void scn::GetPSDegreeCorrelation(vector<pair<size_t, double>> &correlation,UGraph::pGraph graph)
{
   //get degree distribution
   unordered_map<size_t,size_t> degree_dist;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      degree_dist[node->GetDegree()]++;
   }
   //compute degree correlation
   unordered_map<size_t, double> degree_corre;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      double degree_sum = 0;
      for(auto other = node->begin(); other != node->end(); other++)
      {
	 degree_sum += (*graph)[*other]->GetDegree();
      }
      degree_corre[node->GetDegree()] += degree_sum / 
	 static_cast<double>(node->GetDegree()); 
   }
   //normalize
   for(auto iter = degree_corre.begin(); iter != degree_corre.end(); iter++)
   {
      iter->second /= degree_dist[iter->first];
   }
   correlation.assign(degree_corre.begin(), degree_corre.end());
   sort(correlation.begin(), correlation.end());   
}
double scn::GetAverageDistance(UGraph::pGraph graph)
{
   size_t sum = 0;
   size_t count = 0;
   std::unordered_map<size_t,size_t> distance;
   //auto& distance = distance_sssp;
   distance.clear();
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      //add distance except NaF
      for(auto iter = distance.begin(); iter != distance.end(); iter++)
      {
	 if(iter->first == *node)
	    continue;

	 if(iter->second < Graph::NaF)
	 {
	    sum += iter->second;
	    count++;
	 }
      }
   }
   return double(sum) / count;
}
Exemple #3
0
QUNetwork::QUNetwork(UGraph::pGraph &graph)
   :UNetwork(graph)
{
   CreateScene(graph->GetNumberOfNodes());
   //create draw node
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      pNode data = new QNodeItem(this);
      data->indexOfNode = *node;
      data->SetText(QString("%1").arg(*node));

      SetNodeData(node, data);
   }
   //create position
   CreateCirclePosition();
   //add draw edge
   pEdge data;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      for(auto other = node->begin(); other != node->end(); other++)
      {
	 data = new QEdgeItem(GetNodeData(node)->pos(),
			      GetNodeData(*other)->pos());
	 
	 SetEdgeData(node, *other, data);
      }
   }
}
double scn::GetAverageDistanceByDjikstra(UGraph::pGraph graph)
{
   std::unordered_map<size_t,size_t> distance;
   size_t sum = 0;
   size_t count = 0;
   //auto& distance = distance_sssp;
   distance.clear();
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunDjikstra(graph,*node,distance);
      //add distance except NaF
      for(auto other = graph->begin(); other != graph->end(); other++)
      {
	 if(node == other)
	    continue;

	 if(distance[*other] < Graph::NaF)
	 {
	    sum += distance[*other];
	    count++;
	 }
      }
   }
   return double(sum) / count;
}
void scn::RunSPFA(UGraph::pGraph graph,size_t indexOfSource, std::unordered_map<size_t,size_t> &distance)
{
   assert(graph->HasNode(indexOfSource));
//   Map<size_t>& distance = distance_sssp;
   //distance, stored the distance information of each node
   //init
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      distance[*node] = Graph::NaF;
   }
   distance[indexOfSource] = 0;
   queue<size_t> queue_buffer;
   unordered_set<size_t> in_queue;
   queue_buffer.push(indexOfSource);//push source node
   size_t front;
   while(!queue_buffer.empty())
   {
      front = queue_buffer.front();
      queue_buffer.pop();
      in_queue.erase(front);
      auto node = graph->find(front);
      for(auto other = node->begin(); other != node->end(); other++)
      {
	 if(in_queue.find(*other) == in_queue.end() &&
	    distance[front] + 1 < distance[*other])
	 {
	    distance[*other] = distance[front] + 1;
	    queue_buffer.push(*other);
	    in_queue.insert(*other);
	 }
      }
   }
}
Matrix scn::GetGeodesicMatrix(UGraph::pGraph graph)
{
   Matrix result(graph->GetNumberOfNodes(), graph->GetNumberOfNodes());
   std::unordered_map<size_t,size_t> distance;
   //auto& distance = distance_sssp;
   size_t diameter = 0;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      for(auto iter = distance.begin(); iter != distance.end(); iter++)
      {
	 result(*node, iter->first) = iter->second;
	 if(iter->second > diameter)
	 {
	    diameter = iter->second;
	 }
      }
   }
   //result.Print("Matrix:");

   for(size_t i = 0; i < result.GetHeight(); i++)
   {
      result(i, i) = - valarray<double>(result.row(i)).sum();
   }

   result /= static_cast<double>(diameter);
   return result;
}
void scn::GetDiameterAndAverageDistance(size_t &Diamter,double &APL,UGraph::pGraph graph)
{
   size_t sum = 0;
   size_t count = 0;
   size_t diameter = 0;
   std::unordered_map<size_t,size_t> distance;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      //add distance except NaF
      for(auto iter = distance.begin(); iter != distance.end(); iter++)
      {
	     if(iter->first == *node)
	     continue;
		 if(iter->second < Graph::NaF)
	     {
	       sum += iter->second;
	       count++;
	       if(iter->second > diameter)
		  diameter = iter->second;
	    }
      }
   }
   //return make_pair(diameter, double(sum) / count);
   Diamter=diameter;
   APL=double(sum) / count;
}
size_t scn::MRTofRandomWalk(UGraph::pGraph graph)
{
   
   size_t total_steps = 0;
   vector<size_t> neighbors;
   srand(size_t(time(00)));

//#pragma omp parallel for shared(total_steps) private(neighbors)
   for(size_t source = 0; source < graph->GetNumberOfNodes(); source++)
   {
  //    if(omp_get_thread_num() == 0)
	// cout<<"Random walk on "<<source<<"/"<<graph->GetNumberOfNodes() / omp_get_num_procs()<<endl;
      size_t next = source;
      size_t steps = 0;
      do
      {
	 neighbors.assign(graph->find(next)->begin(), graph->find(next)->end());
	 next = neighbors[rand() % neighbors.size()];
	 steps++;
      }while(next != source);
//#pragma omp critical
      {
	 total_steps += steps;
      }
   }
   return static_cast<double>(total_steps) / 
      static_cast<double>(graph->GetNumberOfNodes());
}
Exemple #9
0
UGraph::pGraph scn::GenSmallWorldNetworkByNW(size_t numberOfNodes, size_t k,
						   double probability)
{
   assert(2* k + 1 <= numberOfNodes);
   assert(probability >= 0);
   assert(probability <= 1);
   
   //generate k-nearest network
   UGraph::pGraph graph = GenKNearestNetwork(numberOfNodes, k);
   //add edges randomly
   size_t numberOfEdges = numberOfNodes * (numberOfNodes - 2 * k - 1) / 2 * probability;
   size_t sum_edges = 0;
   size_t one, two;
   srand(size_t(time(00)));

   do
   {
      one = rand() % numberOfNodes;
      two = rand() % numberOfNodes;
      if(!(one == two || graph->HasEdge(one, two)))
      {
	 graph->AddEdge(one, two);
	 sum_edges++;
      }
   }while(sum_edges < numberOfEdges);

   return graph;
}
double scn::ComputeAverageDegree(UGraph::pGraph graph)
{
   double sum = 0;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      sum += node->GetDegree();
   }
   return sum / graph->GetNumberOfNodes();
}
double scn::GetHideInfo(UGraph::pGraph graph,size_t indexOfNode)
{
   double sum = 0;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      if(*node == indexOfNode)
	 continue;

      sum += GetSearchInfo(graph,*node, indexOfNode);
   }
   return sum / static_cast<double>(graph->GetNumberOfNodes());
}
void scn::RunDjikstra(UGraph::pGraph graph,size_t indexOfSource,std::unordered_map<size_t,size_t> &distance)
{
   //auto& distance = distance_sssp;//using distance_sssp eariler
   assert(graph->HasNode(indexOfSource));
   //init
   //distance.reserve(graph->GetNumberOfNodes());
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      distance[*node] = Graph::NaF;
   }
   distance[indexOfSource] = 0;

   list<size_t> queue;
   //fill index of nodes into queue
   for(size_t i = 0; i < graph->GetNumberOfNodes(); i++)
   {
      queue.push_back(i);
   }
   //begin
   size_t next_distance;
   while(!queue.empty())
   {
      //get min one
      auto min = min_element(queue.begin(), queue.end(), 
			     [&](const size_t &one, const size_t &two)->bool
			     {
				if(distance[one] < distance[two])
				   return true;
				else
				   return false;
			     });
      auto node = graph->find(*min);  

      if(distance[*node] < Graph::NaF)
	 next_distance = distance[*node] + 1;
      else
	 next_distance = Graph::NaF;
      //relax neighbors
      for(auto other = node->begin(); other != node->end(); other++)
      {
	 if(distance[*other] > next_distance)
	 {
	    distance[*other] = next_distance;
	 } 
      }
      queue.erase(min);
   }
}
//注意:需要特征值计算,Fortran
void scn::GetLambda2AndRatio(double &lambda2, double &ratio,UGraph::pGraph graph)
{
   auto list = graph->GetLaplacianMatrix().GetEigenvalueList();
   //return make_pair(list[list.size() - 2], list[0] / list[list.size() - 2]);
   lambda2=list[list.size() - 2];
   ratio=list[0] / list[list.size() - 2];
}
double scn::GetSearchInfo(UGraph::pGraph graph,size_t indexOfSource, size_t indexOfTarget)
{
   assert(graph->HasNode(indexOfSource));
   assert(graph->HasNode(indexOfTarget));
   assert(indexOfSource != indexOfTarget);
   std::unordered_map<size_t,size_t> distance;
   //get shortest distance
   //auto& distance = distance_sssp;
   RunSPFA(graph,indexOfSource,distance);
   double sum = 0;
   //search in breadth-first way
   queue<pair<size_t, double>> path_queue;//pair : indexOfNode,
					  //probability of path
   path_queue.push(make_pair(indexOfTarget, 1.0));
   while(!path_queue.empty())
   {
      auto current = path_queue.front();
      auto node = (*graph)[current.first];
      path_queue.pop();
      
      for(auto other = node->begin(); other != node->end(); other++)
      {//put all of previous-node in path into queue
	 if(distance[*other] == distance[*node] - 1)
	 {
	    if(distance[*other] == 0)
	       sum += current.second / static_cast<double>(node->GetDegree());
	    else
	       path_queue.push(make_pair(*other, current.second / 
					 static_cast<double>((*graph)[*other]->GetDegree() - 1))); 
	 }
      }
   }
   return - log(sum)/log(2.0);
}
size_t scn::RandomWalkByURW(UGraph::pGraph graph,size_t indexOfSource, size_t indexOfTarget)
{
   unordered_set<size_t> neighbors_of_target(graph->find(indexOfTarget)->begin(),
					     graph->find(indexOfTarget)->end());
   vector<size_t> neighbors;
   size_t steps = 0;
   size_t next = indexOfSource;
   srand(size_t(time(00)));
   do
   {
      neighbors.assign(graph->find(next)->begin(), graph->find(next)->end());
      next = neighbors[rand() % neighbors.size()];
      steps++;
   }while(neighbors_of_target.find(next) == neighbors_of_target.end());

   return steps;
}
size_t scn::RandomWalkBySARW(UGraph::pGraph graph,size_t indexOfSource, size_t indexOfTarget)
{
   unordered_set<size_t> neighbors_of_target(graph->find(indexOfTarget)->begin(),
					     graph->find(indexOfTarget)->end());
   vector<size_t> neighbors;
   size_t steps = 0;
   size_t next = indexOfSource;
   unordered_set<size_t> history;
   stack<size_t> precessors;
   history.insert(indexOfSource);
   precessors.push(indexOfSource);

   srand(size_t(time(00)));
// judge first
   if(graph->HasEdge(indexOfSource, indexOfTarget))
      return 1;

   do
   {
      auto other = graph->find(next);
      neighbors.clear();
      for(auto iter = other->begin(); iter != other->end(); iter++)
      {
	 if(history.find(*iter) == history.end())
	    neighbors.push_back(*iter);
      }
      if(neighbors.empty())
      {
	 history.insert(*other);
	 precessors.pop();
	 next = precessors.top();
	 history.insert(next);
	 steps++;
	 continue;
      }
      do
      {
	 next = neighbors[rand() % neighbors.size()];
      }while(history.find(next) != history.end());
      steps++;
      history.insert(next);
      precessors.push(next);
   }while(neighbors_of_target.find(next) == neighbors_of_target.end());

   return steps;
}
double scn::GetEntropyOfDegreeDist(UGraph::pGraph graph)
{
   //get degree distribution
	std::unordered_map<size_t,size_t> distribution;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      distribution[node->GetDegree()]++;
   }
   //compute the entropy
   double sum = 0;
   double pk = 0;
   for(auto iter = distribution.begin(); iter != distribution.end(); iter++)
   {
      pk = static_cast<double>(iter->second) / graph->GetNumberOfNodes();
      sum -= pk * log(pk)/log(2.0);
   }
   return sum;
}
void scn::GetDegreeDistribution(vector<pair<size_t, size_t>> &pairs,UGraph::pGraph graph)
{
   std::unordered_map<size_t,size_t> distribution;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      distribution[node->GetDegree()]++;
   }
   //copy and sort
   pairs.assign(distribution.begin(), distribution.end());
   sort(pairs.begin(), pairs.end(), [&](const pair<size_t, size_t> &one, 
					const pair<size_t, size_t> &two)->bool
	{
	   if(one.first < two.first)
	      return true;
	   else
	      return false;
	});
}
double scn::GetBetweennessCentrality(UGraph::pGraph graph,size_t indexOfNode)
{
   double sum = 0;
   for(auto node1 = graph->begin(); node1 != graph->end(); node1++)
   {
      if(*node1 == indexOfNode)
	 continue;

      for(auto node2 = graph->begin(); node2 != graph->end(); node2++)
      {
	 if(*node2 == indexOfNode || node1 == node2)
	    continue;
	 //compute
	 auto result = GetNumberOfShortestPath(graph,*node1, *node2, indexOfNode);
	 sum += static_cast<double>(result.second) / 
	    static_cast<double>(result.first);
      }
   }
   return sum;
}
double scn::GetGlobalEfficiency(UGraph::pGraph graph)
{
   double sum = 0;
   std::unordered_map<size_t,size_t> distance;
   //auto& distance = distance_sssp;
   distance.clear();
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      //add distance
      for(auto iter = distance.begin(); iter != distance.end(); iter++)
      {
	 if(iter->first == *node)
	    continue;

	 sum += 1.0 / static_cast<double>(iter->second);
      }
   }
   double size = static_cast<double>(graph->GetNumberOfNodes());
   return size * (size - 1) / sum;
}
size_t scn::GetDiameter(UGraph::pGraph graph)
{
   //auto& distance = distance_sssp;
   std::unordered_map<size_t,size_t> distance;
   size_t diameter = 0;
   distance.clear();
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      //search for the max distance except NaF
      
      for(auto other = graph->begin(); other != graph->end(); other++)
      {
	 if(distance[*other] > diameter && distance[*other] < Graph::NaF)
	 {
	    diameter = distance[*other];
	 }
      }
   }
   return diameter;
}
double scn::GetPearsonCorrCoeff(UGraph::pGraph graph)
{
   size_t sum = 0;
   size_t product = 0;
   size_t square_sum = 0;
   for(auto i = graph->begin(); i != graph->end(); i++)
   {
      for(auto j = i + 1; j != graph->end(); j++)
      {
	 if(graph->HasEdge(*i, *j))
	 {
	    sum += i->GetDegree() + j->GetDegree();
	    product += i->GetDegree() * j->GetDegree();
	    square_sum += i->GetDegree() * i->GetDegree() + j->GetDegree() * j->GetDegree();
	 }
      }
   }
   double tmp = 1.0 / static_cast<double>(graph->GetNumberOfEdges());
   return (tmp * product - (tmp * sum) * (tmp * sum) / 4) /
      (tmp * square_sum / 2 - (tmp * sum) * (tmp * sum) / 4); 
}
double scn::GetTransitivity(UGraph::pGraph graph)
{
   size_t numberOfTriangles = 0;
   size_t numberOfTriples = 0;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      for(auto other1 = node->begin(); other1 != node->end(); other1++)
      {
	 for(auto other2= other1 + 1; other2 != node->end(); other2++)
	 {
	    if(graph->HasEdge(*other1, *other2))
	    {
	       numberOfTriangles++;
	    }
	 }
      }
      numberOfTriples += node->GetDegree() * (node->GetDegree() - 1) / 2;
   }
   return static_cast<double>(numberOfTriangles) / 
      static_cast<double>(numberOfTriples);
}
void scn::GetClusteringCoeffDist(vector<pair<double, double>> &distribution, UGraph::pGraph graph, double slide)
{
   assert(slide >= 0 && slide <= 1);
   if(slide == 0)
   {
      unordered_map <double,double> cc_dist;
      for(auto node = graph->begin(); node != graph->end(); node++)
      {
	     cc_dist[GetClusteringCoeff(graph,*node)]++;
      }
      for(auto iter = cc_dist.begin(); iter != cc_dist.end(); iter++)
      {
	 iter->second /= graph->GetNumberOfNodes();
      }
      distribution.assign(cc_dist.begin(), cc_dist.end());
      sort(distribution.begin(), distribution.end());
   }
   else
   {
      unordered_map<size_t, double> cc_dist;
      for(auto node = graph->begin(); node != graph->end(); node++)
      {
	 cc_dist[static_cast<size_t>(GetClusteringCoeff(graph, *node) / slide)]++;
      }
      distribution.assign(cc_dist.begin(), cc_dist.end());
      sort(distribution.begin(), distribution.end());
      for(auto iter = distribution.begin(); iter != distribution.end(); iter++)
      {
	      iter->first = iter->first * slide + slide / 2;
	     if(iter->first > 1)  iter->first = 1;
	 	 iter->second /= graph->GetNumberOfNodes();
      }
   }
}
Exemple #25
0
void scn::WriteToNetFile(char* path, UNetwork<>::pNetwork &network)
   {
      using std::endl;
	  std::ofstream outfile(path,ios_base::trunc);
      UGraph::pGraph graph = network->GetTopology();
      
      outfile<<"*Vertices "<<graph->GetNumberOfNodes()<<endl;
      //write node
      for(auto node = graph->begin(); node != graph->end(); node++)
      {
		  auto position = network->GetNodePosition(*node);
		  outfile<<*node + 1<<" "<<*node + 1<<" "<<position[0]<<" "
			  <<position[1]<<" "<<position[2]<<endl;
      }
      
      outfile<<"*Arcs"<<endl;
      outfile<<"*Edges"<<endl;

      //write edge
      for(auto node = graph->begin(); node != graph->end(); node++)
      {
	 for(auto other = node->begin(); other != node->end(); other++)
	 {
	    if(*other < *node)
	    {
	       outfile<<*node + 1<<" "<<*other + 1<<" 1"<<endl;
	    }
	 }
      }
      outfile.close();
   }
double scn::GetCyclicCoeff(UGraph::pGraph graph,size_t indexOfNode)
{
   //IndexList edges;
   std::pair<IndexList, IndexList> result;
   std::unordered_map<size_t,size_t> distance;
   //auto& distance = distance_sssp;
   distance.clear();
   if(indexOfNode != UGraph::NaF)
   {//one vertex
      result = graph->RemoveNode(indexOfNode);
	  IndexList& edges = result.first;
      double sum = 0;
      for(auto head = edges.begin(); head != edges.end(); head++)
      {
	 RunSPFA(graph,*head,distance);
	 for(auto tail = head + 1; tail != edges.end(); tail++)
	 {
	    sum += 1.0 / static_cast<double>(distance[*tail] + 2);
	 }
      }
      ///restore
      graph->AddEdge(graph->AddNode(indexOfNode), edges);
      return 2 * sum / static_cast<double>(edges.size() * (edges.size() - 1));
   }
   else
   {//the whole network
      //copy node list
      IndexList nodes = graph->CopyIndexOfNodes();
      double total_sum = 0;
      for(auto node = nodes.begin(); node != nodes.end(); node++)
      {
	 result = graph->RemoveNode(*node);
	 IndexList& edges = result.first;
	 double sum = 0;
	 for(auto head = edges.begin(); head != edges.end(); head++)
	 {
	    RunSPFA(graph,*head,distance);
	    for(auto tail = head + 1; tail != edges.end(); tail++)
	    {
	       sum += 1.0 / static_cast<double>(distance[*tail] + 2);
	    }
	 }
	 ///restore, add node first, then add list of edges of this node
	 graph->AddEdge(graph->AddNode(*node), edges);
	 //accumulate
	 total_sum += 2 * sum / static_cast<double>(edges.size() * (edges.size() - 1));
      }
      return total_sum / static_cast<double>(graph->GetNumberOfNodes());
   }
}
void scn::GetShortestDistanceDistribution(vector<pair<size_t, size_t>> &distribution,UGraph::pGraph graph)
{
   std::unordered_map<size_t,size_t> distance;
   std::unordered_map<size_t,size_t> tempdist;
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      RunSPFA(graph,*node,distance);
      //add distance except NaF
      for(auto iter = distance.begin(); iter !=distance.end(); iter++)
      {
	 if(iter->first == *node)
	    continue;

	 if(iter->second < Graph::NaF)
	 {
	    tempdist[iter->second]++;
	 }
      }
   }
   distribution.assign(tempdist.begin(),tempdist.end());
   sort(distribution.begin(), distribution.end());
}
double scn::GetRichClubCoeff(UGraph::pGraph graph,size_t degree)
{
   IndexList setOfHighNode;//whose degree is greater than
                           //argument degree
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      if(node->GetDegree() > degree)
      {
	 setOfHighNode.push_back(*node);
      }
   }
   double sum = 0;
   for(auto one = setOfHighNode.begin(); one != setOfHighNode.end(); one++)
   {
      for(auto two = one + 1; two != setOfHighNode.end(); two++)
      {
	 if(graph->HasEdge(*one, *two))
	    sum++;
      }
   }
   return 2 * sum / static_cast<double>(setOfHighNode.size() * (setOfHighNode.size() - 1));
}
size_t scn::GetShortestDistance(UGraph::pGraph graph,size_t indexOfSource, size_t indexOfTarget)
{
   assert(graph->HasNode(indexOfSource) && graph->HasNode(indexOfTarget));
   //breadth-first search
   queue<size_t> search_queue;
   std::unordered_map<size_t,size_t> distance;
   unordered_set<size_t> in_queue;
   size_t front;
   //initial
   distance[indexOfSource] = 0;
   search_queue.push(indexOfSource);
   in_queue.insert(indexOfSource);
   
   while(!search_queue.empty())
   {
      front = search_queue.front();
      search_queue.pop();
      in_queue.erase(front);

      auto node = graph->find(front);
      for(auto other = node->begin(); other != node->end(); other++)
      {
	 if(*other == indexOfTarget)
	    return distance[*node] + 1;

	 if(in_queue.find(*other) == in_queue.end() &&
	    (distance.find(*other) == distance.end() || distance[front] + 1 < distance[*other]))
	 {
	    distance[*other] = distance[front] + 1;
	    search_queue.push(*other);
	    in_queue.insert(*other);
	 }
      }
   }
   //if this point is reached, the indexOfTarget is an isolated node 
   return Graph::NaF;
}
void scn::GetClusteringDegreeCorre(pair<double, vector<pair<size_t, double>>> &correlation,UGraph::pGraph graph)
{
   unordered_map<size_t, double> degree_dist, degree_cc;
   //accumulate degree and clustering coefficient
   for(auto node = graph->begin(); node != graph->end(); node++)
   {
      degree_dist[node->GetDegree()]++;
      degree_cc[node->GetDegree()] += GetClusteringCoeff(graph,*node);
   }
   //get average
   double degree_average = 0;//1-order moment of degree
   double degree_sqr_average = 0;//2-order moment of degree
   for(auto iter = degree_dist.begin(); iter != degree_dist.end(); iter++)
   {
      //average clustering coefficient in each degree
      degree_cc[iter->first] /= iter->second;
      //probability of degree
      iter->second /= graph->GetNumberOfNodes();
      //1-order moment of degree
      degree_average += iter->first * iter->second;
      //2-order moment of degree
      degree_sqr_average += iter->first * iter->first * iter->second;
   }
   //compute global clustering degree correlation
   double clustering_degree_corre = 0;
   for(auto iter = degree_dist.begin(); iter != degree_dist.end(); iter++)
   {
      clustering_degree_corre += iter->first * (iter->first - 1) * iter->second
	 * degree_cc[iter->first];
   }
   clustering_degree_corre /= (degree_sqr_average - degree_average);
   //sort and get result
   correlation.second.assign(degree_cc.begin(), degree_cc.end());
   sort(correlation.second.begin(), correlation.second.end());
   correlation.first=clustering_degree_corre;
}