Esempio n. 1
0
static void acpi_tb_setup_fadt_registers(void)
{
	struct acpi_generic_address *target64;
	struct acpi_generic_address *source64;
	u8 pm1_register_byte_width;
	u32 i;

	/*
	 * Optionally check all register lengths against the default values and
	 * update them if they are incorrect.
	 */
	if (acpi_gbl_use_default_register_widths) {
		for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) {
			target64 =
			    ACPI_ADD_PTR(struct acpi_generic_address,
					 &acpi_gbl_FADT,
					 fadt_info_table[i].address64);

			/*
			 * If a valid register (Address != 0) and the (default_length > 0)
			 * (Not a GPE register), then check the width against the default.
			 */
			if ((target64->address) &&
			    (fadt_info_table[i].default_length > 0) &&
			    (fadt_info_table[i].default_length !=
			     target64->bit_width)) {
				ACPI_BIOS_WARNING((AE_INFO,
						   "Invalid length for FADT/%s: %u, using default %u",
						   fadt_info_table[i].name,
						   target64->bit_width,
						   fadt_info_table[i].
						   default_length));

				/* Incorrect size, set width to the default */

				target64->bit_width =
				    fadt_info_table[i].default_length;
			}
		}
	}

	/*
	 * Get the length of the individual PM1 registers (enable and status).
	 * Each register is defined to be (event block length / 2). Extra divide
	 * by 8 converts bits to bytes.
	 */
	pm1_register_byte_width = (u8)
	    ACPI_DIV_16(acpi_gbl_FADT.xpm1a_event_block.bit_width);

	/*
	 * Calculate separate GAS structs for the PM1x (A/B) Status and Enable
	 * registers. These addresses do not appear (directly) in the FADT, so it
	 * is useful to pre-calculate them from the PM1 Event Block definitions.
	 *
	 * The PM event blocks are split into two register blocks, first is the
	 * PM Status Register block, followed immediately by the PM Enable
	 * Register block. Each is of length (pm1_event_length/2)
	 *
	 * Note: The PM1A event block is required by the ACPI specification.
	 * However, the PM1B event block is optional and is rarely, if ever,
	 * used.
	 */

	for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++) {
		source64 =
		    ACPI_ADD_PTR(struct acpi_generic_address, &acpi_gbl_FADT,
				 fadt_pm_info_table[i].source);

		if (source64->address) {
			acpi_tb_init_generic_address(fadt_pm_info_table[i].
						     target, source64->space_id,
						     pm1_register_byte_width,
						     source64->address +
						     (fadt_pm_info_table[i].
						      register_num *
						      pm1_register_byte_width),
						     "PmRegisters", 0);
		}
	}
}
Esempio n. 2
0
static void
AcpiTbSetupFadtRegisters (
    void)
{
    ACPI_GENERIC_ADDRESS    *Target64;
    ACPI_GENERIC_ADDRESS    *Source64;
    UINT8                   Pm1RegisterByteWidth;
    UINT32                  i;


    /*
     * Optionally check all register lengths against the default values and
     * update them if they are incorrect.
     */
    if (AcpiGbl_UseDefaultRegisterWidths)
    {
        for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
        {
            Target64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
                FadtInfoTable[i].Address64);

            /*
             * If a valid register (Address != 0) and the (DefaultLength > 0)
             * (Not a GPE register), then check the width against the default.
             */
            if ((Target64->Address) &&
                (FadtInfoTable[i].DefaultLength > 0) &&
                (FadtInfoTable[i].DefaultLength != Target64->BitWidth))
            {
                ACPI_BIOS_WARNING ((AE_INFO,
                    "Invalid length for FADT/%s: %u, using default %u",
                    FadtInfoTable[i].Name, Target64->BitWidth,
                    FadtInfoTable[i].DefaultLength));

                /* Incorrect size, set width to the default */

                Target64->BitWidth = FadtInfoTable[i].DefaultLength;
            }
        }
    }

    /*
     * Get the length of the individual PM1 registers (enable and status).
     * Each register is defined to be (event block length / 2). Extra divide
     * by 8 converts bits to bytes.
     */
    Pm1RegisterByteWidth = (UINT8)
        ACPI_DIV_16 (AcpiGbl_FADT.XPm1aEventBlock.BitWidth);

    /*
     * Calculate separate GAS structs for the PM1x (A/B) Status and Enable
     * registers. These addresses do not appear (directly) in the FADT, so it
     * is useful to pre-calculate them from the PM1 Event Block definitions.
     *
     * The PM event blocks are split into two register blocks, first is the
     * PM Status Register block, followed immediately by the PM Enable
     * Register block. Each is of length (Pm1EventLength/2)
     *
     * Note: The PM1A event block is required by the ACPI specification.
     * However, the PM1B event block is optional and is rarely, if ever,
     * used.
     */

    for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++)
    {
        Source64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT,
            FadtPmInfoTable[i].Source);

        if (Source64->Address)
        {
            AcpiTbInitGenericAddress (FadtPmInfoTable[i].Target,
                Source64->SpaceId, Pm1RegisterByteWidth,
                Source64->Address +
                    (FadtPmInfoTable[i].RegisterNum * Pm1RegisterByteWidth),
                "PmRegisters", 0);
        }
    }
}
Esempio n. 3
0
static void acpi_tb_convert_fadt(void)
{
	const char *name;
	struct acpi_generic_address *address64;
	u32 address32;
	u8 length;
	u8 flags;
	u32 i;

	/*
	 * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
	 * should be zero are indeed zero. This will workaround BIOSs that
	 * inadvertently place values in these fields.
	 *
	 * The ACPI 1.0 reserved fields that will be zeroed are the bytes located
	 * at offset 45, 55, 95, and the word located at offset 109, 110.
	 *
	 * Note: The FADT revision value is unreliable. Only the length can be
	 * trusted.
	 */
	if (acpi_gbl_FADT.header.length <= ACPI_FADT_V2_SIZE) {
		acpi_gbl_FADT.preferred_profile = 0;
		acpi_gbl_FADT.pstate_control = 0;
		acpi_gbl_FADT.cst_control = 0;
		acpi_gbl_FADT.boot_flags = 0;
	}

	/*
	 * Now we can update the local FADT length to the length of the
	 * current FADT version as defined by the ACPI specification.
	 * Thus, we will have a common FADT internally.
	 */
	acpi_gbl_FADT.header.length = sizeof(struct acpi_table_fadt);

	/*
	 * Expand the 32-bit DSDT addresses to 64-bit as necessary.
	 * Later ACPICA code will always use the X 64-bit field.
	 */
	acpi_gbl_FADT.Xdsdt = acpi_tb_select_address("DSDT",
						     acpi_gbl_FADT.dsdt,
						     acpi_gbl_FADT.Xdsdt);

	/* If Hardware Reduced flag is set, we are all done */

	if (acpi_gbl_reduced_hardware) {
		return;
	}

	/* Examine all of the 64-bit extended address fields (X fields) */

	for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) {
		/*
		 * Get the 32-bit and 64-bit addresses, as well as the register
		 * length and register name.
		 */
		address32 = *ACPI_ADD_PTR(u32,
					  &acpi_gbl_FADT,
					  fadt_info_table[i].address32);

		address64 = ACPI_ADD_PTR(struct acpi_generic_address,
					 &acpi_gbl_FADT,
					 fadt_info_table[i].address64);

		length = *ACPI_ADD_PTR(u8,
				       &acpi_gbl_FADT,
				       fadt_info_table[i].length);

		name = fadt_info_table[i].name;
		flags = fadt_info_table[i].flags;

		/*
		 * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
		 * generic address structures as necessary. Later code will always use
		 * the 64-bit address structures.
		 *
		 * November 2013:
		 * Now always use the 64-bit address if it is valid (non-zero), in
		 * accordance with the ACPI specification which states that a 64-bit
		 * address supersedes the 32-bit version. This behavior can be
		 * overridden by the acpi_gbl_use32_bit_fadt_addresses flag.
		 *
		 * During 64-bit address construction and verification,
		 * these cases are handled:
		 *
		 * Address32 zero, Address64 [don't care]   - Use Address64
		 *
		 * No override: if acpi_gbl_use32_bit_fadt_addresses is FALSE, and:
		 * Address32 non-zero, Address64 zero       - Copy/use Address32
		 * Address32 non-zero == Address64 non-zero - Use Address64
		 * Address32 non-zero != Address64 non-zero - Warning, use Address64
		 *
		 * Override: if acpi_gbl_use32_bit_fadt_addresses is TRUE, and:
		 * Address32 non-zero, Address64 zero       - Copy/use Address32
		 * Address32 non-zero == Address64 non-zero - Copy/use Address32
		 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32
		 *
		 * Note: space_id is always I/O for 32-bit legacy address fields
		 */
		if (address32) {
			if (address64->address) {
				if (address64->address != (u64)address32) {

					/* Address mismatch */

					ACPI_BIOS_WARNING((AE_INFO,
							   "32/64X address mismatch in FADT/%s: "
							   "0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
							   name, address32,
							   ACPI_FORMAT_UINT64
							   (address64->address),
							   acpi_gbl_use32_bit_fadt_addresses
							   ? 32 : 64));
				}

				/*
				 * For each extended field, check for length mismatch
				 * between the legacy length field and the corresponding
				 * 64-bit X length field.
				 * Note: If the legacy length field is > 0xFF bits, ignore
				 * this check. (GPE registers can be larger than the
				 * 64-bit GAS structure can accomodate, 0xFF bits).
				 */
				if ((ACPI_MUL_8(length) <= ACPI_UINT8_MAX) &&
				    (address64->bit_width !=
				     ACPI_MUL_8(length))) {
					ACPI_BIOS_WARNING((AE_INFO,
							   "32/64X length mismatch in FADT/%s: %u/%u",
							   name,
							   ACPI_MUL_8(length),
							   address64->
							   bit_width));
				}
			}

			/*
			 * Hardware register access code always uses the 64-bit fields.
			 * So if the 64-bit field is zero or is to be overridden,
			 * initialize it with the 32-bit fields.
			 * Note that when the 32-bit address favor is specified, the
			 * 64-bit fields are always re-initialized so that
			 * access_size/bit_width/bit_offset fields can be correctly
			 * configured to the values to trigger a 32-bit compatible
			 * access mode in the hardware register access code.
			 */
			if (!address64->address
			    || acpi_gbl_use32_bit_fadt_addresses) {
				acpi_tb_init_generic_address(address64,
							     ACPI_ADR_SPACE_SYSTEM_IO,
							     length,
							     (u64)address32,
							     name, flags);
			}
		}

		if (fadt_info_table[i].flags & ACPI_FADT_REQUIRED) {
			/*
			 * Field is required (Pm1a_event, Pm1a_control).
			 * Both the address and length must be non-zero.
			 */
			if (!address64->address || !length) {
				ACPI_BIOS_ERROR((AE_INFO,
						 "Required FADT field %s has zero address and/or length: "
						 "0x%8.8X%8.8X/0x%X",
						 name,
						 ACPI_FORMAT_UINT64(address64->
								    address),
						 length));
			}
		} else if (fadt_info_table[i].flags & ACPI_FADT_SEPARATE_LENGTH) {
			/*
			 * Field is optional (Pm2_control, GPE0, GPE1) AND has its own
			 * length field. If present, both the address and length must
			 * be valid.
			 */
			if ((address64->address && !length) ||
			    (!address64->address && length)) {
				ACPI_BIOS_WARNING((AE_INFO,
						   "Optional FADT field %s has valid %s but zero %s: "
						   "0x%8.8X%8.8X/0x%X", name,
						   (length ? "Length" :
						    "Address"),
						   (length ? "Address" :
						    "Length"),
						   ACPI_FORMAT_UINT64
						   (address64->address),
						   length));
			}
		}
	}
}
Esempio n. 4
0
static void
AcpiTbConvertFadt (
    void)
{
    char                    *Name;
    ACPI_GENERIC_ADDRESS    *Address64;
    UINT32                  Address32;
    UINT8                   Length;
    UINT8                   Flags;
    UINT32                  i;


    /*
     * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which
     * should be zero are indeed zero. This will workaround BIOSs that
     * inadvertently place values in these fields.
     *
     * The ACPI 1.0 reserved fields that will be zeroed are the bytes located
     * at offset 45, 55, 95, and the word located at offset 109, 110.
     *
     * Note: The FADT revision value is unreliable. Only the length can be
     * trusted.
     */
    if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V2_SIZE)
    {
        AcpiGbl_FADT.PreferredProfile = 0;
        AcpiGbl_FADT.PstateControl = 0;
        AcpiGbl_FADT.CstControl = 0;
        AcpiGbl_FADT.BootFlags = 0;
    }

    /*
     * Now we can update the local FADT length to the length of the
     * current FADT version as defined by the ACPI specification.
     * Thus, we will have a common FADT internally.
     */
    AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT);

    /*
     * Expand the 32-bit FACS and DSDT addresses to 64-bit as necessary.
     * Later ACPICA code will always use the X 64-bit field.
     */
    AcpiGbl_FADT.XFacs = AcpiTbSelectAddress ("FACS",
        AcpiGbl_FADT.Facs, AcpiGbl_FADT.XFacs);

    AcpiGbl_FADT.XDsdt = AcpiTbSelectAddress ("DSDT",
        AcpiGbl_FADT.Dsdt, AcpiGbl_FADT.XDsdt);

    /* If Hardware Reduced flag is set, we are all done */

    if (AcpiGbl_ReducedHardware)
    {
        return;
    }

    /* Examine all of the 64-bit extended address fields (X fields) */

    for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++)
    {
        /*
         * Get the 32-bit and 64-bit addresses, as well as the register
         * length and register name.
         */
        Address32 = *ACPI_ADD_PTR (UINT32,
            &AcpiGbl_FADT, FadtInfoTable[i].Address32);

        Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS,
            &AcpiGbl_FADT, FadtInfoTable[i].Address64);

        Length = *ACPI_ADD_PTR (UINT8,
            &AcpiGbl_FADT, FadtInfoTable[i].Length);

        Name = FadtInfoTable[i].Name;
        Flags = FadtInfoTable[i].Flags;

        /*
         * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X"
         * generic address structures as necessary. Later code will always use
         * the 64-bit address structures.
         *
         * November 2013:
         * Now always use the 64-bit address if it is valid (non-zero), in
         * accordance with the ACPI specification which states that a 64-bit
         * address supersedes the 32-bit version. This behavior can be
         * overridden by the AcpiGbl_Use32BitFadtAddresses flag.
         *
         * During 64-bit address construction and verification,
         * these cases are handled:
         *
         * Address32 zero, Address64 [don't care]   - Use Address64
         *
         * Address32 non-zero, Address64 zero       - Copy/use Address32
         * Address32 non-zero == Address64 non-zero - Use Address64
         * Address32 non-zero != Address64 non-zero - Warning, use Address64
         *
         * Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and:
         * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32
         *
         * Note: SpaceId is always I/O for 32-bit legacy address fields
         */
        if (Address32)
        {
            if (!Address64->Address)
            {
                /* 64-bit address is zero, use 32-bit address */

                AcpiTbInitGenericAddress (Address64,
                    ACPI_ADR_SPACE_SYSTEM_IO,
                    *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT,
                        FadtInfoTable[i].Length),
                    (UINT64) Address32, Name, Flags);
            }
            else if (Address64->Address != (UINT64) Address32)
            {
                /* Address mismatch */

                ACPI_BIOS_WARNING ((AE_INFO,
                    "32/64X address mismatch in FADT/%s: "
                    "0x%8.8X/0x%8.8X%8.8X, using %u-bit address",
                    Name, Address32,
                    ACPI_FORMAT_UINT64 (Address64->Address),
                    AcpiGbl_Use32BitFadtAddresses ? 32 : 64));

                if (AcpiGbl_Use32BitFadtAddresses)
                {
                    /* 32-bit address override */

                    AcpiTbInitGenericAddress (Address64,
                        ACPI_ADR_SPACE_SYSTEM_IO,
                        *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT,
                            FadtInfoTable[i].Length),
                        (UINT64) Address32, Name, Flags);
                }
            }
        }

        /*
         * For each extended field, check for length mismatch between the
         * legacy length field and the corresponding 64-bit X length field.
         * Note: If the legacy length field is > 0xFF bits, ignore this
         * check. (GPE registers can be larger than the 64-bit GAS structure
         * can accomodate, 0xFF bits).
         */
        if (Address64->Address &&
           (ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) &&
           (Address64->BitWidth != ACPI_MUL_8 (Length)))
        {
            ACPI_BIOS_WARNING ((AE_INFO,
                "32/64X length mismatch in FADT/%s: %u/%u",
                Name, ACPI_MUL_8 (Length), Address64->BitWidth));
        }

        if (FadtInfoTable[i].Flags & ACPI_FADT_REQUIRED)
        {
            /*
             * Field is required (PM1aEvent, PM1aControl).
             * Both the address and length must be non-zero.
             */
            if (!Address64->Address || !Length)
            {
                ACPI_BIOS_ERROR ((AE_INFO,
                    "Required FADT field %s has zero address and/or length: "
                    "0x%8.8X%8.8X/0x%X",
                    Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
            }
        }
        else if (FadtInfoTable[i].Flags & ACPI_FADT_SEPARATE_LENGTH)
        {
            /*
             * Field is optional (PM2Control, GPE0, GPE1) AND has its own
             * length field. If present, both the address and length must
             * be valid.
             */
            if ((Address64->Address && !Length) ||
                (!Address64->Address && Length))
            {
                ACPI_BIOS_WARNING ((AE_INFO,
                    "Optional FADT field %s has zero address or length: "
                    "0x%8.8X%8.8X/0x%X",
                    Name, ACPI_FORMAT_UINT64 (Address64->Address), Length));
            }
        }
    }
}