void TestExtractChannels() { typedef itk::VectorImage<float, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->SetNumberOfComponentsPerPixel(3); image->Allocate(); // Extract the first two channels std::vector<unsigned int> channels; channels.push_back(0); channels.push_back(1); typedef itk::VectorImage<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannels(image.GetPointer(), channels, floatScalarImage.GetPointer()); typedef itk::VectorImage<unsigned char, 2> UnsignedCharScalarImageType; UnsignedCharScalarImageType::Pointer unsignedCharScalarImage = UnsignedCharScalarImageType::New(); ITKHelpers::ExtractChannels(image.GetPointer(), channels, unsignedCharScalarImage.GetPointer()); }
void TestExtractChannel() { typedef itk::VectorImage<float, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->SetNumberOfComponentsPerPixel(2); image->Allocate(); typedef itk::Image<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, floatScalarImage.GetPointer()); typedef itk::Image<unsigned char, 2> UnsignedCharScalarImageType; UnsignedCharScalarImageType::Pointer unsignedCharScalarImage = UnsignedCharScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, unsignedCharScalarImage.GetPointer()); }
bool TestCreateLuminanceImage() { // From RGB image { itk::Index<2> imageCorner = {{0,0}}; itk::Size<2> imageSize = {{100,100}}; itk::ImageRegion<2> imageRegion(imageCorner, imageSize); typedef itk::Image<itk::RGBPixel<unsigned char>, 2> RGBImageType; RGBImageType::Pointer rgbImage = RGBImageType::New(); rgbImage->SetRegions(imageRegion); rgbImage->Allocate(); typedef itk::Image<float, 2> LuminanceImageType; LuminanceImageType::Pointer luminanceImage = LuminanceImageType::New(); ITKHelpers::CreateLuminanceImage(rgbImage.GetPointer(), luminanceImage.GetPointer()); } // From Vector image { itk::Index<2> imageCorner = {{0,0}}; itk::Size<2> imageSize = {{100,100}}; itk::ImageRegion<2> imageRegion(imageCorner, imageSize); typedef itk::Image<itk::CovariantVector<unsigned char, 3>, 2> VectorImageType; VectorImageType::Pointer vectorImage = VectorImageType::New(); vectorImage->SetRegions(imageRegion); vectorImage->Allocate(); typedef itk::Image<float, 2> LuminanceImageType; LuminanceImageType::Pointer luminanceImage = LuminanceImageType::New(); ITKHelpers::CreateLuminanceImage(vectorImage.GetPointer(), luminanceImage.GetPointer()); } return true; }
void QmitkBasicImageProcessing::StartButtonClicked() { if(!m_SelectedImageNode->GetNode()) return; this->BusyCursorOn(); mitk::Image::Pointer newImage; try { newImage = dynamic_cast<mitk::Image*>(m_SelectedImageNode->GetNode()->GetData()); } catch ( std::exception &e ) { QString exceptionString = "An error occured during image loading:\n"; exceptionString.append( e.what() ); QMessageBox::warning( NULL, "Basic Image Processing", exceptionString , QMessageBox::Ok, QMessageBox::NoButton ); this->BusyCursorOff(); return; } // check if input image is valid, casting does not throw exception when casting from 'NULL-Object' if ( (! newImage) || (newImage->IsInitialized() == false) ) { this->BusyCursorOff(); QMessageBox::warning( NULL, "Basic Image Processing", "Input image is broken or not initialized. Returning.", QMessageBox::Ok, QMessageBox::NoButton ); return; } // check if operation is done on 4D a image time step if(newImage->GetDimension() > 3) { mitk::ImageTimeSelector::Pointer timeSelector = mitk::ImageTimeSelector::New(); timeSelector->SetInput(newImage); timeSelector->SetTimeNr( ((QmitkSliderNavigatorWidget*)m_Controls->sliceNavigatorTime)->GetPos() ); timeSelector->Update(); newImage = timeSelector->GetOutput(); } // check if image or vector image ImageType::Pointer itkImage = ImageType::New(); VectorImageType::Pointer itkVecImage = VectorImageType::New(); int isVectorImage = newImage->GetPixelType().GetNumberOfComponents(); if(isVectorImage > 1) { CastToItkImage( newImage, itkVecImage ); } else { CastToItkImage( newImage, itkImage ); } std::stringstream nameAddition(""); int param1 = m_Controls->sbParam1->value(); int param2 = m_Controls->sbParam2->value(); double dparam1 = m_Controls->dsbParam1->value(); double dparam2 = m_Controls->dsbParam2->value(); double dparam3 = m_Controls->dsbParam3->value(); try{ switch (m_SelectedAction) { case GAUSSIAN: { GaussianFilterType::Pointer gaussianFilter = GaussianFilterType::New(); gaussianFilter->SetInput( itkImage ); gaussianFilter->SetVariance( param1 ); gaussianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gaussianFilter->GetOutput())->Clone(); nameAddition << "_Gaussian_var_" << param1; std::cout << "Gaussian filtering successful." << std::endl; break; } case MEDIAN: { MedianFilterType::Pointer medianFilter = MedianFilterType::New(); MedianFilterType::InputSizeType size; size.Fill(param1); medianFilter->SetRadius( size ); medianFilter->SetInput(itkImage); medianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(medianFilter->GetOutput())->Clone(); nameAddition << "_Median_radius_" << param1; std::cout << "Median Filtering successful." << std::endl; break; } case TOTALVARIATION: { if(isVectorImage > 1) { VectorTotalVariationFilterType::Pointer TVFilter = VectorTotalVariationFilterType::New(); TVFilter->SetInput( itkVecImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } else { ImagePTypeToFloatPTypeCasterType::Pointer floatCaster = ImagePTypeToFloatPTypeCasterType::New(); floatCaster->SetInput( itkImage ); floatCaster->Update(); FloatImageType::Pointer fImage = floatCaster->GetOutput(); TotalVariationFilterType::Pointer TVFilter = TotalVariationFilterType::New(); TVFilter->SetInput( fImage.GetPointer() ); TVFilter->SetNumberIterations(param1); TVFilter->SetLambda(double(param2)/1000.); TVFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(TVFilter->GetOutput())->Clone(); } nameAddition << "_TV_Iter_" << param1 << "_L_" << param2; std::cout << "Total Variation Filtering successful." << std::endl; break; } case DILATION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); DilationFilterType::Pointer dilationFilter = DilationFilterType::New(); dilationFilter->SetInput( itkImage ); dilationFilter->SetKernel( binaryBall ); dilationFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(dilationFilter->GetOutput())->Clone(); nameAddition << "_Dilated_by_" << param1; std::cout << "Dilation successful." << std::endl; break; } case EROSION: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ErosionFilterType::Pointer erosionFilter = ErosionFilterType::New(); erosionFilter->SetInput( itkImage ); erosionFilter->SetKernel( binaryBall ); erosionFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(erosionFilter->GetOutput())->Clone(); nameAddition << "_Eroded_by_" << param1; std::cout << "Erosion successful." << std::endl; break; } case OPENING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); OpeningFilterType::Pointer openFilter = OpeningFilterType::New(); openFilter->SetInput( itkImage ); openFilter->SetKernel( binaryBall ); openFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(openFilter->GetOutput())->Clone(); nameAddition << "_Opened_by_" << param1; std::cout << "Opening successful." << std::endl; break; } case CLOSING: { BallType binaryBall; binaryBall.SetRadius( param1 ); binaryBall.CreateStructuringElement(); ClosingFilterType::Pointer closeFilter = ClosingFilterType::New(); closeFilter->SetInput( itkImage ); closeFilter->SetKernel( binaryBall ); closeFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(closeFilter->GetOutput())->Clone(); nameAddition << "_Closed_by_" << param1; std::cout << "Closing successful." << std::endl; break; } case GRADIENT: { GradientFilterType::Pointer gradientFilter = GradientFilterType::New(); gradientFilter->SetInput( itkImage ); gradientFilter->SetSigma( param1 ); gradientFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(gradientFilter->GetOutput())->Clone(); nameAddition << "_Gradient_sigma_" << param1; std::cout << "Gradient calculation successful." << std::endl; break; } case LAPLACIAN: { // the laplace filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); FloatImageType::Pointer fImage = caster->GetOutput(); LaplacianFilterType::Pointer laplacianFilter = LaplacianFilterType::New(); laplacianFilter->SetInput( fImage ); laplacianFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(laplacianFilter->GetOutput())->Clone(); nameAddition << "_Second_Derivative"; std::cout << "Laplacian filtering successful." << std::endl; break; } case SOBEL: { // the sobel filter requires a float type image as input, we need to cast the itkImage // to correct type ImagePTypeToFloatPTypeCasterType::Pointer caster = ImagePTypeToFloatPTypeCasterType::New(); caster->SetInput( itkImage ); caster->Update(); FloatImageType::Pointer fImage = caster->GetOutput(); SobelFilterType::Pointer sobelFilter = SobelFilterType::New(); sobelFilter->SetInput( fImage ); sobelFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(sobelFilter->GetOutput())->Clone(); nameAddition << "_Sobel"; std::cout << "Edge Detection successful." << std::endl; break; } case THRESHOLD: { ThresholdFilterType::Pointer thFilter = ThresholdFilterType::New(); thFilter->SetLowerThreshold(param1 < param2 ? param1 : param2); thFilter->SetUpperThreshold(param2 > param1 ? param2 : param1); thFilter->SetInsideValue(1); thFilter->SetOutsideValue(0); thFilter->SetInput(itkImage); thFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(thFilter->GetOutput())->Clone(); nameAddition << "_Threshold"; std::cout << "Thresholding successful." << std::endl; break; } case INVERSION: { InversionFilterType::Pointer invFilter = InversionFilterType::New(); mitk::ScalarType min = newImage->GetScalarValueMin(); mitk::ScalarType max = newImage->GetScalarValueMax(); invFilter->SetMaximum( max + min ); invFilter->SetInput(itkImage); invFilter->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(invFilter->GetOutput())->Clone(); nameAddition << "_Inverted"; std::cout << "Image inversion successful." << std::endl; break; } case DOWNSAMPLING: { ResampleImageFilterType::Pointer downsampler = ResampleImageFilterType::New(); downsampler->SetInput( itkImage ); NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); downsampler->SetInterpolator( interpolator ); downsampler->SetDefaultPixelValue( 0 ); ResampleImageFilterType::SpacingType spacing = itkImage->GetSpacing(); spacing *= (double) param1; downsampler->SetOutputSpacing( spacing ); downsampler->SetOutputOrigin( itkImage->GetOrigin() ); downsampler->SetOutputDirection( itkImage->GetDirection() ); ResampleImageFilterType::SizeType size = itkImage->GetLargestPossibleRegion().GetSize(); for ( int i = 0; i < 3; ++i ) { size[i] /= param1; } downsampler->SetSize( size ); downsampler->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(downsampler->GetOutput())->Clone(); nameAddition << "_Downsampled_by_" << param1; std::cout << "Downsampling successful." << std::endl; break; } case FLIPPING: { FlipImageFilterType::Pointer flipper = FlipImageFilterType::New(); flipper->SetInput( itkImage ); itk::FixedArray<bool, 3> flipAxes; for(int i=0; i<3; ++i) { if(i == param1) { flipAxes[i] = true; } else { flipAxes[i] = false; } } flipper->SetFlipAxes(flipAxes); flipper->UpdateLargestPossibleRegion(); newImage = mitk::ImportItkImage(flipper->GetOutput())->Clone(); std::cout << "Image flipping successful." << std::endl; break; } case RESAMPLING: { std::string selectedInterpolator; ResampleImageFilterType::Pointer resampler = ResampleImageFilterType::New(); switch (m_SelectedInterpolation) { case LINEAR: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } case NEAREST: { NearestInterpolatorType::Pointer interpolator = NearestInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Nearest"; break; } default: { LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New(); resampler->SetInterpolator(interpolator); selectedInterpolator = "Linear"; break; } } resampler->SetInput( itkImage ); resampler->SetOutputOrigin( itkImage->GetOrigin() ); ImageType::SizeType input_size = itkImage->GetLargestPossibleRegion().GetSize(); ImageType::SpacingType input_spacing = itkImage->GetSpacing(); ImageType::SizeType output_size; ImageType::SpacingType output_spacing; output_size[0] = input_size[0] * (input_spacing[0] / dparam1); output_size[1] = input_size[1] * (input_spacing[1] / dparam2); output_size[2] = input_size[2] * (input_spacing[2] / dparam3); output_spacing [0] = dparam1; output_spacing [1] = dparam2; output_spacing [2] = dparam3; resampler->SetSize( output_size ); resampler->SetOutputSpacing( output_spacing ); resampler->SetOutputDirection( itkImage->GetDirection() ); resampler->UpdateLargestPossibleRegion(); ImageType::Pointer resampledImage = resampler->GetOutput(); newImage = mitk::ImportItkImage( resampledImage ); nameAddition << "_Resampled_" << selectedInterpolator; std::cout << "Resampling successful." << std::endl; break; } case RESCALE: { FloatImageType::Pointer floatImage = FloatImageType::New(); CastToItkImage( newImage, floatImage ); itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::Pointer filter = itk::RescaleIntensityImageFilter<FloatImageType,FloatImageType>::New(); filter->SetInput(0, floatImage); filter->SetOutputMinimum(dparam1); filter->SetOutputMaximum(dparam2); filter->Update(); floatImage = filter->GetOutput(); newImage = mitk::Image::New(); newImage->InitializeByItk(floatImage.GetPointer()); newImage->SetVolume(floatImage->GetBufferPointer()); nameAddition << "_Rescaled"; std::cout << "Rescaling successful." << std::endl; break; } default: this->BusyCursorOff(); return; } } catch (...) { this->BusyCursorOff(); QMessageBox::warning(NULL, "Warning", "Problem when applying filter operation. Check your input..."); return; } newImage->DisconnectPipeline(); // adjust level/window to new image mitk::LevelWindow levelwindow; levelwindow.SetAuto( newImage ); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); levWinProp->SetLevelWindow( levelwindow ); // compose new image name std::string name = m_SelectedImageNode->GetNode()->GetName(); if (name.find(".pic.gz") == name.size() -7 ) { name = name.substr(0,name.size() -7); } name.append( nameAddition.str() ); // create final result MITK data storage node mitk::DataNode::Pointer result = mitk::DataNode::New(); result->SetProperty( "levelwindow", levWinProp ); result->SetProperty( "name", mitk::StringProperty::New( name.c_str() ) ); result->SetData( newImage ); // for vector images, a different mapper is needed if(isVectorImage > 1) { mitk::VectorImageMapper2D::Pointer mapper = mitk::VectorImageMapper2D::New(); result->SetMapper(1,mapper); } // reset GUI to ease further processing // this->ResetOneImageOpPanel(); // add new image to data storage and set as active to ease further processing GetDefaultDataStorage()->Add( result, m_SelectedImageNode->GetNode() ); if ( m_Controls->cbHideOrig->isChecked() == true ) m_SelectedImageNode->GetNode()->SetProperty( "visible", mitk::BoolProperty::New(false) ); // TODO!! m_Controls->m_ImageSelector1->SetSelectedNode(result); // show the results mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->BusyCursorOff(); }
bool TestExtractChannel() { // VectorImage { typedef itk::VectorImage<float, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->SetNumberOfComponentsPerPixel(2); image->Allocate(); typedef itk::Image<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, floatScalarImage.GetPointer()); typedef itk::Image<unsigned char, 2> UnsignedCharScalarImageType; UnsignedCharScalarImageType::Pointer unsignedCharScalarImage = UnsignedCharScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, unsignedCharScalarImage.GetPointer()); } // VectorImage different output type { typedef itk::VectorImage<float, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->SetNumberOfComponentsPerPixel(2); image->Allocate(); typedef itk::Image<unsigned char, 2> UnsignedCharScalarImageType; UnsignedCharScalarImageType::Pointer unsignedCharScalarImage = UnsignedCharScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, unsignedCharScalarImage.GetPointer()); } // Scalar Image { typedef itk::Image<float, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->Allocate(); typedef itk::Image<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, floatScalarImage.GetPointer()); typedef itk::Image<unsigned char, 2> UnsignedCharScalarImageType; UnsignedCharScalarImageType::Pointer unsignedCharScalarImage = UnsignedCharScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, unsignedCharScalarImage.GetPointer()); } // Image<CovariantVector> { typedef itk::Image<itk::CovariantVector<float, 3>, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->Allocate(); typedef itk::Image<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, floatScalarImage.GetPointer()); } // Image<Vector> { typedef itk::Image<itk::Vector<float, 3>, 2> VectorImageType; VectorImageType::Pointer image = VectorImageType::New(); itk::Index<2> corner = {{0,0}}; itk::Size<2> size = {{100,100}}; itk::ImageRegion<2> region(corner, size); image->SetRegions(region); image->Allocate(); typedef itk::Image<float, 2> FloatScalarImageType; FloatScalarImageType::Pointer floatScalarImage = FloatScalarImageType::New(); ITKHelpers::ExtractChannel(image.GetPointer(), 0, floatScalarImage.GetPointer()); } return true; }