/**
  * @brief  Initializes the temperature sensor and its related ADC.
  * @param  None
  * @retval the float value of temperature measured in Celsius.
  */
float temperature_MeasureValue(void)
{	
	/* Raw value of temperature sensor voltage converted from ADC1_IN16 */
	uint16_t v_refint;
	/* Raw value of VREFINT converted from ADC1_INT17 */
	uint16_t v_sensor;
	
	/* select ADC1_IN16 to sample sensor voltage value*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 1, ADC_SampleTime_28Cycles);
	/* start one ADC conversion */
	ADC_SoftwareStartConv(ADC1);
	/*  wait unitl ECO bit is set, sample finished */
	while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
	ADC_ClearFlag(ADC1, ADC_FLAG_EOC);
	/* Read the value from ADC_DR*/
	v_sensor = ADC_GetConversionValue(ADC1);

	/* select ADC1_IN16 to sample reference voltage value*/
	ADC_RegularChannelConfig(ADC1, ADC_Channel_17, 1, ADC_SampleTime_28Cycles);
	/* start one ADC conversion */
	ADC_SoftwareStartConv(ADC1);
	/*  wait unitl ECO bit is set, sample finished */
	while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
	ADC_ClearFlag(ADC1, ADC_FLAG_EOC);
	/* Read the value from ADC_DR*/
	v_refint = ADC_GetConversionValue(ADC1);

  /*
	 * measured_sensor_voltage = actual_reference_voltage * sampled_sensor_voltage / sampled_reference_voltage_value
	 * temperature = (measured_sensor_voltage - sensor_voltage_at_25) / AVG_SLOPE + 25
	 */
	return (VREFINT_VOLTAGE_V / v_refint * v_sensor - TEMPERATURE_V25) * 1000 / AVG_SLOPE + 25;
}
Esempio n. 2
0
/*---------------------------------------------------------------------------*/
int ubasic_get_adc(int ch)
{
	int var = 0xff;
	switch(ch){
		case 1:
			if (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET) {
				var = 0xff;
			} else {
				var = ADC_GetConversionValue(ADC1) & 0x00ff;
				ADC_SoftwareStartConv(ADC1);
			}
			break;
		case 2:
			if (ADC_GetFlagStatus(ADC2, ADC_FLAG_EOC) == RESET) {
				var = 0xff;
			} else {
				var = ADC_GetConversionValue(ADC2) & 0x00ff;
				ADC_SoftwareStartConv(ADC2);
			}
			break;
		case 3:
			if (ADC_GetFlagStatus(ADC3, ADC_FLAG_EOC) == RESET) {
				var = 0xff;
			} else {
				var = ADC_GetConversionValue(ADC3) & 0x00ff;
				ADC_SoftwareStartConv(ADC3);
			}
			break;
		default:
			var = 0xff;
			break;
	}
	return var;
}
void _ADC_Init(void) {
ADC_InitTypeDef ADC_InitStructure;
ADC_CommonInitTypeDef ADC_CommonInitStruct;
		
//Enabling ADC clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE);

//ADC common init configuration for Multi mode ADC
	ADC_CommonInitStruct.ADC_Mode = ADC_DualMode_RegSimult;
  ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; //ADC_DMAAccessMode_Disabled; ADC_DMAAccessMode_1; ADC_DMAAccessMode_2; ADC_DMAAccessMode_3 
	ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div2; //ADC_Prescaler_Div2; ADC_Prescaler_Div4; ADC_Prescaler_Div6; ADC_Prescaler_Div8
	ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; //ADC_TwoSamplingDelay_5Cycles - i tak dalej po 1 do 20 cykli	
	ADC_CommonInit(&ADC_CommonInitStruct);
	
//ADC1 configuration
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //Timer
	ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
	ADC_InitStructure.ADC_NbrOfConversion = 1;
	ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
	ADC_InitStructure.ADC_ScanConvMode = DISABLE; 
	ADC_Init(ADC1,&ADC_InitStructure);
	
//ADC2 configuration
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; //Timer
	ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
	ADC_InitStructure.ADC_NbrOfConversion = 1;
	ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
	ADC_InitStructure.ADC_ScanConvMode = DISABLE; 
	ADC_Init(ADC2,&ADC_InitStructure);

//Regular channels config
	ADC_RegularChannelConfig(ADC1,ADC_Channel_9,1,ADC_SampleTime_144Cycles);
	ADC_RegularChannelConfig(ADC2,ADC_Channel_2,1,ADC_SampleTime_144Cycles);

//DMA for Multi mode ADC
	ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);
	
//Activating continuous mode
	ADC_ContinuousModeCmd(ADC1, ENABLE);
	ADC_ContinuousModeCmd(ADC2, ENABLE);

//Enabling ADC	
	ADC_Cmd(ADC1, ENABLE);
	ADC_Cmd(ADC2, ENABLE);

	ADC_SoftwareStartConv(ADC1);
	ADC_SoftwareStartConv(ADC2);
}
Esempio n. 4
0
uint16_t adc_read(uint8_t channel){
  uint16_t vref;
  ADC_RegularChannelConfig(ADC1, ADC_Channel_Vrefint, 0, ADC_SampleTime_384Cycles);
  ADC_SoftwareStartConv(ADC1);
  while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
  vref=ADC_GetConversionValue(ADC1);

  ADC_RegularChannelConfig(ADC1, channel, 0, ADC_SampleTime_384Cycles);
  ADC_SoftwareStartConv(ADC1);
  while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
  return ADC_GetConversionValue(ADC1)*6840/vref; // magic number to get millivolts

}
Esempio n. 5
0
File: ADC.c Progetto: cmtm/microP
// fill this in
float getTemp_celcius() {
	ADC_SoftwareStartConv(ADC1);
	while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
	ADC_ClearFlag(ADC1, ADC_FLAG_EOC);

	return ((ADC1->DR * 3000.0/4096.0) - 760)/2.5 + 25;
}
Esempio n. 6
0
int main(void)
{
//init:
    DAC_DeInit();
	init_GPIOA();
    init_GPIOC();
    init_GPIOD();
    init_DMA1();
    init_DMA2();
    init_TIM2();
    init_TIM3();
    init_TIM4();
    init_TIM6();
    init_ADC3();
	init_DAC();
	init_filter(&ap_1);
	init_filter(&ap_2);
	init_filter(&ap_3);
	init_filter(&ap_4);
	ap_filter_coefs(&ap_1);
	ap_filter_coefs(&ap_2);
	ap_filter_coefs(&ap_3);
	ap_filter_coefs(&ap_4);
    ADC_SoftwareStartConv(ADC3);
    while (1)
    {
		counter++;
    }
}
Esempio n. 7
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
void main(void)
{
  /* CLK configuration -------------------------------------------*/
  CLK_Config(); 

  /* ADC configuration -------------------------------------------*/
  ADC_Config(); 

  /* DMA configuration -------------------------------------------*/
  DMA_Config(); 

  /* TIM1 configuration -------------------------------------------*/
  TIM1_Config(); 

  /* Enable ADC1 DMA requests*/
  ADC_DMACmd(ADC1, ENABLE);

  /* Enable TIM1 DMA requests*/
  TIM1_DMACmd(TIM1_DMASource_Update, ENABLE);

  /* Start ADC1 Conversion using Software trigger*/
  ADC_SoftwareStartConv(ADC1);

  while (1)
  {}
}
Esempio n. 8
0
char sampleADC(void)
{
    char res = 0x0;

    CLK_PeripheralClockConfig(CLK_Peripheral_ADC1, ENABLE);
    ADC_DeInit(ADC1);

    ADC_VrefintCmd(ENABLE);
    delay_10us(3);

    ADC_Cmd(ADC1, ENABLE);
    ADC_Init(ADC1, ADC_ConversionMode_Single,
             ADC_Resolution_6Bit, ADC_Prescaler_1);

    ADC_SamplingTimeConfig(ADC1, ADC_Group_SlowChannels, ADC_SamplingTime_9Cycles);
    ADC_ChannelCmd(ADC1, ADC_Channel_0, ENABLE);
    delay_10us(3);

    ADC_SoftwareStartConv(ADC1);
    while( ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == 0);
    res = (char)ADC_GetConversionValue(ADC1);

    ADC_VrefintCmd(DISABLE);
    ADC_DeInit(ADC1);

    /* disable SchmittTrigger for ADC_Channel_24, to save power */
    //ADC_SchmittTriggerConfig(ADC1, ADC_Channel_24, DISABLE);

    CLK_PeripheralClockConfig(CLK_Peripheral_ADC1, DISABLE);
    ADC_ChannelCmd(ADC1, ADC_Channel_0, DISABLE);

    return res;
}
Esempio n. 9
0
/**
  * @brief  Configures the ADC1 channel5.
  * @param  None
  * @retval None
  */
void ADC_Config(void)
{
  /* Enable The HSI (16Mhz) */
  RCC_HSICmd(ENABLE);

  /* Enable the GPIOF or GPIOA Clock */
  RCC_AHBPeriphClockCmd(IDD_MEASUREMENT_GPIO_CLK, ENABLE);
  /* Configure PF.11 (ADC Channel11) or PA.05 (ADC Channe5) in analog mode */
  GPIO_InitStructure.GPIO_Pin =  IDD_MEASUREMENT_PIN;
  GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AN;
  GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;
  GPIO_Init(IDD_MEASUREMENT_GPIO, &GPIO_InitStructure);

  /* Check that HSI oscillator is ready */
  while(RCC_GetFlagStatus(RCC_FLAG_HSIRDY) == RESET);

  /* ADC1 Configuration ------------------------------------------------------*/
  
  /* Enable ADC1 clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
  
#ifdef USE_STM32L152D_EVAL
  /* Select ADC Bank channel */
  ADC_BankSelection(ADC1, ADC_Bank_B);
#endif
  
  ADC_StructInit(&ADC_InitStructure);
  ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
  ADC_InitStructure.ADC_ScanConvMode = DISABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfConversion = 1;
  ADC_Init(ADC1, &ADC_InitStructure);

  /* ADC1 regular channel5 or channel1 configuration */
  ADC_RegularChannelConfig(ADC1, IDD_MEASUREMENT_ADC_CHANNEL, 1, ADC_SampleTime_192Cycles);

  /* Define delay between ADC1 conversions */
  ADC_DelaySelectionConfig(ADC1, ADC_DelayLength_Freeze);
  
  /* Enable ADC1 Power Down during Delay */
  ADC_PowerDownCmd(ADC1, ADC_PowerDown_Idle_Delay, ENABLE);
  
  /* Enable ADC1 */
  ADC_Cmd(ADC1, ENABLE);

  /* Wait until ADC1 ON status */
  while (ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS) == RESET)
  {
  }

  /* Start ADC1 Software Conversion */
  ADC_SoftwareStartConv(ADC1);

  /* Wait until ADC Channel 5 or 1 end of conversion */
  while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET)
  {
  }
}
Esempio n. 10
0
/*-----------------------------------------------------------
* @brief Function Name  : vhADC_initADC
* @brief Description    : Initializes ADC
*/
void vhADC_initADC(void){
	/* ADC Common initialization */
	ADC_CommonInitTypeDef ADC_CommonInitStructure;

	ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
	ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div6;		// 84MHz / prescaler(6) = 14MHz (max 30 OR 36... idk)
	ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
	ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
	ADC_CommonInit(&ADC_CommonInitStructure);

	ADC_InitTypeDef ADC_InitStructure;
	ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
	ADC_InitStructure.ADC_ScanConvMode = ENABLE;			// Enable, because we want to measure more than 1 channel
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
	ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_RisingFalling;
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	ADC_InitStructure.ADC_NbrOfConversion = 2;
	ADC_Init(ADC1, &ADC_InitStructure);

	/* ADCx regular channel configuration */
	ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_28Cycles);
	ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 2, ADC_SampleTime_28Cycles);

	/* Enable DMA request after last transfer (Single-ADC mode) */
	ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);

	/* Enable ADCx DMA */
	ADC_DMACmd(ADC1, ENABLE);

	/* Enable ADCx */
	ADC_Cmd(ADC1, ENABLE);

	ADC_SoftwareStartConv(ADC1);
}
Esempio n. 11
0
File: adc.c Progetto: tarasii/BMP085
void ADC_AcquireData()
{
  
	/* Enable ADC clock */
  //RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
 
  /* Enable ADC1 */
  //ADC_Cmd(ADC1, ENABLE);

  /* Wait until the ADC1 is ready */
  //while(ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS) == RESET); 

  /* Disable DMA mode for ADC1 */ 
  ADC_DMACmd(ADC1, DISABLE);
	
	ADC_DMA_init();
	
   /* Enable DMA mode for ADC1 */  
  ADC_DMACmd(ADC1, ENABLE);
  
//  /* Clear global flag for DMA transfert complete */
//  clearADCDMA_TransferComplete(); 
  
  /* Start ADC conversion */
  ADC_SoftwareStartConv(ADC1);
}
Esempio n. 12
0
void InternalTempSensor::measureTemp(bool calibrate)
{
    // ADC Conversion to read temperature sensor
    // Temperature (in °C) = ((Vsense – V25) / Avg_Slope) + 25
    // Vense = Voltage Reading From Temperature Sensor
    // V25 = Voltage at 25°C, for STM32F407 = 0.76V
    // Avg_Slope = 2.5mV/°C
    // This data can be found in the STM32F407VF Data Sheet


    taskENTER_CRITICAL();
    ADC_SoftwareStartConv(ADC1); //Start the conversion
    while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET) {} ; //Processing the conversion

    temp = ADC_GetConversionValue(ADC1); //Return the converted data
    temp *= 3300;
    temp /= 0xfff; //Reading in mV
    temp /= 1000.0; //Reading in Volts
    temp -= 0.760; // Subtract the reference voltage at 25°C
    temp /= .0025; // Divide by slope 2.5mV
    temp += 25.0; // Add the 25°C

    if (calibrate)
    {
        temp -= calibration;
    }

    taskEXIT_CRITICAL();
}
Esempio n. 13
0
/**
  * @brief  To return the supply measurmeent
  * @caller several functions
  * @param None
  * @retval ADC value
  */ 
uint16_t ADC_Supply(void)
{
  uint8_t i;
  uint16_t res;

    /* Initializes ADC */
  ADC_Icc_Init();
 
  ADC_TempSensorVrefintCmd(ENABLE);

  /* ADC1 regular channel 17 for VREF configuration */
  ADC_RegularChannelConfig(ADC1, ADC_Channel_17, 1, ADC_SampleTime_192Cycles);
  
  /* initialize result */
  res = 0;
  for(i=4; i>0; i--)
  {
  /* start ADC convertion by software */
    ADC_SoftwareStartConv(ADC1);

    /* wait until end-of-covertion */
    while( ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == 0 );
  /* read ADC convertion result */
    res += ADC_GetConversionValue(ADC1);
  }
	
  /* de-initialize ADC */
  ADC_TempSensorVrefintCmd(DISABLE);
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, DISABLE);
  
  return (res>>2);
}
Esempio n. 14
0
//ADC3 initianilize
void Init_ADC3(void)
{
    ADC_InitTypeDef       ADC_InitStructure;
    ADC_CommonInitTypeDef ADC_CommonInitStructure;
     
    /* Enable ADC1 clock ********************************************************/
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC3, ENABLE);
     
    /* ADC Common Init **********************************************************/
    ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
    ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
    ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
    ADC_CommonInit(&ADC_CommonInitStructure);
     
    /* ADC1 Init ****************************************************************/
    ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
    ADC_InitStructure.ADC_ScanConvMode = DISABLE;
    ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
    ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfConversion = 1;
    ADC_Init(ADC3, &ADC_InitStructure);
    ADC_EOCOnEachRegularChannelCmd(ADC3, ENABLE);
    ADC_Cmd(ADC3, ENABLE);
    ADC_SoftwareStartConv(ADC3);
}
Esempio n. 15
0
uint16_t AdcMcuRead( Adc_t *obj, uint8_t channel )
{
    uint16_t adcData = 0;

    /* Enable The HSI (16Mhz) */
    RCC_HSICmd( ENABLE );

    /* Check that HSI oscillator is ready */
    while( RCC_GetFlagStatus( RCC_FLAG_HSIRDY ) == RESET );

    RCC_APB2PeriphClockCmd( RCC_APB2Periph_ADC1, ENABLE );

    // Temperature or Vref measurement
    if( ( channel == ADC_Channel_16 ) || ( channel == ADC_Channel_17 ) )
    {
        // Yes, enable temperature sensor and internal reference voltage
        ADC_TempSensorVrefintCmd( ENABLE );
    }

    // Configure selected channel
    ADC_RegularChannelConfig( ADC1, channel, 1, ADC_SampleTime_192Cycles );

    /* Define delay between ADC1 conversions */
    ADC_DelaySelectionConfig( ADC1, ADC_DelayLength_Freeze );

    /* Enable ADC1 Power Down during Delay */
    ADC_PowerDownCmd( ADC1, ADC_PowerDown_Idle_Delay, ENABLE );

    /* Enable ADC1 */
    ADC_Cmd( ADC1, ENABLE );

    /* Wait until ADC1 ON status */
    while( ADC_GetFlagStatus( ADC1, ADC_FLAG_ADONS ) == RESET )
    {
    }

    /* Start ADC1 Software Conversion */
    ADC_SoftwareStartConv( ADC1 );

    /* Wait until ADC Channel 5 or 1 end of conversion */
    while( ADC_GetFlagStatus( ADC1, ADC_FLAG_EOC ) == RESET )
    {
    }

    adcData = ADC_GetConversionValue( ADC1 );

    ADC_Cmd( ADC1, DISABLE );
    
    if( ( channel == ADC_Channel_16 ) || ( channel == ADC_Channel_17 ) )
    {
        // De-initialize ADC
        ADC_TempSensorVrefintCmd( DISABLE );    
    }

    RCC_APB2PeriphClockCmd( RCC_APB2Periph_ADC1, DISABLE );

    RCC_HSICmd( DISABLE );
   
    return adcData;
}
Esempio n. 16
0
uint32_t adc_read_channel(int channel)
{
    int timeout = 10000;

    if (channel > (ADC_NUM_CHANNELS-1)) {
        return 0;
    }

    /* ADC regular channel config ADC/Channel/SEQ Rank/Sample time */
    ADC_RegularChannelConfig(ADCx, channel, 1, ADC_SampleTime_15Cycles);

    /* Start ADC single conversion */
    ADC_SoftwareStartConv(ADCx);

    /* Wait for conversion to be complete*/
    while(!ADC_GetFlagStatus(ADCx, ADC_FLAG_EOC) && --timeout >0) {
    }

    /* ADC conversion timed out */
    if (timeout == 0) {
        return 0;
    }

    /* Return converted data */
    return ADC_GetConversionValue(ADCx); 
}
Esempio n. 17
0
void Sensor_Configuration(void) {
	ADC_CommonInitTypeDef ADC_CommonInitStructure;
	GPIO_InitTypeDef GPIO_InitStructure;

	SensorGPIO_Configuration();
	DMA2_Configuration();

	GPIO_StructInit(&GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
									GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
	GPIO_Init(GPIOA, &GPIO_InitStructure);

	ADC_CommonInitStructure.ADC_Mode = ADC_DualMode_RegSimult;
	ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
	ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
	ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles;
	ADC_CommonInit(&ADC_CommonInitStructure);

	ADC1_Config();
	ADC2_Config();

	ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);

	ADC_Cmd(ADC1, ENABLE);
	ADC_Cmd(ADC2, ENABLE);

	ADC_DMACmd(ADC1, ENABLE);

	ADC_SoftwareStartConv(ADC1);
}
Esempio n. 18
0
void IRsensor1_Init(IRsensor * IRsensor){

  
  
  if(IRsensor!=NULL)
{ RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 , ENABLE);
         IRsensor->state1=1;
         Init_ADC_Common();  
         Init_DMA(); 
        
       RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
        
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 ;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
        GPIO_Init(GPIOC, &GPIO_InitStructure);

        ADC_Init(ADC1, &ADC_InitStructure);
        ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 1, ADC_SampleTime_3Cycles);
       
        ADC_DMACmd(ADC1, ENABLE);
        ADC_Cmd(ADC1, ENABLE);
        ADC_SoftwareStartConv(ADC1);

  }
  
}
Esempio n. 19
0
/**
  * @brief  Configure ADC and Analog watchdog
  * @param  None
  * @retval None
  */
static void ADC_Config(void)
{
    /* Enable ADC1 clock */
    CLK_PeripheralClockConfig(CLK_Peripheral_ADC1, ENABLE);

    /* Initialise and configure ADC1 */
    ADC_Init(ADC1, ADC_ConversionMode_Continuous, ADC_Resolution_12Bit, ADC_Prescaler_2);
    ADC_SamplingTimeConfig(ADC1, ADC_Group_SlowChannels, ADC_SamplingTime_384Cycles);

    /* Enable ADC1 */
    ADC_Cmd(ADC1, ENABLE);

    /* Enable ADC1 Channel 3 */
    ADC_ChannelCmd(ADC1, ADC_Channel_3, ENABLE);

    /* Calculate Threshold data value*/
    HighThresholdData = (uint16_t)(((uint32_t)HIGH_THRESHOLD_VOLTAGE * 1000) / (uint32_t)ADC_RATIO) ;
    LowThresholdData  = (uint16_t)(((uint32_t)LOW_THRESHOLD_VOLTAGE * 1000) / (uint32_t)ADC_RATIO) ;

    /* Configure Analog Watchdog selected channel and Thresholds */
    ADC_AnalogWatchdogConfig(ADC1, ADC_AnalogWatchdogSelection_Channel3,
                             HighThresholdData,
                             LowThresholdData);

    /* Enable Analog watchdog ADC1 Interrupt */
    ADC_ITConfig(ADC1, ADC_IT_AWD, ENABLE);

    /* Enable Interrupts */
    enableInterrupts();

    /* Start ADC1 Conversion using Software trigger*/
    ADC_SoftwareStartConv(ADC1);
}
Esempio n. 20
0
uint16_t adc_battery(void) {
  digitalWrite(ADC_BATTERY_ENABLE, HIGH);
  ADC_SoftwareStartConv(ADC1);
  while(ADC_GetSoftwareStartConvStatus(ADC1));
  return ADC_GetConversionValue(ADC1);
  digitalWrite(ADC_BATTERY_ENABLE, LOW);
}
Esempio n. 21
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       files (startup_stm32f40xx.s/startup_stm32f427x.s) before to branch to 
       application main. 
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f4xx.c file
     */
  
#ifdef USE_LCD
  /* LCD Display init  */
  Display_Init();
#endif /* USE_LCD */

  /* ADC1 Channel Vbat configuration */
  ADC_Config();
 
  /* Start ADC1 Software Conversion */ 
  ADC_SoftwareStartConv(ADC1);

  while (1)
  {
#ifdef USE_LCD
  /* Display ADC converted value on LCD */
    Display();
#endif /* USE_LCD */
  }
}
Esempio n. 22
0
uint16_t adc_lightsensor(void) {
  digitalWrite(ADC_LIGHTSENSOR_ENABLE, HIGH);
  ADC_SoftwareStartConv(ADC2);
  while(ADC_GetSoftwareStartConvStatus(ADC2));
  return ADC_GetConversionValue(ADC2);
  digitalWrite(ADC_LIGHTSENSOR_ENABLE, LOW);
}
Esempio n. 23
0
float readTemp(){
	float temperature;
	
	ADC_SoftwareStartConv(ADC1);				// Start the conversion
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); // Wait for conversion to finish
	temperature = (float) ADC_GetConversionValue(ADC1); 			// Get ADC reading

	// Print ADC reading
	setbuf(stdout, NULL);
        printf("%f, " , temperature);
	
	// TODO: Convert ADC (digital) reading back to voltage value
        // Use the formula on page 20 of the lecture slides
        // Here, v_min = 0, v_max = 3.3, and n depends on the resolution
        // of the ADC (refer to the adc intialization in initTempSensor() function)
	// Assign the voltage value back to the temperature variable
        convADC(&temperature,12);

	setbuf(stdout, NULL);
        printf("%f, " , temperature);
	
	// TODO: Convert the digital value to a temperature and assign back
	// to the temperature value.
	// The formula for this conversion is given in the Technical Reference Manual
        // (v_sense is the voltage value we calculated in the previous step 
	// and assigned back to temp)
	// Temperature (in °C) = {(V_SENSE - V_25) / Avg_Slope} + 25
	convVolt(&temperature);


	setbuf(stdout, NULL);
        printf("%f\n" , temperature);
	
	return temperature;
}
Esempio n. 24
0
void CIO::interrupt()
{
  uint8_t control  = MARK_NONE;
  uint16_t sample  = DC_OFFSET;
  uint16_t rawRSSI = 0U;

  m_txBuffer.get(sample, control);

  // Send the value to the DAC
  DAC_SetChannel1Data(DAC_Align_12b_R, sample);

  // Read value from ADC1 and ADC2
  if ((ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET)) {
    // shouldn't be still in reset at this point so null the sample value?
    sample  = 0U;
  } else {
    sample  = ADC_GetConversionValue(ADC1);
#if defined(SEND_RSSI_DATA)
    rawRSSI = ADC_GetConversionValue(ADC2);
#endif
  }

  // trigger next ADC1
  ADC_ClearFlag(ADC1, ADC_FLAG_EOC);
  ADC_SoftwareStartConv(ADC1);

  m_rxBuffer.put(sample, control);
  m_rssiBuffer.put(rawRSSI);

  m_watchdog++;
}
Esempio n. 25
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
  this is done through SystemInit() function which is called from startup
  file (startup_stm32f429_439xx.s) before to branch to application main.
  To reconfigure the default setting of SystemInit() function, refer to
  system_stm32f4xx.c file
  */
#ifdef USE_LCD 
  /* LCD Display init  */
  Display_Init();
#endif /* USE_LCD */
  
  /* ADC3 configuration *******************************************************/
  /*  - Enable peripheral clocks                                              */
  /*  - DMA2_Stream0 channel2 configuration                                   */
  /*  - Configure ADC Channel13 pin as analog input                           */
  /*  - Configure ADC3 Channel13                                              */
  ADC3_CH13_DMA_Config();
  
  /* Start ADC3 Software Conversion */ 
  ADC_SoftwareStartConv(ADC3);
  
  while (1)
  {
    /* convert the ADC value (from 0 to 0xFFF) to a voltage value (from 0V to 3.0V)*/
    uwADC3ConvertedVoltage = uhADC3ConvertedValue *3000/0xFFF;
    /* Display ADCs converted values on LCD */
#ifdef USE_LCD 
    Display();
#endif /* USE_LCD */
  }
}
Esempio n. 26
0
static void config_driver_adc_1(void)
{
    ADC_InitTypeDef ADC_InitStructure;

    ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
    ADC_InitStructure.ADC_ScanConvMode = DISABLE;
    ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
    ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
    ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfConversion = 1;
    ADC_Init(ADC1, &ADC_InitStructure);

    ADC_CommonInitTypeDef ADC_CommonInitStructure;

    ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div8;
    ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
    ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles;
    ADC_CommonInit(&ADC_CommonInitStructure);

    ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_480Cycles);
    ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
    ADC_DMACmd(ADC1, ENABLE);
    ADC_Cmd(ADC1, ENABLE);

    ADC_SoftwareStartConv(ADC1);
}
Esempio n. 27
0
float ad_readval() {
	ADC_SoftwareStartConv(ADC1);
	while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC));
	int ival = ADC_GetConversionValue(ADC1);
	float fval = (float) (ival - 2048) / 2048.0;
	return fval;
}
void acquireTemperatureData(void)
{
    /* Enable ADC clock */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);

    /* Enable DMA1 clock */
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);

    /* Enable ADC1 */
    ADC_Cmd(ADC1, ENABLE);

    /* Wait until the ADC1 is ready */
    while(ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS) == RESET);

    /* re-initialize DMA -- is it needed ?*/
    DMA_DeInit(DMA1_Channel1);
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);
    DMA_Cmd(DMA1_Channel1, ENABLE);

    /* Enable DMA channel 1 Transmit complete interrupt*/
    DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE);

    /* Disable DMA mode for ADC1 */
    ADC_DMACmd(ADC1, DISABLE);

    /* Enable DMA mode for ADC1 */
    ADC_DMACmd(ADC1, ENABLE);

    /* Clear global flag for DMA transfert complete */
    clearADCDMA_TransferComplete();

    /* Start ADC conversion */
    ADC_SoftwareStartConv(ADC1);
}
Esempio n. 29
0
uint16_t TM_ADC_Read(ADC_TypeDef* ADCx, uint8_t channel) {
	ADC_RegularChannelConfig(ADCx, channel, 1, ADC_SampleTime_15Cycles);
	ADC_SoftwareStartConv(ADCx);
	while (ADC_GetFlagStatus(ADCx, ADC_FLAG_EOC) == RESET);

	return ADC_GetConversionValue(ADCx);
}
Esempio n. 30
0
u16 readADC(ADC_TypeDef* ADCx, u8 channel, uint8_t sampleTime)
{
	ADC_RegularChannelConfig(ADCx, channel, 1, sampleTime);
	ADC_SoftwareStartConv(ADCx);
	while(ADC_GetFlagStatus(ADCx, ADC_FLAG_EOC) == RESET);
	return ADC_GetConversionValue(ADCx);
}