Esempio n. 1
0
/* Fortran interface to C routine ARKodeGetRootInfo; see 
   farkroot.h for further information. */
void FARK_ROOTINFO(int *nrtfn, int *info, int *ier)
{
  *ier = ARKodeGetRootInfo(ARK_arkodemem, info);
  return; 
}
Esempio n. 2
0
void Arkode::ArkodeCore()
{

  _idid = ARKodeReInit(_arkodeMem, NULL, ARK_fCallback, _tCurrent, _ARK_y);
  _idid = ARKodeSetStopTime(_arkodeMem, _tEnd);
  _idid = ARKodeSetInitStep(_arkodeMem, 1e-12);
  if (_idid < 0)
    throw ModelicaSimulationError(SOLVER,"ARKode::ReInit");

  bool writeEventOutput = (_settings->getGlobalSettings()->getOutputPointType() == OPT_ALL);
  bool writeOutput = !(_settings->getGlobalSettings()->getOutputPointType() == OPT_NONE);

  while (_solverStatus & ISolver::CONTINUE && !_interrupt )
  {
    _ark_rt = ARKode(_arkodeMem, _tEnd, _ARK_y, &_tCurrent, ARK_ONE_STEP);

    _idid = ARKodeGetNumSteps(_arkodeMem, &_locStps);
    //if (_idid != CV_SUCCESS)
    //  throw ModelicaSimulationError(SOLVER,"CVodeGetNumSteps failed. The cvode mem pointer is NULL");

    _idid = ARKodeGetLastStep(_arkodeMem, &_h);
    //if (_idid != CV_SUCCESS)
    //  throw ModelicaSimulationError(SOLVER,"CVodeGetLastStep failed. The cvode mem pointer is NULL");

    //Check if there was at least one output-point within the last solver interval
    //  -> Write output if true
    if (writeOutput)
    {
        writeArkodeOutput(_tCurrent, _h, _locStps);
    }

    //set completed step to system and check if terminate was called
    if(_continuous_system->stepCompleted(_tCurrent))
        _solverStatus = DONE;

    // Perform state selection
    bool state_selection = stateSelection();
    if (state_selection)
      _continuous_system->getContinuousStates(_z);

    _zeroFound = false;

    // Check if step was successful
    /*
    if (check_flag(&_cv_rt, "CVode", 1))
    {
      _solverStatus = ISolver::SOLVERERROR;
      break;
    }*/

    // A root was found

    if ((_ark_rt == ARK_ROOT_RETURN) && !isInterrupted())
    {
      // CVode is setting _tCurrent to the time where the first event occurred
      double _abs = fabs(_tLastEvent - _tCurrent);
      _zeroFound = true;

      if ((_abs < 1e-3) && _event_n == 0)
      {
        _tLastEvent = _tCurrent;
        _event_n++;
      }
      else if ((_abs < 1e-3) && (_event_n >= 1 && _event_n < 500))
      {
        _event_n++;
      }
      else if ((_abs >= 1e-3))
      {
        //restart event counter
        _tLastEvent = _tCurrent;
        _event_n = 0;
      }
      else
        throw ModelicaSimulationError(EVENT_HANDLING,"Number of events exceeded  in time interval " + to_string(_abs) + " at time " + to_string(_tCurrent));

      // CVode has interpolated the states at time 'tCurrent'
      _time_system->setTime(_tCurrent);

      // To get steep steps in the result file, two value points (P1 and P2) must be added
      //
      // Y |   (P2) X...........
      //   |        :
      //   |        :
      //   |........X (P1)
      //   |---------------------------------->
      //   |        ^                         t
      //        _tCurrent

      // Write the values of (P1)
      if (writeEventOutput)
      {
        _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
        writeToFile(0, _tCurrent, _h);
      }

      _idid = ARKodeGetRootInfo(_arkodeMem, _zeroSign);

      for (int i = 0; i < _dimZeroFunc; i++)
        _events[i] = bool(_zeroSign[i]);

      if (_mixed_system->handleSystemEvents(_events))
      {
        // State variables were reinitialized, thus we have to give these values to the cvode-solver
        // Take care about the memory regions, _z is the same like _CV_y
        _continuous_system->getContinuousStates(_z);
      }
    }
    if ((_zeroFound || state_selection)&& !isInterrupted())
    {

      if (writeEventOutput)
      {
        _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
        writeToFile(0, _tCurrent, _h);
      }

      _idid = ARKodeReInit(_arkodeMem, NULL, ARK_fCallback, _tCurrent, _ARK_y);
      if (_idid < 0)
        throw ModelicaSimulationError(SOLVER,"CVode::ReInit()");

      // Der Eventzeitpunkt kann auf der Endzeit liegen (Time-Events). In diesem Fall wird der Solver beendet, da CVode sonst eine interne Warnung
      if (_tCurrent == _tEnd)
        _ark_rt = ARK_TSTOP_RETURN;
    }


    ++_outStps;
    _tLastSuccess = _tCurrent;

    if (_ark_rt == ARK_TSTOP_RETURN)
    {
      _time_system->setTime(_tEnd);
      //Solver has finished calculation - calculate the final values
      _continuous_system->setContinuousStates(NV_DATA_S(_ARK_y));
      _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
      if(writeOutput)
         writeToFile(0, _tEnd, _h);

      _accStps += _locStps;
      _solverStatus = DONE;
    }

    }
}
Esempio n. 3
0
/* Main Program */
int main()
{
  /* general problem parameters */
  realtype T0 = RCONST(0.0);     /* initial time */
  realtype T1 = RCONST(0.4);     /* first output time */
  realtype TMult = RCONST(10.0); /* output time multiplication factor */
  int Nt = 12;                   /* total number of output times */
  long int NEQ = 3;              /* number of dependent vars. */
  realtype reltol;
  int rootsfound[2];
  long int nst, nst_a, nfe, nfi, nsetups;
  long int nje, nfeLS, nni, ncfn, netf, nge;
  int flag, rtflag;              /* reusable error-checking flags */
  FILE *UFID;
  realtype t, tout;
  int iout;

  /* general problem variables */
  N_Vector y = NULL;             /* empty vector for storing solution */
  N_Vector atols = NULL;         /* empty vector for absolute tolerances */
  void *arkode_mem = NULL;       /* empty ARKode memory structure */

  /* set up the initial conditions */
  realtype u0 = RCONST(1.0);
  realtype v0 = RCONST(0.0);
  realtype w0 = RCONST(0.0);

  /* Initial problem output */
  printf("\nRobertson ODE test problem (with rootfinding):\n");
  printf("    initial conditions:  u0 = %g,  v0 = %g,  w0 = %g\n",u0,v0,w0);

  /* Initialize data structures */
  y = N_VNew_Serial(NEQ);        /* Create serial vector for solution */
  if (check_flag((void *) y, "N_VNew_Serial", 0)) return 1;
  atols = N_VNew_Serial(NEQ);    /* Create serial vector absolute tolerances */
  if (check_flag((void *) atols, "N_VNew_Serial", 0)) return 1;
  NV_Ith_S(y,0) = u0;            /* Set initial conditions into y */
  NV_Ith_S(y,1) = v0;
  NV_Ith_S(y,2) = w0;
  arkode_mem = ARKodeCreate();   /* Create the solver memory */
  if (check_flag((void *)arkode_mem, "ARKodeCreate", 0)) return 1;

  /* Call ARKodeInit to initialize the integrator memory and specify the
     hand-side side function in y'=f(t,y), the inital time T0, and
     the initial dependent variable vector y.  Note: since this
     problem is fully implicit, we set f_E to NULL and f_I to f. */
  flag = ARKodeInit(arkode_mem, NULL, f, T0, y);
  if (check_flag(&flag, "ARKodeInit", 1)) return 1;

  /* Set tolerances */
  reltol = RCONST(1.0e-4);
  NV_Ith_S(atols,0) = RCONST(1.0e-8);
  NV_Ith_S(atols,1) = RCONST(1.0e-11);
  NV_Ith_S(atols,2) = RCONST(1.0e-8);

  /* Set routines */
  flag = ARKodeSetMaxErrTestFails(arkode_mem, 20);        /* Increase max error test fails */
  if (check_flag(&flag, "ARKodeSetMaxErrTestFails", 1)) return 1;
  flag = ARKodeSetMaxNonlinIters(arkode_mem, 8);          /* Increase max nonlinear iterations  */
  if (check_flag(&flag, "ARKodeSetMaxNonlinIters", 1)) return 1;
  flag = ARKodeSetNonlinConvCoef(arkode_mem, 1.e-7);      /* Update nonlinear solver convergence coeff. */
  if (check_flag(&flag, "ARKodeSetNonlinConvCoef", 1)) return 1;
  flag = ARKodeSetMaxNumSteps(arkode_mem, 100000);        /* Increase max number of steps */
  if (check_flag(&flag, "ARKodeSetMaxNumSteps", 1)) return 1;
  flag = ARKodeSVtolerances(arkode_mem, reltol, atols);   /* Specify tolerances */
  if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1;

  /* Specify the root-finding function, having 2 equations */
  flag = ARKodeRootInit(arkode_mem, 2, g);
  if (check_flag(&flag, "ARKodeRootInit", 1)) return 1;

  /* Linear solver specification */
  flag = ARKDense(arkode_mem, NEQ);                /* Specify dense linear solver */
  if (check_flag(&flag, "ARKDense", 1)) return 1;
  flag = ARKDlsSetDenseJacFn(arkode_mem, Jac);     /* Set the Jacobian routine */
  if (check_flag(&flag, "ARKDlsSetDenseJacFn", 1)) return 1;

  /* Open output stream for results, output comment line */
  UFID = fopen("solution.txt","w");
  fprintf(UFID,"# t u v w\n");

  /* output initial condition to disk */
  fprintf(UFID," %.16e %.16e %.16e %.16e\n", 
	  T0, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));  

  /* Main time-stepping loop: calls ARKode to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  printf("        t             u             v             w\n");
  printf("   -----------------------------------------------------\n");
  printf("  %12.5e  %12.5e  %12.5e  %12.5e\n",
      t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
  tout = T1;
  iout = 0;
  while(1) {

    flag = ARKode(arkode_mem, tout, y, &t, ARK_NORMAL);     /* call integrator */
    if (check_flag(&flag, "ARKode", 1)) break;
    printf("  %12.5e  %12.5e  %12.5e  %12.5e\n",  t,        /* access/print solution */
        NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));
    fprintf(UFID," %.16e %.16e %.16e %.16e\n", 
	    t, NV_Ith_S(y,0), NV_Ith_S(y,1), NV_Ith_S(y,2));  
    if (flag == ARK_ROOT_RETURN) {                          /* check if a root was found */
      rtflag = ARKodeGetRootInfo(arkode_mem, rootsfound);
      if (check_flag(&rtflag, "ARKodeGetRootInfo", 1)) return 1;
      printf("      rootsfound[] = %3d %3d\n",
          rootsfound[0], rootsfound[1]);
    }
    if (flag >= 0) {                                        /* successful solve: update output time */
      iout++;
      tout *= TMult;
    } else {                                                /* unsuccessful solve: break */
      fprintf(stderr,"Solver failure, stopping integration\n");
      break;
    }
    if (iout == Nt) break;                                  /* stop after enough outputs */
  }
  printf("   -----------------------------------------------------\n");
  fclose(UFID);

  /* Print some final statistics */
  flag = ARKodeGetNumSteps(arkode_mem, &nst);
  check_flag(&flag, "ARKodeGetNumSteps", 1);
  flag = ARKodeGetNumStepAttempts(arkode_mem, &nst_a);
  check_flag(&flag, "ARKodeGetNumStepAttempts", 1);
  flag = ARKodeGetNumRhsEvals(arkode_mem, &nfe, &nfi);
  check_flag(&flag, "ARKodeGetNumRhsEvals", 1);
  flag = ARKodeGetNumLinSolvSetups(arkode_mem, &nsetups);
  check_flag(&flag, "ARKodeGetNumLinSolvSetups", 1);
  flag = ARKodeGetNumErrTestFails(arkode_mem, &netf);
  check_flag(&flag, "ARKodeGetNumErrTestFails", 1);
  flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni);
  check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1);
  flag = ARKodeGetNumNonlinSolvConvFails(arkode_mem, &ncfn);
  check_flag(&flag, "ARKodeGetNumNonlinSolvConvFails", 1);
  flag = ARKDlsGetNumJacEvals(arkode_mem, &nje);
  check_flag(&flag, "ARKDlsGetNumJacEvals", 1);
  flag = ARKDlsGetNumRhsEvals(arkode_mem, &nfeLS);
  check_flag(&flag, "ARKDlsGetNumRhsEvals", 1);
  flag = ARKodeGetNumGEvals(arkode_mem, &nge);
  check_flag(&flag, "ARKodeGetNumGEvals", 1);

  printf("\nFinal Solver Statistics:\n");
  printf("   Internal solver steps = %li (attempted = %li)\n", 
	 nst, nst_a);
  printf("   Total RHS evals:  Fe = %li,  Fi = %li\n", nfe, nfi);
  printf("   Total linear solver setups = %li\n", nsetups);
  printf("   Total RHS evals for setting up the linear system = %li\n", nfeLS);
  printf("   Total number of Jacobian evaluations = %li\n", nje);
  printf("   Total number of Newton iterations = %li\n", nni);
  printf("   Total root-function g evals = %li\n", nge);
  printf("   Total number of nonlinear solver convergence failures = %li\n", ncfn);
  printf("   Total number of error test failures = %li\n", netf);

  /* Clean up and return with successful completion */
  N_VDestroy_Serial(y);        /* Free y vector */
  ARKodeFree(&arkode_mem);     /* Free integrator memory */
  return 0;
}