bool TOMPCFilter<T>::segmentation(CloudPtr &cloud_in, VecCloud &clouds_out, double tolerance, double minSize, double maxSize) { // std::cout << "Object segmentation" << std::endl; // object clustering // Creating the KdTree object for the search method of the extraction typename pcl::search::KdTree<T>::Ptr tree (new pcl::search::KdTree<T>); tree->setInputCloud (cloud_in); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<T> ec; ec.setClusterTolerance (tolerance); // 2cm ec.setMinClusterSize (minSize); ec.setMaxClusterSize (maxSize); ec.setSearchMethod (tree); ec.setInputCloud( cloud_in); ec.extract (cluster_indices); int j = 0; clouds_out.clear(); for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it) { CloudPtr cloud_cluster (new pcl::PointCloud<T>); for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); pit++) cloud_cluster->points.push_back (cloud_in->points[*pit]); //* clouds_out.push_back(cloud_cluster); } return 1; }
void performTracking(const PointCloudConstPtr& cloud) { typename pcl::search::KdTree<PointType>::Ptr search( new pcl::search::KdTree<PointType>()); search->setInputCloud(cloud); performTracking(cloud, search); }
void ICCVTutorial<FeatureType>::segmentation (typename pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr source, typename pcl::PointCloud<pcl::PointXYZRGB>::Ptr segmented) const { cout << "segmentation..." << std::flush; // fit plane and keep points above that plane pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers (new pcl::PointIndices); // Create the segmentation object pcl::SACSegmentation<pcl::PointXYZRGB> seg; // Optional seg.setOptimizeCoefficients (true); // Mandatory seg.setModelType (pcl::SACMODEL_PLANE); seg.setMethodType (pcl::SAC_RANSAC); seg.setDistanceThreshold (0.02); seg.setInputCloud (source); seg.segment (*inliers, *coefficients); pcl::ExtractIndices<pcl::PointXYZRGB> extract; extract.setInputCloud (source); extract.setIndices (inliers); extract.setNegative (true); extract.filter (*segmented); std::vector<int> indices; pcl::removeNaNFromPointCloud(*segmented, *segmented, indices); cout << "OK" << endl; cout << "clustering..." << std::flush; // euclidean clustering typename pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGB>); tree->setInputCloud (segmented); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> clustering; clustering.setClusterTolerance (0.02); // 2cm clustering.setMinClusterSize (1000); clustering.setMaxClusterSize (250000); clustering.setSearchMethod (tree); clustering.setInputCloud(segmented); clustering.extract (cluster_indices); if (!cluster_indices.empty ())//use largest cluster { cout << cluster_indices.size() << " clusters found"; if (cluster_indices.size() > 1) cout <<" Using largest one..."; cout << endl; typename pcl::IndicesPtr indices (new std::vector<int>); *indices = cluster_indices[0].indices; extract.setInputCloud (segmented); extract.setIndices (indices); extract.setNegative (false); extract.filter (*segmented); } }
template <typename PointT> void pcl::people::GroundBasedPeopleDetectionApp<PointT>::compute (std::vector<pcl::people::PersonCluster<PointT> >& clusters) { // Check if all mandatory variables have been set: if (sqrt_ground_coeffs_ != sqrt_ground_coeffs_) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Floor parameters have not been set or they are not valid!\n"); return; } if (cloud_ == NULL) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Input cloud has not been set!\n"); return; } if (intrinsics_matrix_(0) == 0) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Camera intrinsic parameters have not been set!\n"); return; } if (!person_classifier_set_flag_) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Person classifier has not been set!\n"); return; } if (!dimension_limits_set_) // if dimension limits have not been set by the user { // Adapt thresholds for clusters points number to the voxel size: max_points_ = int(float(max_points_) * std::pow(0.06/voxel_size_, 2)); if (voxel_size_ > 0.06) min_points_ = int(float(min_points_) * std::pow(0.06/voxel_size_, 2)); } // Fill rgb image: rgb_image_->points.clear(); // clear RGB pointcloud extractRGBFromPointCloud(cloud_, rgb_image_); // fill RGB pointcloud // Voxel grid filtering: PointCloudPtr cloud_filtered(new PointCloud); pcl::VoxelGrid<PointT> voxel_grid_filter_object; voxel_grid_filter_object.setInputCloud(cloud_); voxel_grid_filter_object.setLeafSize (voxel_size_, voxel_size_, voxel_size_); voxel_grid_filter_object.filter (*cloud_filtered); // Ground removal and update: pcl::IndicesPtr inliers(new std::vector<int>); boost::shared_ptr<pcl::SampleConsensusModelPlane<PointT> > ground_model(new pcl::SampleConsensusModelPlane<PointT>(cloud_filtered)); ground_model->selectWithinDistance(ground_coeffs_, voxel_size_, *inliers); no_ground_cloud_ = PointCloudPtr (new PointCloud); pcl::ExtractIndices<PointT> extract; extract.setInputCloud(cloud_filtered); extract.setIndices(inliers); extract.setNegative(true); extract.filter(*no_ground_cloud_); if((inliers->size() >= 300*0.06/voxel_size_)) ground_model->optimizeModelCoefficients(*inliers, ground_coeffs_, ground_coeffs_); else std::cout << "No groundplane update!" << std::endl; // Euclidean Clustering: std::vector<pcl::PointIndices> cluster_indices; typename pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>); tree->setInputCloud(no_ground_cloud_); pcl::EuclideanClusterExtraction<PointT> ec; ec.setClusterTolerance(2 * 0.06); ec.setMinClusterSize(min_points_); ec.setMaxClusterSize(max_points_); ec.setSearchMethod(tree); ec.setInputCloud(no_ground_cloud_); ec.extract(cluster_indices); // Head based sub-clustering // pcl::people::HeadBasedSubclustering<PointT> subclustering; subclustering.setInputCloud(no_ground_cloud_); subclustering.setGround(ground_coeffs_); subclustering.setInitialClusters(cluster_indices); subclustering.setHeightLimits(min_height_, max_height_); subclustering.setMinimumDistanceBetweenHeads(heads_minimum_distance_); subclustering.setSensorPortraitOrientation(vertical_); subclustering.subcluster(clusters); // Person confidence evaluation with HOG+SVM: if (vertical_) // Rotate the image if the camera is vertical { swapDimensions(rgb_image_); } for(typename std::vector<pcl::people::PersonCluster<PointT> >::iterator it = clusters.begin(); it != clusters.end(); ++it) { //Evaluate confidence for the current PersonCluster: Eigen::Vector3f centroid = intrinsics_matrix_ * (it->getTCenter()); centroid /= centroid(2); Eigen::Vector3f top = intrinsics_matrix_ * (it->getTTop()); top /= top(2); Eigen::Vector3f bottom = intrinsics_matrix_ * (it->getTBottom()); bottom /= bottom(2); it->setPersonConfidence(person_classifier_.evaluate(rgb_image_, bottom, top, centroid, intrinsics_matrix_, vertical_)); } }
template <typename PointT> bool pcl::people::GroundBasedPeopleDetectionApp<PointT>::compute (std::vector<pcl::people::PersonCluster<PointT> >& clusters) { // Check if all mandatory variables have been set: if (!ground_coeffs_set_) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Floor parameters have not been set or they are not valid!\n"); return (false); } if (cloud_ == NULL) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Input cloud has not been set!\n"); return (false); } if (!intrinsics_matrix_set_) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Camera intrinsic parameters have not been set!\n"); return (false); } if (!person_classifier_set_flag_) { PCL_ERROR ("[pcl::people::GroundBasedPeopleDetectionApp::compute] Person classifier has not been set!\n"); return (false); } // Fill rgb image: rgb_image_->points.clear(); // clear RGB pointcloud extractRGBFromPointCloud(cloud_, rgb_image_); // fill RGB pointcloud // Downsample of sampling_factor in every dimension: if (sampling_factor_ != 1) { PointCloudPtr cloud_downsampled(new PointCloud); cloud_downsampled->width = (cloud_->width)/sampling_factor_; cloud_downsampled->height = (cloud_->height)/sampling_factor_; cloud_downsampled->points.resize(cloud_downsampled->height*cloud_downsampled->width); cloud_downsampled->is_dense = cloud_->is_dense; for (uint32_t j = 0; j < cloud_downsampled->width; j++) { for (uint32_t i = 0; i < cloud_downsampled->height; i++) { (*cloud_downsampled)(j,i) = (*cloud_)(sampling_factor_*j,sampling_factor_*i); } } (*cloud_) = (*cloud_downsampled); } applyTransformationPointCloud(); filter(); // Ground removal and update: pcl::IndicesPtr inliers(new std::vector<int>); boost::shared_ptr<pcl::SampleConsensusModelPlane<PointT> > ground_model(new pcl::SampleConsensusModelPlane<PointT>(cloud_filtered_)); ground_model->selectWithinDistance(ground_coeffs_transformed_, 2 * voxel_size_, *inliers); no_ground_cloud_ = PointCloudPtr (new PointCloud); pcl::ExtractIndices<PointT> extract; extract.setInputCloud(cloud_filtered_); extract.setIndices(inliers); extract.setNegative(true); extract.filter(*no_ground_cloud_); if (inliers->size () >= (300 * 0.06 / voxel_size_ / std::pow (static_cast<double> (sampling_factor_), 2))) ground_model->optimizeModelCoefficients (*inliers, ground_coeffs_transformed_, ground_coeffs_transformed_); else PCL_INFO ("No groundplane update!\n"); // Euclidean Clustering: std::vector<pcl::PointIndices> cluster_indices; typename pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>); tree->setInputCloud(no_ground_cloud_); pcl::EuclideanClusterExtraction<PointT> ec; ec.setClusterTolerance(2 * voxel_size_); ec.setMinClusterSize(min_points_); ec.setMaxClusterSize(max_points_); ec.setSearchMethod(tree); ec.setInputCloud(no_ground_cloud_); ec.extract(cluster_indices); // Head based sub-clustering // pcl::people::HeadBasedSubclustering<PointT> subclustering; subclustering.setInputCloud(no_ground_cloud_); subclustering.setGround(ground_coeffs_transformed_); subclustering.setInitialClusters(cluster_indices); subclustering.setHeightLimits(min_height_, max_height_); subclustering.setMinimumDistanceBetweenHeads(heads_minimum_distance_); subclustering.setSensorPortraitOrientation(vertical_); subclustering.subcluster(clusters); // Person confidence evaluation with HOG+SVM: if (vertical_) // Rotate the image if the camera is vertical { swapDimensions(rgb_image_); } for(typename std::vector<pcl::people::PersonCluster<PointT> >::iterator it = clusters.begin(); it != clusters.end(); ++it) { //Evaluate confidence for the current PersonCluster: Eigen::Vector3f centroid = intrinsics_matrix_transformed_ * (it->getTCenter()); centroid /= centroid(2); Eigen::Vector3f top = intrinsics_matrix_transformed_ * (it->getTTop()); top /= top(2); Eigen::Vector3f bottom = intrinsics_matrix_transformed_ * (it->getTBottom()); bottom /= bottom(2); it->setPersonConfidence(person_classifier_.evaluate(rgb_image_, bottom, top, centroid, vertical_)); } return (true); }
template <typename PointT> bool open_ptrack::detection::GroundBasedPeopleDetectionApp<PointT>::compute (std::vector<pcl::people::PersonCluster<PointT> >& clusters) { frame_counter_++; // Define if debug info should be written or not for this frame: bool debug_flag = false; if ((frame_counter_ % 60) == 0) { debug_flag = true; } // Check if all mandatory variables have been set: if (debug_flag) { if (sqrt_ground_coeffs_ != sqrt_ground_coeffs_) { PCL_ERROR ("[open_ptrack::detection::GroundBasedPeopleDetectionApp::compute] Floor parameters have not been set or they are not valid!\n"); return (false); } if (cloud_ == NULL) { PCL_ERROR ("[open_ptrack::detection::GroundBasedPeopleDetectionApp::compute] Input cloud has not been set!\n"); return (false); } if (intrinsics_matrix_(0) == 0) { PCL_ERROR ("[open_ptrack::detection::GroundBasedPeopleDetectionApp::compute] Camera intrinsic parameters have not been set!\n"); return (false); } if (!person_classifier_set_flag_) { PCL_ERROR ("[open_ptrack::detection::GroundBasedPeopleDetectionApp::compute] Person classifier has not been set!\n"); return (false); } } if (!dimension_limits_set_) // if dimension limits have not been set by the user { // Adapt thresholds for clusters points number to the voxel size: max_points_ = int(float(max_points_) * std::pow(0.06/voxel_size_, 2)); if (voxel_size_ > 0.06) min_points_ = int(float(min_points_) * std::pow(0.06/voxel_size_, 2)); } // Fill rgb image: rgb_image_->points.clear(); // clear RGB pointcloud extractRGBFromPointCloud(cloud_, rgb_image_); // fill RGB pointcloud // Downsample of sampling_factor in every dimension: if (sampling_factor_ != 1) { PointCloudPtr cloud_downsampled(new PointCloud); cloud_downsampled->width = (cloud_->width)/sampling_factor_; cloud_downsampled->height = (cloud_->height)/sampling_factor_; cloud_downsampled->points.resize(cloud_downsampled->height*cloud_downsampled->width); cloud_downsampled->is_dense = cloud_->is_dense; cloud_downsampled->header = cloud_->header; for (int j = 0; j < cloud_downsampled->width; j++) { for (int i = 0; i < cloud_downsampled->height; i++) { (*cloud_downsampled)(j,i) = (*cloud_)(sampling_factor_*j,sampling_factor_*i); } } (*cloud_) = (*cloud_downsampled); } if (use_rgb_) { // Compute mean luminance: int n_points = cloud_->points.size(); double sumR, sumG, sumB = 0.0; for (int j = 0; j < cloud_->width; j++) { for (int i = 0; i < cloud_->height; i++) { sumR += (*cloud_)(j,i).r; sumG += (*cloud_)(j,i).g; sumB += (*cloud_)(j,i).b; } } mean_luminance_ = 0.3 * sumR/n_points + 0.59 * sumG/n_points + 0.11 * sumB/n_points; // mean_luminance_ = 0.2126 * sumR/n_points + 0.7152 * sumG/n_points + 0.0722 * sumB/n_points; } // Voxel grid filtering: PointCloudPtr cloud_filtered(new PointCloud); pcl::VoxelGrid<PointT> voxel_grid_filter_object; voxel_grid_filter_object.setInputCloud(cloud_); voxel_grid_filter_object.setLeafSize (voxel_size_, voxel_size_, voxel_size_); voxel_grid_filter_object.setFilterFieldName("z"); voxel_grid_filter_object.setFilterLimits(0.0, max_distance_); voxel_grid_filter_object.filter (*cloud_filtered); // Ground removal and update: pcl::IndicesPtr inliers(new std::vector<int>); boost::shared_ptr<pcl::SampleConsensusModelPlane<PointT> > ground_model(new pcl::SampleConsensusModelPlane<PointT>(cloud_filtered)); ground_model->selectWithinDistance(ground_coeffs_, voxel_size_, *inliers); no_ground_cloud_ = PointCloudPtr (new PointCloud); pcl::ExtractIndices<PointT> extract; extract.setInputCloud(cloud_filtered); extract.setIndices(inliers); extract.setNegative(true); extract.filter(*no_ground_cloud_); if (inliers->size () >= (300 * 0.06 / voxel_size_ / std::pow (static_cast<double> (sampling_factor_), 2))) ground_model->optimizeModelCoefficients (*inliers, ground_coeffs_, ground_coeffs_); else { if (debug_flag) { PCL_INFO ("No groundplane update!\n"); } } // Background Subtraction (optional): if (background_subtraction_) { PointCloudPtr foreground_cloud(new PointCloud); for (unsigned int i = 0; i < no_ground_cloud_->points.size(); i++) { if (not (background_octree_->isVoxelOccupiedAtPoint(no_ground_cloud_->points[i].x, no_ground_cloud_->points[i].y, no_ground_cloud_->points[i].z))) { foreground_cloud->points.push_back(no_ground_cloud_->points[i]); } } no_ground_cloud_ = foreground_cloud; } if (no_ground_cloud_->points.size() > 0) { // Euclidean Clustering: std::vector<pcl::PointIndices> cluster_indices; typename pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT>); tree->setInputCloud(no_ground_cloud_); pcl::EuclideanClusterExtraction<PointT> ec; ec.setClusterTolerance(2 * 0.06); ec.setMinClusterSize(min_points_); ec.setMaxClusterSize(max_points_); ec.setSearchMethod(tree); ec.setInputCloud(no_ground_cloud_); ec.extract(cluster_indices); // Sensor tilt compensation to improve people detection: PointCloudPtr no_ground_cloud_rotated(new PointCloud); Eigen::VectorXf ground_coeffs_new; if(sensor_tilt_compensation_) { // We want to rotate the point cloud so that the ground plane is parallel to the xOz plane of the sensor: Eigen::Vector3f input_plane, output_plane; input_plane << ground_coeffs_(0), ground_coeffs_(1), ground_coeffs_(2); output_plane << 0.0, -1.0, 0.0; Eigen::Vector3f axis = input_plane.cross(output_plane); float angle = acos( input_plane.dot(output_plane)/ ( input_plane.norm()/output_plane.norm() ) ); transform_ = Eigen::AngleAxisf(angle, axis); // Setting also anti_transform for later anti_transform_ = transform_.inverse(); no_ground_cloud_rotated = rotateCloud(no_ground_cloud_, transform_); ground_coeffs_new.resize(4); ground_coeffs_new = rotateGround(ground_coeffs_, transform_); } else { transform_ = transform_.Identity(); anti_transform_ = transform_.inverse(); no_ground_cloud_rotated = no_ground_cloud_; ground_coeffs_new = ground_coeffs_; } // To avoid PCL warning: if (cluster_indices.size() == 0) cluster_indices.push_back(pcl::PointIndices()); // Head based sub-clustering // pcl::people::HeadBasedSubclustering<PointT> subclustering; subclustering.setInputCloud(no_ground_cloud_rotated); subclustering.setGround(ground_coeffs_new); subclustering.setInitialClusters(cluster_indices); subclustering.setHeightLimits(min_height_, max_height_); subclustering.setMinimumDistanceBetweenHeads(heads_minimum_distance_); subclustering.setSensorPortraitOrientation(vertical_); subclustering.subcluster(clusters); // for (unsigned int i = 0; i < rgb_image_->points.size(); i++) // { // if ((rgb_image_->points[i].r < 0) | (rgb_image_->points[i].r > 255) | isnan(rgb_image_->points[i].r)) // { // std::cout << "ERROR in RGB data!" << std::endl; // } // } if (use_rgb_) // if RGB information can be used { // Person confidence evaluation with HOG+SVM: if (vertical_) // Rotate the image if the camera is vertical { swapDimensions(rgb_image_); } for(typename std::vector<pcl::people::PersonCluster<PointT> >::iterator it = clusters.begin(); it != clusters.end(); ++it) { //Evaluate confidence for the current PersonCluster: Eigen::Vector3f centroid = intrinsics_matrix_ * (anti_transform_ * it->getTCenter()); centroid /= centroid(2); Eigen::Vector3f top = intrinsics_matrix_ * (anti_transform_ * it->getTTop()); top /= top(2); Eigen::Vector3f bottom = intrinsics_matrix_ * (anti_transform_ * it->getTBottom()); bottom /= bottom(2); it->setPersonConfidence(person_classifier_.evaluate(rgb_image_, bottom, top, centroid, vertical_)); } } else { for(typename std::vector<pcl::people::PersonCluster<PointT> >::iterator it = clusters.begin(); it != clusters.end(); ++it) { it->setPersonConfidence(-100.0); } } } return (true); }