image::Pointer mitkImage = mitk::Image::New();
  mitkImage->InitializeByItk( image.GetPointer() );
  mitkImage->SetVolume( image->GetBufferPointer() );
  return mitkImage;
}
Exemple #2
0
void StrokeMask::
Write(const std::string& filename,
      const TPixel& strokeValue)
{
  typedef itk::Image<TPixel, 2> ImageType;
  typename ImageType::Pointer image = ImageType::New();

  image->SetRegions(this->GetLargestPossibleRegion());
  image->Allocate();

  itk::ImageRegionConstIteratorWithIndex<StrokeMask>
      maskIterator(this,
                   this->GetLargestPossibleRegion());
  while(!maskIterator.IsAtEnd())
  {
    if(maskIterator.Get() == StrokeMaskPixelTypeEnum::STROKE)
    {
      image->SetPixel(maskIterator.GetIndex(),
                      strokeValue);
    }
    else
    {
      image->SetPixel(maskIterator.GetIndex(), itk::NumericTraits<TPixel>::Zero);
    }

    ++maskIterator;
  }

  typedef  itk::ImageFileWriter<ImageType> WriterType;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(filename);
  writer->SetInput(image);
  writer->Update();

}
typename PatchExtractor<PValue>::ImageType::Pointer 
PatchExtractor<PValue>::ExtractPatch()
{
	ContIndexType startIndex;
	for(unsigned int i = 0; i < 2; i++)
	{
		startIndex[i] = m_Center[i] - (m_Size[i] / 2.0);
	}
	startIndex[2] = 0;

	PointType newOrigin;
	m_Image->TransformContinuousIndexToPhysicalPoint(startIndex, newOrigin);


	typename ImageType::Pointer patch = ImageType::New();
	patch->SetDirection(m_Image->GetDirection());
	patch->SetOrigin(newOrigin);
	patch->SetSpacing(m_Image->GetSpacing());
	
	typename ImageType::RegionType region;
	m_Size[2] = 1;
	region.SetSize(m_Size);
	
	patch->SetRegions(region);
	patch->Allocate();

	
	typedef itk::NearestNeighborInterpolateImageFunction<ImageType, double> InterpolatorType;
	typename InterpolatorType::Pointer interpolator = InterpolatorType::New();
	interpolator->SetInputImage(m_Image);


	itk::ImageRegionIterator<ImageType> imageIt(patch, region);
	while(!imageIt.IsAtEnd())
	{
		typename ImageType::IndexType index = imageIt.GetIndex();
		PointType point;
		patch->TransformIndexToPhysicalPoint(index, point);

		if(interpolator->IsInsideBuffer(point))
			imageIt.Set(interpolator->Evaluate(point));
		else
			imageIt.Set(0);
		++imageIt;
	}

	return patch;
	
}
static mitk::Image::Pointer GenerateGradientWithDimXImage(unsigned int dimX,
                                                          unsigned int dimY,
                                                          unsigned int dimZ,
                                                          float spacingX = 1,
                                                          float spacingY = 1,
                                                          float spacingZ = 1)
{
  typedef itk::Image< TPixelType, 3 > ImageType;
  typename ImageType::RegionType imageRegion;
  imageRegion.SetSize(0, dimX);
  imageRegion.SetSize(1, dimY);
  imageRegion.SetSize(2, dimZ);
  typename ImageType::SpacingType spacing;
  spacing[0] = spacingX;
  spacing[1] = spacingY;
  spacing[2] = spacingZ;

  mitk::Point3D                       origin; origin.Fill(0.0);
  itk::Matrix<double, 3, 3>           directionMatrix; directionMatrix.SetIdentity();

  typename ImageType::Pointer image = ImageType::New();
  image->SetSpacing( spacing );
  image->SetOrigin( origin );
  image->SetDirection( directionMatrix );
  image->SetLargestPossibleRegion( imageRegion );
  image->SetBufferedRegion( imageRegion );
  image->SetRequestedRegion( imageRegion );
  image->Allocate();
  image->FillBuffer(0.0);

  typedef itk::ImageRegionIterator<ImageType>      IteratorOutputType;
  IteratorOutputType it(image, imageRegion);
  it.GoToBegin();

  TPixelType val = 0;
  while(!it.IsAtEnd())
  {
    it.Set(val % dimX);
    val++;
    ++it;
  }

  mitk::Image::Pointer mitkImage = mitk::Image::New();
  mitkImage->InitializeByItk( image.GetPointer() );
  mitkImage->SetVolume( image->GetBufferPointer() );
  return mitkImage;
}
  Image::Pointer mitk::OpenCVToMitkImageFilter::ConvertIplToMitkImage( const IplImage * input )
  {
    typedef itk::Image< TPixel, VImageDimension > ImageType;

    typename ImageType::Pointer output = ImageType::New();
    typename ImageType::RegionType region;
    typename ImageType::RegionType::SizeType size;
    typename ImageType::RegionType::IndexType index;
    typename ImageType::SpacingType spacing;
    size.Fill( 1 );
    size[0] = input->width;
    size[1] = input->height;
    index.Fill(0);
    spacing.Fill(1);
    region.SetSize(size);
    region.SetIndex(index);
    output->SetRegions(region);
    output->SetSpacing(spacing);
    output->Allocate();

    // CAVE: The itk openCV bridge seem to NOT correctly copy the image data, hence the call to
    // itk::OpenCVImageBridge::IplImageToITKImage<ImageType>() is simply used to initialize the itk image
    // and in the next step the image data are copied by hand!

    if(input->nChannels == 3) // these are RGB images and need to be set to BGR before conversion!
    {
      output = itk::OpenCVImageBridge::IplImageToITKImage<ImageType>(input);
    }
    else
    {
      memcpy((void*) output->GetBufferPointer(), (void*) input->imageDataOrigin,
        input->width*input->height*sizeof(TPixel));
    }

    Image::Pointer mitkImage = Image::New();
    mitkImage = GrabItkImageMemory(output);

    return mitkImage;
  }
void ForegroundBackgroundSegmentMask::
Write(const std::string& filename,
      const ForegroundPixelValueWrapper<TPixel>& foregroundValue,
      const BackgroundPixelValueWrapper<TPixel>& backgroundValue)
{
  typedef itk::Image<TPixel, 2> ImageType;
  typename ImageType::Pointer image = ImageType::New();

  image->SetRegions(this->GetLargestPossibleRegion());
  image->Allocate();

  itk::ImageRegionConstIteratorWithIndex<ForegroundBackgroundSegmentMask>
      maskIterator(this,
                   this->GetLargestPossibleRegion());
  while(!maskIterator.IsAtEnd())
  {
    if(maskIterator.Get() == ForegroundBackgroundSegmentMaskPixelTypeEnum::FOREGROUND)
    {
      image->SetPixel(maskIterator.GetIndex(),
                      foregroundValue.Value);
    }
    else if(maskIterator.Get() == ForegroundBackgroundSegmentMaskPixelTypeEnum::BACKGROUND)
    {
      image->SetPixel(maskIterator.GetIndex(), backgroundValue.Value);
    }

    ++maskIterator;
  }

  typedef  itk::ImageFileWriter<ImageType> WriterType;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(filename);
  writer->SetInput(image);
  writer->Update();

}
void invcondemonsforces(int nlhs,
                 mxArray *plhs[],
                 int nrhs,
                 const mxArray *prhs[])
{
   typedef float PixelType;
   typedef itk::Image< PixelType, Dimension >           ImageType;
   
   typedef float                                        VectorComponentType;
   typedef itk::Vector<VectorComponentType, Dimension>  VectorPixelType;
   typedef itk::Image<VectorPixelType, Dimension>       DeformationFieldType;

   typedef itk::ESMInvConDemonsRegistrationFunction
      <ImageType,ImageType,DeformationFieldType>        DemonsRegistrationFunctionType;

   
   //boost::timer timer;


   // Allocate images and deformation field
   typename ImageType::Pointer fixedimage
      = ImageType::New();
   typename ImageType::Pointer movingimage
      = ImageType::New();
   typename ImageType::Pointer fw_weightimage
      = ImageType::New();  
   typename DeformationFieldType::Pointer field
      = DeformationFieldType::New();
   
   typename ImageType::Pointer jacobianimage
      = ImageType::New();  
      
      
   typename DeformationFieldType::Pointer inv_field
      = DeformationFieldType::New();
      
   typename DeformationFieldType::Pointer update
      = DeformationFieldType::New();
   
   typename DeformationFieldType::SpacingType spacing;
   spacing.Fill( 1.0 );
   
   typename DeformationFieldType::PointType origin;
   origin.Fill( 0.0 );
   
   typename DeformationFieldType::RegionType     region;
   typename DeformationFieldType::SizeType       size;
   typename DeformationFieldType::IndexType      start;

   unsigned int numPix(1u);
   const MatlabPixelType * fixinptr =  static_cast<const MatlabPixelType *>(mxGetData(prhs[0]));
   const MatlabPixelType * movinptr =  static_cast<const MatlabPixelType *>(mxGetData(prhs[1]));
   const MatlabPixelType * fieldinptrs[Dimension];
   const MatlabPixelType * inv_fieldinptrs[Dimension];
   
   
   mwSize matlabdims[Dimension];
   for (unsigned int d=0; d<Dimension; d++)
   {
      matlabdims[d]= mxGetDimensions(prhs[0])[d];
      size[d] = matlabdims[d];
      start[d] = 0;
      numPix *= size[d];

      fieldinptrs[d] = static_cast<const MatlabPixelType *>(mxGetData(prhs[2+d]));
      inv_fieldinptrs[d] = static_cast<const MatlabPixelType *>(mxGetData(prhs[2+Dimension+d]));
   }
   
   const MatlabPixelType * jacobianptr = static_cast<const MatlabPixelType *> (mxGetData(prhs[2*Dimension + 2]));
   const MatlabPixelType * fw_weightptr = static_cast<const MatlabPixelType *> (mxGetData(prhs[2*Dimension + 3]));
   
   const double RegWeight = static_cast<double>( mxGetPr(prhs[2*Dimension+4])[0] );
   
   const unsigned int UseJacFlag = 1;
   
   //std::cout << "RegWeight : " << RegWeight << std::endl;
   
   region.SetSize( size );
   region.SetIndex( start );

   fixedimage->SetOrigin( origin );
   fixedimage->SetSpacing( spacing );
   fixedimage->SetRegions( region );
   fixedimage->Allocate();

   movingimage->SetOrigin( origin );
   movingimage->SetSpacing( spacing );
   movingimage->SetRegions( region );
   movingimage->Allocate();
   
   fw_weightimage->SetOrigin( origin );
   fw_weightimage->SetSpacing( spacing );
   fw_weightimage->SetRegions( region );
   fw_weightimage->Allocate();
   
   
   field->SetOrigin( origin );
   field->SetSpacing( spacing );
   field->SetRegions( region );
   field->Allocate();
   
   inv_field->SetOrigin( origin );
   inv_field->SetSpacing( spacing );
   inv_field->SetRegions( region );
   inv_field->Allocate();

   update->SetOrigin( origin );
   update->SetSpacing( spacing );
   update->SetRegions( region );
   update->Allocate();
   if (UseJacFlag > 0)
   {
        jacobianimage->SetOrigin( origin );
        jacobianimage->SetSpacing( spacing );
        jacobianimage->SetRegions( region );
        jacobianimage->Allocate();
   }
   

   //mexPrintf("done Allocate(); %f sec\n", timer.elapsed());
   //timer.restart();

   
   PixelType * fixptr = fixedimage->GetBufferPointer();
   const PixelType * const fixbuff_end = fixptr + numPix;
   PixelType * movptr = movingimage->GetBufferPointer();
   PixelType * fwweightptr = NULL;
   PixelType * jacptr = NULL;
   if (UseJacFlag > 0)
   {
       jacptr = jacobianimage->GetBufferPointer();
   }
   
   
   
   fwweightptr = fw_weightimage->GetBufferPointer();
   
   VectorPixelType * fieldptr = field->GetBufferPointer();
   VectorPixelType * inv_fieldptr = inv_field->GetBufferPointer();
   
   while ( fixptr != fixbuff_end )
   {
      *fixptr++ = *fixinptr++;
      *movptr++ = *movinptr++;
      *fwweightptr++ = *fw_weightptr++; 
      
      for (unsigned int d=0; d<Dimension; d++)
      {
         (*fieldptr)[d] = *(fieldinptrs[d])++;
      }
      if (UseJacFlag > 0)
      {
        *jacptr++ = *jacobianptr++; 
      }
      
      ++fieldptr;
      
      for (unsigned int d=0; d<Dimension; d++)
      {
         (*inv_fieldptr)[d] = *(inv_fieldinptrs[d])++;
      }
      ++inv_fieldptr;
   }

   // Create demons function
   typename DemonsRegistrationFunctionType::Pointer drfp
      = DemonsRegistrationFunctionType::New();

   //mexPrintf("step size: %f\n",mxGetPr(prhs[2*Dimension+2])[0]);
   //drfp->SetMaximumUpdateStepLength( mxGetPr(prhs[2*Dimension+2])[0] );

   typename DemonsRegistrationFunctionType::GradientType gtype = DemonsRegistrationFunctionType::Symmetric;
   drfp->SetUseGradientType( gtype );

   drfp->SetDeformationField( field );
   drfp->SetInvDeformationField( inv_field);
   drfp->SetFixedImage( fixedimage );
   drfp->SetMovingImage( movingimage );
   
   drfp->SetRegWeight(RegWeight);
   
   drfp->SetUseFwWeight(true);
   drfp->SetFwWeightImage(fw_weightimage);
   
   if (UseJacFlag > 0)
   {
       drfp->SetUseJacobian(true);
       drfp->SetJacobianDetImage(jacobianimage);
   }
   else
   {
       drfp->SetUseJacobian(false);
   }
   
   drfp->InitializeIteration();

   //mexPrintf("done demons function init %f sec\n", timer.elapsed());
   //timer.restart();

   const itk::Size<Dimension> radius = drfp->GetRadius();

   // Break the input into a series of regions.  The first region is free
   // of boundary conditions, the rest with boundary conditions.  We operate
   // on the output region because input has been copied to output.
   typedef itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator
      <DeformationFieldType> FaceCalculatorType;
   typedef typename FaceCalculatorType::FaceListType FaceListType;
   typedef typename DemonsRegistrationFunctionType::NeighborhoodType
      NeighborhoodIteratorType;
   typedef itk::ImageRegionIterator<DeformationFieldType> UpdateIteratorType;

   FaceCalculatorType faceCalculator;
   
   FaceListType faceList = faceCalculator(field, region, radius);
   typename FaceListType::iterator fIt = faceList.begin();
   
   // Ask the function object for a pointer to a data structure it
   // will use to manage any global values it needs.  We'll pass this
   // back to the function object at each calculation and then
   // again so that the function object can use it to determine a
   // time step for this iteration.
   void * globalData = drfp->GetGlobalDataPointer();
   
   // Process the non-boundary region.
   NeighborhoodIteratorType nD(radius, field, *fIt);
   UpdateIteratorType       nU(update,  *fIt);
   nD.GoToBegin();
   while( !nD.IsAtEnd() )
   {
      nU.Value() = drfp->ComputeUpdate(nD, globalData);
      ++nD;
      ++nU;
   }

   // Process each of the boundary faces.
   
   NeighborhoodIteratorType bD;
   UpdateIteratorType   bU;
   for (++fIt; fIt != faceList.end(); ++fIt)
   {
      bD = NeighborhoodIteratorType(radius, field, *fIt);
      bU = UpdateIteratorType(update, *fIt);
      
      bD.GoToBegin();
      bU.GoToBegin();
      while ( !bD.IsAtEnd() )
      {
         bU.Value() = drfp->ComputeUpdate(bD, globalData);
         ++bD;
         ++bU;
      }
   }

   // Ask the finite difference function to compute the time step for
   // this iteration.  We give it the global data pointer to use, then
   // ask it to free the global data memory.
   //timeStep = df->ComputeGlobalTimeStep(globalData);
   drfp->ReleaseGlobalDataPointer(globalData);


   //mexPrintf("done actual computations %f sec\n", timer.elapsed());
   //timer.restart();


   // Allocate outputs
   const mxClassID classID = mxGetClassID(prhs[0]);
   MatlabPixelType * outptrs[Dimension];
   for (unsigned int d=0; d<Dimension; d++)
   {
      plhs[d] = mxCreateNumericArray(
         Dimension, matlabdims, classID, mxREAL);

      outptrs[d] = static_cast<MatlabPixelType *>(mxGetData(plhs[d]));
   }

   
   //mexPrintf("done allocate outputs %f sec\n", timer.elapsed());
   //timer.restart();
   

   // put result into outputs
   const VectorPixelType * upptr = update->GetBufferPointer();
   const VectorPixelType * const upbuff_end = upptr + numPix;
   
   while ( upptr != upbuff_end )
   {
      for (unsigned int d=0; d<Dimension; d++)
      {
         *(outptrs[d])++ = (*upptr)[d];
      }
      ++upptr;
   }

   //mexPrintf("done outputs copy %f sec\n", timer.elapsed());
}