types::ndarray<decltype(std::declval<T0>() + std::declval<T1>()), 2> outer(types::ndarray<T0, N0> const& a, types::ndarray<T1, N1> const& b) { types::ndarray<decltype(std::declval<T0>() + std::declval<T1>()), 2> out(types::array<long, 2>{{a.flat_size(), b.flat_size()}}, __builtin__::None); auto iter = out.fbegin(); for(auto iter_a = a.fbegin(), end_a = a.fend(); iter_a != end_a; ++iter_a) { auto val_a = *iter_a; iter = std::transform(b.fbegin(), b.fend(), iter, [=](T1 val) { return val_a * val; }); } return out; }
types::ndarray<T,1> resize(types::ndarray<T,N> const& expr, int new_shape) { types::ndarray<T,1> out(types::array<long, N> {{new_shape}}, __builtin__::None); auto n = expr.size(); if(n < new_shape) { auto iter = std::copy(expr.fbegin(), expr.fend(), out.fbegin()); for(size_t i = 1; i < new_shape / n; ++i) iter = std::copy(out.fbegin(), out.fbegin() + n, iter); std::copy(out.fbegin(), out.fbegin() + new_shape % n, iter); } else std::copy(expr.fbegin(), expr.fbegin() + new_shape, out.fbegin()); return out; }
types::ndarray< typename std::remove_cv< typename std::remove_reference< decltype( std::declval<T>() + std::declval<typename utils::nested_container_value_type<F>::type>()) >::type >::type, 1> append(types::ndarray<T,N> const& nto, F const& data) { typename types::numpy_expr_to_ndarray<F>::type ndata(data); long nsize = nto.size() + ndata.size(); types::ndarray< typename std::remove_cv< typename std::remove_reference< decltype( std::declval<T>() + std::declval<typename utils::nested_container_value_type<F>::type>()) >::type >::type, 1> out(types::make_tuple(nsize), __builtin__::None); size_t i=0; auto out_back = std::copy(nto.fbegin(), nto.fend(), out.fbegin()); std::copy(ndata.fbegin(), ndata.fend(), out_back); return out; }
types::none_type put(types::ndarray<T, N> &expr, long int ind, T const &v) { if (ind >= expr.flat_size() || ind < 0) throw types::ValueError("indice out of bound"); *(expr.fbegin() + ind) = v; return __builtin__::None; }
types::ndarray<T,N> roll(types::ndarray<T,N> const& expr, long shift) { while(shift<0) shift+=expr.flat_size(); shift %=expr.flat_size(); types::ndarray<T,N> out(expr.shape(), __builtin__::None); std::copy(expr.fbegin(), expr.fend() - shift, std::copy(expr.fend() - shift, expr.fend(), out.fbegin())); return out; }
typename types::numpy_expr_to_ndarray<F>::type take(types::ndarray<T,N> const & expr, F const& indices) { typename types::numpy_expr_to_ndarray<F>::type out = asarray(indices); auto expr_iter = expr.fbegin(); for(auto out_iter = out.fbegin(), out_end = out.fend(); out_iter != out_end; ++out_iter) *out_iter = *(expr_iter + *out_iter); return out; }
types::ndarray<T,N> roll(types::ndarray<T,N> const& expr, long shift, long axis) { auto&& expr_shape = expr.shape(); while(shift<0) shift+=expr_shape[axis]; types::ndarray<T,N> out(expr_shape, __builtin__::None); _roll(out.fbegin(), expr.fbegin(), shift, axis, expr_shape, utils::int_<N>()); return out; }
types::none_type place(types::ndarray<T, N> &expr, types::ndarray<Tp, Np> const &mask, F const &values) { auto first = expr.fend(); auto viter = values.begin(), vend = values.end(); auto miter = mask.fbegin(); for (auto iter = expr.fbegin(), end = expr.fend(); iter != end; ++iter, ++miter) { if (*miter) { if (first == expr.fend()) first = iter; if (viter != vend) { *iter = *viter; ++viter; } else *iter = *first; } } return __builtin__::None; }
types::ndarray<T, 1> repeat(types::ndarray<T, N> const &expr, int repeats) { types::ndarray<T, 1> out( types::array<long, 1>{{expr.flat_size() * repeats}}, __builtin__::None); auto out_iter = out.fbegin(); for (auto iter = expr.fbegin(), end = expr.fend(); iter != end; ++iter) for (int i = 0; i < repeats; ++i) *out_iter++ = *iter; return out; }
types::none_type putmask(types::ndarray<T, pS> &expr, E const &mask, F const &values) { auto amask = asarray(mask); auto avalues = asarray(values); auto iexpr = expr.fbegin(); auto n = avalues.flat_size(); for (long i = 0; i < expr.flat_size(); ++i) if (*(amask.fbegin() + i)) *(iexpr + i) = *(avalues.fbegin() + i % n); return __builtin__::None; }
types::ndarray<T,M> resize(types::ndarray<T,N> const& expr, types::array<long, M> const& new_shape) { auto where = std::find(new_shape.begin(), new_shape.end(), -1); if(where != new_shape.end()) { types::array<long, M> auto_shape(new_shape); auto_shape[where - new_shape.begin()] = expr.size() / std::accumulate(new_shape.begin(), new_shape.end(), -1L, std::multiplies<long>()); return resize(expr, auto_shape); } types::ndarray<T,M> out(new_shape, __builtin__::None); auto nshape = out.size(); auto n = expr.size(); if(n < nshape) { auto iter = std::copy(expr.fbegin(), expr.fend(), out.fbegin()); for(size_t i = 1; i < nshape / n; ++i) { iter = std::copy(out.fbegin(), out.fbegin() + n, iter); } std::copy(out.fbegin(), out.fbegin() + nshape % n, iter); } else std::copy(expr.fbegin(), expr.fbegin() + nshape, out.fbegin()); return out; }
typename std::enable_if<types::is_numexpr_arg<F>::value, types::none_type>::type put(types::ndarray<T, N> &expr, F const &ind, E const &v) { auto vind = asarray(ind); auto vv = asarray(v); for (long i = 0; i < ind.flat_size(); ++i) { auto val = *(vind.fbegin() + i); if (val >= expr.flat_size() || val < 0) throw types::ValueError("indice out of bound"); *(expr.fbegin() + val) = *(vv.fbegin() + i % vv.flat_size()); } return __builtin__::None; }
types::ndarray<long, N> argsort(types::ndarray<T,N> const& a) { size_t last_axis = a.shape[N-1]; size_t n = a.flat_size(); types::ndarray<long, N> indices(a.shape, __builtin__::None); for(long j=0, * iter_indices = indices.buffer, *end_indices = indices.buffer + n; iter_indices != end_indices; iter_indices += last_axis, j+=last_axis) { // fill with the original indices std::iota(iter_indices, iter_indices + last_axis, 0L); // sort the index using the value from a std::sort(iter_indices, iter_indices + last_axis, [&a,j](long i1, long i2) {return *(a.fbegin() + j + i1) < *(a.fbegin() + j + i2);}); } return indices; }
T item(types::ndarray<T, N> const& expr, long i) { if(i<0) i += expr.size(); return *(expr.fbegin() + i); }
types::none_type fill(types::ndarray<T, N> &e, F f) { std::fill(e.fbegin(), e.fend(), f); return __builtin__::None; }