Esempio n. 1
0
void RefMap::calc_second_ref_map(int order)
{
  assert(quad_2d != NULL);
  int i, j, np = quad_2d->get_num_points(order);

  AUTOLA_OR(double3x2, k, np);
  memset(k, 0, k.size);
  ref_map_pss.force_transform(sub_idx, ctm);
  for (i = 0; i < nc; i++)
  {
    double *dxy, *dxx, *dyy;
    ref_map_pss.set_active_shape(indices[i]);
    ref_map_pss.set_quad_order(order, H2D_FN_ALL);
    dxx = ref_map_pss.get_dxx_values();
    dyy = ref_map_pss.get_dyy_values();
    dxy = ref_map_pss.get_dxy_values();
    for (j = 0; j < np; j++)
    {
      k[j][0][0] += coeffs[i][0] * dxx[j];
      k[j][0][1] += coeffs[i][1] * dxx[j];
      k[j][1][0] += coeffs[i][0] * dxy[j];
      k[j][1][1] += coeffs[i][1] * dxy[j];
      k[j][2][0] += coeffs[i][0] * dyy[j];
      k[j][2][1] += coeffs[i][1] * dyy[j];
    }
  }

  double3x2* mm = cur_node->second_ref_map[order] = new double3x2[np];
  double2x2* m = get_inv_ref_map(order);
  for (j = 0; j < np; j++)
  {
    double a, b;
    // coefficients in second derivative with respect to xx
    a = sqr(m[j][0][0])*k[j][0][0] + 2*m[j][0][0]*m[j][0][1]*k[j][1][0] + sqr(m[j][0][1])*k[j][2][0];
    b = sqr(m[j][0][0])*k[j][0][1] + 2*m[j][0][0]*m[j][0][1]*k[j][1][1] + sqr(m[j][0][1])*k[j][2][1];
    mm[j][0][0] = -(a * m[j][0][0] + b * m[j][1][0]); // du/dx
    mm[j][0][1] = -(a * m[j][0][1] + b * m[j][1][1]); // du/dy

    // coefficients in second derivative with respect to xy
    a = m[j][0][0]*m[j][1][0]*k[j][0][0] + (m[j][0][1]*m[j][1][0] + m[j][0][0]*m[j][1][1])*k[j][1][0] + m[j][0][1]*m[j][1][1]*k[j][2][0];
    b = m[j][0][0]*m[j][1][0]*k[j][0][1] + (m[j][0][1]*m[j][1][0] + m[j][0][0]*m[j][1][1])*k[j][1][1] + m[j][0][1]*m[j][1][1]*k[j][2][1];
    mm[j][1][0] = -(a * m[j][0][0] + b * m[j][1][0]); // du/dx
    mm[j][1][1] = -(a * m[j][0][1] + b * m[j][1][1]); // du/dy

    // coefficients in second derivative with respect to yy
    a = sqr(m[j][1][0])*k[j][0][0] + 2*m[j][1][0]*m[j][1][1]*k[j][1][0] + sqr(m[j][1][1])*k[j][2][0];
    b = sqr(m[j][1][0])*k[j][0][1] + 2*m[j][1][0]*m[j][1][1]*k[j][1][1] + sqr(m[j][1][1])*k[j][2][1];
    mm[j][2][0] = -(a * m[j][0][0] + b * m[j][1][0]); // du/dx
    mm[j][2][1] = -(a * m[j][0][1] + b * m[j][1][1]); // du/dy
  }
}
Esempio n. 2
0
void RefMap::calc_inv_ref_map(int order)
{
  assert(quad_2d != NULL);
  int i, j, np = quad_2d->get_num_points(order);

  // construct jacobi matrices of the direct reference map for all integration points

  AUTOLA_OR(double2x2, m, np);
  memset(m, 0, m.size);
  ref_map_pss.force_transform(sub_idx, ctm);
  for (i = 0; i < nc; i++)
  {
    double *dx, *dy;
    ref_map_pss.set_active_shape(indices[i]);
    ref_map_pss.set_quad_order(order);
    ref_map_pss.get_dx_dy_values(dx, dy);
    for (j = 0; j < np; j++)
    {
      m[j][0][0] += coeffs[i][0] * dx[j];
      m[j][0][1] += coeffs[i][0] * dy[j];
      m[j][1][0] += coeffs[i][1] * dx[j];
      m[j][1][1] += coeffs[i][1] * dy[j];
    }
  }

  // calculate the jacobian and inverted matrix
  double trj = get_transform_jacobian();
  double2x2* irm = cur_node->inv_ref_map[order] = new double2x2[np];
  double* jac = cur_node->jacobian[order] = new double[np];
  for (i = 0; i < np; i++)
  {
    jac[i] = (m[i][0][0] * m[i][1][1] - m[i][0][1] * m[i][1][0]);
    double ij = 1.0 / jac[i];
    error_if(!finite(ij), "1/jac[%d] is infinity when calculating inv. ref. map for order %d (jac=%g)", i, order);
    assert_msg(ij == ij, "1/jac[%d] is NaN when calculating inv. ref. map for order %d (jac=%g)", i, order);

    // invert and transpose the matrix
    irm[i][0][0] =  m[i][1][1] * ij;
    irm[i][0][1] = -m[i][1][0] * ij;
    irm[i][1][0] = -m[i][0][1] * ij;
    irm[i][1][1] =  m[i][0][0] * ij;

    jac[i] *= trj;
  }
}
Esempio n. 3
0
static void calc_bubble_projection(Element* e, Nurbs** nurbs, int order, double2* proj)
{
  ref_map_pss.set_active_element(e);

  int i, j, k;
  int mo2 = quad2d.get_max_order();
  int np = quad2d.get_num_points(mo2);
  int qo = e->is_quad() ? make_quad_order(order, order) : order;
  int nb = ref_map_shapeset.get_num_bubbles(qo);

  AUTOLA_OR(double2, fn, np);
  memset(fn, 0, sizeof(double2) * np);

  double* rhside[2];
  double* old[2];
  for (i = 0; i < 2; i++) {
    rhside[i] = new double[nb];
    old[i] = new double[np];
    memset(rhside[i], 0, sizeof(double) * nb);
    memset(old[i], 0, sizeof(double) * np);
  }

  // compute known part of projection (vertex and edge part)
  old_projection(e, order, proj, old);

  // fn values of both components of nonpolynomial function
  double3* pt = quad2d.get_points(mo2);
  for (j = 0; j < np; j++)  // over all integration points
  {
    double2 a;
    a[0] = ctm.m[0] * pt[j][0] + ctm.t[0];
    a[1] = ctm.m[1] * pt[j][1] + ctm.t[1];
    calc_ref_map(e, nurbs, a[0], a[1], fn[j]);
  }

  double2* result = proj + e->nvert + e->nvert * (order - 1);
  for (k = 0; k < 2; k++)
  {
    for (i = 0; i < nb; i++) // loop over bubble basis functions
    {
      // bubble basis functions in all integration points
      double *bfn;
      int index_i = ref_map_shapeset.get_bubble_indices(qo)[i];
      ref_map_pss.set_active_shape(index_i);
      ref_map_pss.set_quad_order(mo2);
      bfn = ref_map_pss.get_fn_values();

      for (j = 0; j < np; j++) // over all integration points
        rhside[k][i] += pt[j][2] * (bfn[j] * (fn[j][k] - old[k][j]));
    }

    // solve
    if (e->nvert == 3)
      cholsl(bubble_proj_matrix_tri, nb, bubble_tri_p, rhside[k], rhside[k]);
    else
      cholsl(bubble_proj_matrix_quad, nb, bubble_quad_p, rhside[k], rhside[k]);

    for (i = 0; i < nb; i++)
      result[i][k] = rhside[k][i];
  }

  for (i = 0; i < 2; i++) {
    delete [] rhside[i];
    delete [] old[i];
  }
}