/** Initialize physical memory management. * */ void frame_init(void) { if (config.cpu_active == 1) { zones.count = 0; irq_spinlock_initialize(&zones.lock, "frame.zones.lock"); mutex_initialize(&mem_avail_mtx, MUTEX_ACTIVE); condvar_initialize(&mem_avail_cv); } /* Tell the architecture to create some memory */ frame_low_arch_init(); if (config.cpu_active == 1) { frame_mark_unavailable(ADDR2PFN(KA2PA(config.base)), SIZE2FRAMES(config.kernel_size)); frame_mark_unavailable(ADDR2PFN(KA2PA(config.stack_base)), SIZE2FRAMES(config.stack_size)); for (size_t i = 0; i < init.cnt; i++) frame_mark_unavailable(ADDR2PFN(init.tasks[i].paddr), SIZE2FRAMES(init.tasks[i].size)); if (ballocs.size) frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)), SIZE2FRAMES(ballocs.size)); /* * Blacklist first frame, as allocating NULL would * fail in some places */ frame_mark_unavailable(0, 1); } frame_high_arch_init(); }
static void frame_common_arch_init(bool low) { uintptr_t base; size_t size; machine_get_memory_extents(&base, &size); base = ALIGN_UP(base, FRAME_SIZE); size = ALIGN_DOWN(size, FRAME_SIZE); if (!frame_adjust_zone_bounds(low, &base, &size)) return; if (low) { zone_create(ADDR2PFN(base), SIZE2FRAMES(size), BOOT_PAGE_TABLE_START_FRAME + BOOT_PAGE_TABLE_SIZE_IN_FRAMES, ZONE_AVAILABLE | ZONE_LOWMEM); } else { pfn_t conf = zone_external_conf_alloc(SIZE2FRAMES(size)); if (conf != 0) zone_create(ADDR2PFN(base), SIZE2FRAMES(size), conf, ZONE_AVAILABLE | ZONE_HIGHMEM); } }
/** Allocate external configuration frames from low memory. */ pfn_t zone_external_conf_alloc(size_t count) { size_t frames = SIZE2FRAMES(zone_conf_size(count)); return ADDR2PFN((uintptr_t) frame_alloc(frames, FRAME_LOWMEM | FRAME_ATOMIC, 0)); }
static void frame_common_arch_init(bool low) { unsigned int i; for (i = 0; i < bootinfo->memmap_items; i++) { if (bootinfo->memmap[i].type != MEMMAP_FREE_MEM) continue; uintptr_t base = bootinfo->memmap[i].base; size_t size = bootinfo->memmap[i].size; uintptr_t abase = ALIGN_UP(base, FRAME_SIZE); if (size > FRAME_SIZE) size -= abase - base; if (!frame_adjust_zone_bounds(low, &abase, &size)) continue; if (size > MIN_ZONE_SIZE) { pfn_t pfn = ADDR2PFN(abase); size_t count = SIZE2FRAMES(size); if (low) { zone_create(pfn, count, max(MINCONF, pfn), ZONE_AVAILABLE | ZONE_LOWMEM); } else { pfn_t conf = zone_external_conf_alloc(count); if (conf != 0) zone_create(pfn, count, conf, ZONE_AVAILABLE | ZONE_HIGHMEM); } } } }
static slab_cache_t * slab_cache_alloc() { slab_t *slab; void *obj; u32_t *p; DBG("%s\n", __FUNCTION__); if (list_empty(&slab_cache_cache.partial_slabs)) { // spinlock_unlock(&cache->slablock); // slab = slab_create(); void *data; unsigned int i; data = (void*)(PA2KA(alloc_page())); if (!data) { return NULL; } slab = (slab_t*)((u32_t)data + PAGE_SIZE - sizeof(slab_t)); /* Fill in slab structures */ frame_set_parent(ADDR2PFN(KA2PA(data)), slab); slab->start = data; slab->available = slab_cache_cache.objects; slab->nextavail = (void*)data; slab->cache = &slab_cache_cache; for (i = 0,p = (u32_t*)slab->start;i < slab_cache_cache.objects; i++) { *p = (u32_t)p+slab_cache_cache.size; p = (u32_t*)((u32_t)p+slab_cache_cache.size); }; atomic_inc(&slab_cache_cache.allocated_slabs); // spinlock_lock(&cache->slablock); } else { slab = list_get_instance(slab_cache_cache.partial_slabs.next, slab_t, link); list_remove(&slab->link); } obj = slab->nextavail; slab->nextavail = *((void**)obj); slab->available--; if (!slab->available) list_prepend(&slab->link, &slab_cache_cache.full_slabs); else list_prepend(&slab->link, &slab_cache_cache.partial_slabs); // spinlock_unlock(&cache->slablock); return (slab_cache_t*)obj; }
void tlb_prepare_entry_lo(entry_lo_t *lo, bool g, bool v, bool d, bool c, uintptr_t addr) { lo->value = 0; lo->g = g; lo->v = v; lo->d = d; lo->c = c ? PAGE_CACHEABLE_EXC_WRITE : PAGE_UNCACHED; lo->pfn = ADDR2PFN(addr); }
void frame_low_arch_init(void) { if (config.cpu_active > 1) return; frame_common_arch_init(true); /* * Blacklist ROM regions. */ frame_mark_unavailable(ADDR2PFN(ROM_BASE), SIZE2FRAMES(ROM_SIZE)); frame_mark_unavailable(ADDR2PFN(KERNEL_RESERVED_AREA_BASE), SIZE2FRAMES(KERNEL_RESERVED_AREA_SIZE)); /* PA2KA will work only on low-memory. */ end_of_identity = PA2KA(config.physmem_end - FRAME_SIZE) + PAGE_SIZE; }
/** Create memory zones according to information stored in memmap. * * Walk the memory map and create frame zones according to it. */ static void frame_common_arch_init(bool low) { unsigned int i; for (i = 0; i < memmap.cnt; i++) { uintptr_t base; size_t size; /* * The memmap is created by HelenOS boot loader. * It already contains no holes. */ /* To be safe, make the available zone possibly smaller */ base = ALIGN_UP((uintptr_t) memmap.zones[i].start, FRAME_SIZE); size = ALIGN_DOWN(memmap.zones[i].size - (base - ((uintptr_t) memmap.zones[i].start)), FRAME_SIZE); if (!frame_adjust_zone_bounds(low, &base, &size)) continue; pfn_t confdata; pfn_t pfn = ADDR2PFN(base); size_t count = SIZE2FRAMES(size); if (low) { confdata = pfn; if (confdata == ADDR2PFN(KA2PA(PFN2ADDR(0)))) confdata = ADDR2PFN(KA2PA(PFN2ADDR(2))); zone_create(pfn, count, confdata, ZONE_AVAILABLE | ZONE_LOWMEM); } else { confdata = zone_external_conf_alloc(count); if (confdata != 0) zone_create(pfn, count, confdata, ZONE_AVAILABLE | ZONE_HIGHMEM); } } }
/** Free frames of physical memory. * * Find respective frame structures for supplied physical frames. * Decrement each frame reference count. If it drops to zero, mark * the frames as available. * * @param start Physical Address of the first frame to be freed. * @param count Number of frames to free. * @param flags Flags to control memory reservation. * */ void frame_free_generic(uintptr_t start, size_t count, frame_flags_t flags) { size_t freed = 0; irq_spinlock_lock(&zones.lock, true); for (size_t i = 0; i < count; i++) { /* * First, find host frame zone for addr. */ pfn_t pfn = ADDR2PFN(start) + i; size_t znum = find_zone(pfn, 1, 0); ASSERT(znum != (size_t) -1); freed += zone_frame_free(&zones.info[znum], pfn - zones.info[znum].base); } irq_spinlock_unlock(&zones.lock, true); /* * Signal that some memory has been freed. * Since the mem_avail_mtx is an active mutex, * we need to disable interruptsto prevent deadlock * with TLB shootdown. */ ipl_t ipl = interrupts_disable(); mutex_lock(&mem_avail_mtx); if (mem_avail_req > 0) mem_avail_req -= min(mem_avail_req, freed); if (mem_avail_req == 0) { mem_avail_gen++; condvar_broadcast(&mem_avail_cv); } mutex_unlock(&mem_avail_mtx); interrupts_restore(ipl); if (!(flags & FRAME_NO_RESERVE)) reserve_free(freed); }
void frame_low_arch_init(void) { if (config.cpu_active > 1) return; frame_common_arch_init(true); /* * On sparc64, physical memory can start on a non-zero address. * The generic frame_init() only marks PFN 0 as not free, so we * must mark the physically first frame not free explicitly * here, no matter what is its address. */ frame_mark_unavailable(ADDR2PFN(KA2PA(PFN2ADDR(0))), 1); /* PA2KA will work only on low-memory. */ end_of_identity = PA2KA(config.physmem_end - FRAME_SIZE) + PAGE_SIZE; }
/** * Allocate frames for slab space and initialize * */ static slab_t * slab_space_alloc(slab_cache_t *cache, int flags) { void *data; slab_t *slab; size_t fsize; unsigned int i; u32_t p; DBG("%s order %d\n", __FUNCTION__, cache->order); data = (void*)PA2KA(frame_alloc(1 << cache->order)); if (!data) { return NULL; } slab = (slab_t*)slab_create(); if (!slab) { frame_free(KA2PA(data)); return NULL; } /* Fill in slab structures */ for (i = 0; i < ((u32_t) 1 << cache->order); i++) frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab); slab->start = data; slab->available = cache->objects; slab->nextavail = (void*)data; slab->cache = cache; for (i = 0, p = (u32_t)slab->start; i < cache->objects; i++) { *(addr_t *)p = p+cache->size; p = p+cache->size; }; atomic_inc(&cache->allocated_slabs); return slab; }
/** Allocate frames of physical memory. * * @param count Number of continuous frames to allocate. * @param flags Flags for host zone selection and address processing. * @param constraint Indication of physical address bits that cannot be * set in the address of the first allocated frame. * @param pzone Preferred zone. * * @return Physical address of the allocated frame. * */ uintptr_t frame_alloc_generic(size_t count, frame_flags_t flags, uintptr_t constraint, size_t *pzone) { ASSERT(count > 0); size_t hint = pzone ? (*pzone) : 0; pfn_t frame_constraint = ADDR2PFN(constraint); /* * If not told otherwise, we must first reserve the memory. */ if (!(flags & FRAME_NO_RESERVE)) reserve_force_alloc(count); loop: irq_spinlock_lock(&zones.lock, true); /* * First, find suitable frame zone. */ size_t znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); /* * If no memory, reclaim some slab memory, * if it does not help, reclaim all. */ if ((znum == (size_t) -1) && (!(flags & FRAME_NO_RECLAIM))) { irq_spinlock_unlock(&zones.lock, true); size_t freed = slab_reclaim(0); irq_spinlock_lock(&zones.lock, true); if (freed > 0) znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); freed = slab_reclaim(SLAB_RECLAIM_ALL); irq_spinlock_lock(&zones.lock, true); if (freed > 0) znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); } } if (znum == (size_t) -1) { if (flags & FRAME_ATOMIC) { irq_spinlock_unlock(&zones.lock, true); if (!(flags & FRAME_NO_RESERVE)) reserve_free(count); return 0; } size_t avail = frame_total_free_get_internal(); irq_spinlock_unlock(&zones.lock, true); if (!THREAD) panic("Cannot wait for %zu frames to become available " "(%zu available).", count, avail); /* * Sleep until some frames are available again. */ #ifdef CONFIG_DEBUG log(LF_OTHER, LVL_DEBUG, "Thread %" PRIu64 " waiting for %zu frames " "%zu available.", THREAD->tid, count, avail); #endif /* * Since the mem_avail_mtx is an active mutex, we need to * disable interrupts to prevent deadlock with TLB shootdown. */ ipl_t ipl = interrupts_disable(); mutex_lock(&mem_avail_mtx); if (mem_avail_req > 0) mem_avail_req = min(mem_avail_req, count); else mem_avail_req = count; size_t gen = mem_avail_gen; while (gen == mem_avail_gen) condvar_wait(&mem_avail_cv, &mem_avail_mtx); mutex_unlock(&mem_avail_mtx); interrupts_restore(ipl); #ifdef CONFIG_DEBUG log(LF_OTHER, LVL_DEBUG, "Thread %" PRIu64 " woken up.", THREAD->tid); #endif goto loop; } pfn_t pfn = zone_frame_alloc(&zones.info[znum], count, frame_constraint) + zones.info[znum].base; irq_spinlock_unlock(&zones.lock, true); if (pzone) *pzone = znum; return PFN2ADDR(pfn); }
/** Create and add zone to system. * * @param start First frame number (absolute). * @param count Size of zone in frames. * @param confframe Where configuration frames are supposed to be. * Automatically checks that we will not disturb the * kernel and possibly init. If confframe is given * _outside_ this zone, it is expected, that the area is * already marked BUSY and big enough to contain * zone_conf_size() amount of data. If the confframe is * inside the area, the zone free frame information is * modified not to include it. * * @return Zone number or -1 on error. * */ size_t zone_create(pfn_t start, size_t count, pfn_t confframe, zone_flags_t flags) { irq_spinlock_lock(&zones.lock, true); if (flags & ZONE_AVAILABLE) { /* Create available zone */ /* * Theoretically we could have NULL here, practically make sure * nobody tries to do that. If some platform requires, remove * the assert */ ASSERT(confframe != ADDR2PFN((uintptr_t ) NULL)); /* Update the known end of physical memory. */ config.physmem_end = max(config.physmem_end, PFN2ADDR(start + count)); /* * If confframe is supposed to be inside our zone, then make sure * it does not span kernel & init */ size_t confcount = SIZE2FRAMES(zone_conf_size(count)); if ((confframe >= start) && (confframe < start + count)) { for (; confframe < start + count; confframe++) { uintptr_t addr = PFN2ADDR(confframe); if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.base), config.kernel_size)) continue; if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.stack_base), config.stack_size)) continue; bool overlap = false; for (size_t i = 0; i < init.cnt; i++) { if (overlaps(addr, PFN2ADDR(confcount), init.tasks[i].paddr, init.tasks[i].size)) { overlap = true; break; } } if (overlap) continue; break; } if (confframe >= start + count) panic("Cannot find configuration data for zone."); } size_t znum = zones_insert_zone(start, count, flags); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); return (size_t) -1; } void *confdata = (void *) PA2KA(PFN2ADDR(confframe)); zone_construct(&zones.info[znum], start, count, flags, confdata); /* If confdata in zone, mark as unavailable */ if ((confframe >= start) && (confframe < start + count)) { for (size_t i = confframe; i < confframe + confcount; i++) zone_mark_unavailable(&zones.info[znum], i - zones.info[znum].base); } irq_spinlock_unlock(&zones.lock, true); return znum; } /* Non-available zone */ size_t znum = zones_insert_zone(start, count, flags); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); return (size_t) -1; } zone_construct(&zones.info[znum], start, count, flags, NULL); irq_spinlock_unlock(&zones.lock, true); return znum; }
/** Merge zones z1 and z2. * * The merged zones must be 2 zones with no zone existing in between * (which means that z2 = z1 + 1). Both zones must be available zones * with the same flags. * * When you create a new zone, the frame allocator configuration does * not to be 2^order size. Once the allocator is running it is no longer * possible, merged configuration data occupies more space :-/ * */ bool zone_merge(size_t z1, size_t z2) { irq_spinlock_lock(&zones.lock, true); bool ret = true; /* * We can join only 2 zones with none existing inbetween, * the zones have to be available and with the same * set of flags */ if ((z1 >= zones.count) || (z2 >= zones.count) || (z2 - z1 != 1) || (zones.info[z1].flags != zones.info[z2].flags)) { ret = false; goto errout; } pfn_t cframes = SIZE2FRAMES(zone_conf_size( zones.info[z2].base - zones.info[z1].base + zones.info[z2].count)); /* Allocate merged zone data inside one of the zones */ pfn_t pfn; if (zone_can_alloc(&zones.info[z1], cframes, 0)) { pfn = zones.info[z1].base + zone_frame_alloc(&zones.info[z1], cframes, 0); } else if (zone_can_alloc(&zones.info[z2], cframes, 0)) { pfn = zones.info[z2].base + zone_frame_alloc(&zones.info[z2], cframes, 0); } else { ret = false; goto errout; } /* Preserve original data from z1 */ zone_t old_z1 = zones.info[z1]; /* Do zone merging */ zone_merge_internal(z1, z2, &old_z1, (void *) PA2KA(PFN2ADDR(pfn))); /* Subtract zone information from busy frames */ zones.info[z1].busy_count -= cframes; /* Free old zone information */ return_config_frames(z1, ADDR2PFN(KA2PA((uintptr_t) old_z1.frames)), old_z1.count); return_config_frames(z1, ADDR2PFN(KA2PA((uintptr_t) zones.info[z2].frames)), zones.info[z2].count); /* Move zones down */ for (size_t i = z2 + 1; i < zones.count; i++) zones.info[i - 1] = zones.info[i]; zones.count--; errout: irq_spinlock_unlock(&zones.lock, true); return ret; }
/** Map object to slab structure */ static slab_t * obj2slab(void *obj) { return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj))); }