Esempio n. 1
0
void
trim_map_write_done(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	trim_map_t *tm = vd->vdev_trimmap;

	/*
	 * Don't check for vdev_notrim, since the write could have
	 * started before vdev_notrim was set.
	 */
	if (!zfs_trim_enabled || tm == NULL)
		return;

	mutex_enter(&tm->tm_lock);
	/*
	 * Don't fail if the write isn't in the tree, since the write
	 * could have started after vdev_notrim was set.
	 */
	if (zio->io_trim_node.avl_child[0] ||
	    zio->io_trim_node.avl_child[1] ||
	    AVL_XPARENT(&zio->io_trim_node) ||
	    tm->tm_inflight_writes.avl_root == &zio->io_trim_node)
		avl_remove(&tm->tm_inflight_writes, zio);
	mutex_exit(&tm->tm_lock);
}
Esempio n. 2
0
/*
 * Walk from one node to the previous valued node (ie. an infix walk
 * towards the left). At any given node we do one of 2 things:
 *
 * - If there is a left child, go to it, then to it's rightmost descendant.
 *
 * - otherwise we return thru parent nodes until we've come from a right child.
 *
 * Return Value:
 * NULL - if at the end of the nodes
 * otherwise next node
 */
void *
avl_walk(avl_tree_t *tree, void	*oldnode, int left)
{
	size_t off = tree->avl_offset;
	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
	int right = 1 - left;
	int was_child;


	/*
	 * nowhere to walk to if tree is empty
	 */
	if (node == NULL)
		return (NULL);

	/*
	 * Visit the previous valued node. There are two possibilities:
	 *
	 * If this node has a left child, go down one left, then all
	 * the way right.
	 */
	if (node->avl_child[left] != NULL) {
		for (node = node->avl_child[left];
		    node->avl_child[right] != NULL;
		    node = node->avl_child[right])
			;
	/*
	 * Otherwise, return thru left children as far as we can.
	 */
	} else {
		for (;;) {
			was_child = AVL_XCHILD(node);
			node = AVL_XPARENT(node);
			if (node == NULL)
				return (NULL);
			if (was_child == right)
				break;
		}
	}

	return (AVL_NODE2DATA(node, off));
}
Esempio n. 3
0
/*
 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
 *
 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
 * searches out to the leaf positions.  The avl_index_t indicates the node
 * which will be the parent of the new node.
 *
 * After the node is inserted, a single rotation further up the tree may
 * be necessary to maintain an acceptable AVL balance.
 */
void
avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
{
	avl_node_t *node;
	avl_node_t *parent = AVL_INDEX2NODE(where);
	int old_balance;
	int new_balance;
	int which_child = AVL_INDEX2CHILD(where);
	size_t off = tree->avl_offset;

	if (tree == NULL) {
		filebench_log(LOG_ERROR, "No Tree Supplied");
		return;
	}
#if defined(_LP64) || (__WORDSIZE == 64)
	if (((uintptr_t)new_data & 0x7) != 0) {
		filebench_log(LOG_ERROR, "Missaligned pointer to new data");
		return;
	}
#endif

	node = AVL_DATA2NODE(new_data, off);

	/*
	 * First, add the node to the tree at the indicated position.
	 */
	++tree->avl_numnodes;

	node->avl_child[0] = NULL;
	node->avl_child[1] = NULL;

	AVL_SETCHILD(node, which_child);
	AVL_SETBALANCE(node, 0);
	AVL_SETPARENT(node, parent);
	if (parent != NULL) {
		if (parent->avl_child[which_child] != NULL)
			filebench_log(LOG_DEBUG_IMPL,
			    "Overwriting existing pointer");

		parent->avl_child[which_child] = node;
	} else {
		if (tree->avl_root != NULL)
			filebench_log(LOG_DEBUG_IMPL,
			    "Overwriting existing pointer");

		tree->avl_root = node;
	}
	/*
	 * Now, back up the tree modifying the balance of all nodes above the
	 * insertion point. If we get to a highly unbalanced ancestor, we
	 * need to do a rotation.  If we back out of the tree we are done.
	 * If we brought any subtree into perfect balance (0), we are also done.
	 */
	for (;;) {
		node = parent;
		if (node == NULL)
			return;

		/*
		 * Compute the new balance
		 */
		old_balance = AVL_XBALANCE(node);
		new_balance = old_balance + avl_child2balance[which_child];

		/*
		 * If we introduced equal balance, then we are done immediately
		 */
		if (new_balance == 0) {
			AVL_SETBALANCE(node, 0);
			return;
		}

		/*
		 * If both old and new are not zero we went
		 * from -1 to -2 balance, do a rotation.
		 */
		if (old_balance != 0)
			break;

		AVL_SETBALANCE(node, new_balance);
		parent = AVL_XPARENT(node);
		which_child = AVL_XCHILD(node);
	}

	/*
	 * perform a rotation to fix the tree and return
	 */
	(void) avl_rotation(tree, node, new_balance);
}
Esempio n. 4
0
/*
 * Perform a rotation to restore balance at the subtree given by depth.
 *
 * This routine is used by both insertion and deletion. The return value
 * indicates:
 *	 0 : subtree did not change height
 *	!0 : subtree was reduced in height
 *
 * The code is written as if handling left rotations, right rotations are
 * symmetric and handled by swapping values of variables right/left[_heavy]
 *
 * On input balance is the "new" balance at "node". This value is either
 * -2 or +2.
 */
static int
avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
{
	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
	int right = 1 - left;
	int left_heavy = balance >> 1;
	int right_heavy = -left_heavy;
	avl_node_t *parent = AVL_XPARENT(node);
	avl_node_t *child = node->avl_child[left];
	avl_node_t *cright;
	avl_node_t *gchild;
	avl_node_t *gright;
	avl_node_t *gleft;
	int which_child = AVL_XCHILD(node);
	int child_bal = AVL_XBALANCE(child);

	/* BEGIN CSTYLED */
	/*
	 * case 1 : node is overly left heavy, the left child is balanced or
	 * also left heavy. This requires the following rotation.
	 *
	 *                   (node bal:-2)
	 *                    /           \
	 *                   /             \
	 *              (child bal:0 or -1)
	 *              /    \
	 *             /      \
	 *                     cright
	 *
	 * becomes:
	 *
	 *              (child bal:1 or 0)
	 *              /        \
	 *             /          \
	 *                        (node bal:-1 or 0)
	 *                         /     \
	 *                        /       \
	 *                     cright
	 *
	 * we detect this situation by noting that child's balance is not
	 * right_heavy.
	 */
	/* END CSTYLED */
	if (child_bal != right_heavy) {

		/*
		 * compute new balance of nodes
		 *
		 * If child used to be left heavy (now balanced) we reduced
		 * the height of this sub-tree -- used in "return...;" below
		 */
		child_bal += right_heavy; /* adjust towards right */

		/*
		 * move "cright" to be node's left child
		 */
		cright = child->avl_child[right];
		node->avl_child[left] = cright;
		if (cright != NULL) {
			AVL_SETPARENT(cright, node);
			AVL_SETCHILD(cright, left);
		}

		/*
		 * move node to be child's right child
		 */
		child->avl_child[right] = node;
		AVL_SETBALANCE(node, -child_bal);
		AVL_SETCHILD(node, right);
		AVL_SETPARENT(node, child);

		/*
		 * update the pointer into this subtree
		 */
		AVL_SETBALANCE(child, child_bal);
		AVL_SETCHILD(child, which_child);
		AVL_SETPARENT(child, parent);
		if (parent != NULL)
			parent->avl_child[which_child] = child;
		else
			tree->avl_root = child;

		return (child_bal == 0);
	}

	/* BEGIN CSTYLED */
	/*
	 * case 2 : When node is left heavy, but child is right heavy we use
	 * a different rotation.
	 *
	 *                   (node b:-2)
	 *                    /   \
	 *                   /     \
	 *                  /       \
	 *             (child b:+1)
	 *              /     \
	 *             /       \
	 *                   (gchild b: != 0)
	 *                     /  \
	 *                    /    \
	 *                 gleft   gright
	 *
	 * becomes:
	 *
	 *              (gchild b:0)
	 *              /       \
	 *             /         \
	 *            /           \
	 *        (child b:?)   (node b:?)
	 *         /  \          /   \
	 *        /    \        /     \
	 *            gleft   gright
	 *
	 * computing the new balances is more complicated. As an example:
	 *	 if gchild was right_heavy, then child is now left heavy
	 *		else it is balanced
	 */
	/* END CSTYLED */
	gchild = child->avl_child[right];
	gleft = gchild->avl_child[left];
	gright = gchild->avl_child[right];

	/*
	 * move gright to left child of node and
	 *
	 * move gleft to right child of node
	 */
	node->avl_child[left] = gright;
	if (gright != NULL) {
		AVL_SETPARENT(gright, node);
		AVL_SETCHILD(gright, left);
	}

	child->avl_child[right] = gleft;
	if (gleft != NULL) {
		AVL_SETPARENT(gleft, child);
		AVL_SETCHILD(gleft, right);
	}

	/*
	 * move child to left child of gchild and
	 *
	 * move node to right child of gchild and
	 *
	 * fixup parent of all this to point to gchild
	 */
	balance = AVL_XBALANCE(gchild);
	gchild->avl_child[left] = child;
	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
	AVL_SETPARENT(child, gchild);
	AVL_SETCHILD(child, left);

	gchild->avl_child[right] = node;
	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
	AVL_SETPARENT(node, gchild);
	AVL_SETCHILD(node, right);

	AVL_SETBALANCE(gchild, 0);
	AVL_SETPARENT(gchild, parent);
	AVL_SETCHILD(gchild, which_child);
	if (parent != NULL)
		parent->avl_child[which_child] = gchild;
	else
		tree->avl_root = gchild;

	return (1);	/* the new tree is always shorter */
}
Esempio n. 5
0
/*
 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
 *
 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
 * searches out to the leaf positions.  The avl_index_t indicates the node
 * which will be the parent of the new node.
 *
 * After the node is inserted, a single rotation further up the tree may
 * be necessary to maintain an acceptable AVL balance.
 */
void
avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
{
	avl_node_t *node;
	avl_node_t *parent = AVL_INDEX2NODE(where);
	int old_balance;
	int new_balance;
	int which_child = AVL_INDEX2CHILD(where);
	size_t off = tree->avl_offset;

	node = AVL_DATA2NODE(new_data, off);

	/*
	 * First, add the node to the tree at the indicated position.
	 */
	++tree->avl_numnodes;

	node->avl_child[0] = NULL;
	node->avl_child[1] = NULL;

	AVL_SETCHILD(node, which_child);
	AVL_SETBALANCE(node, 0);
	AVL_SETPARENT(node, parent);
	if (parent != NULL) {
		parent->avl_child[which_child] = node;
	} else {
		tree->avl_root = node;
	}
	/*
	 * Now, back up the tree modifying the balance of all nodes above the
	 * insertion point. If we get to a highly unbalanced ancestor, we
	 * need to do a rotation.  If we back out of the tree we are done.
	 * If we brought any subtree into perfect balance (0), we are also done.
	 */
	for (;;) {
		node = parent;
		if (node == NULL)
			return;

		/*
		 * Compute the new balance
		 */
		old_balance = AVL_XBALANCE(node);
		new_balance = old_balance + avl_child2balance[which_child];

		/*
		 * If we introduced equal balance, then we are done immediately
		 */
		if (new_balance == 0) {
			AVL_SETBALANCE(node, 0);
			return;
		}

		/*
		 * If both old and new are not zero we went
		 * from -1 to -2 balance, do a rotation.
		 */
		if (old_balance != 0)
			break;

		AVL_SETBALANCE(node, new_balance);
		parent = AVL_XPARENT(node);
		which_child = AVL_XCHILD(node);
	}

	/*
	 * perform a rotation to fix the tree and return
	 */
	(void) avl_rotation(tree, node, new_balance);
}
Esempio n. 6
0
/*
 * At each step, visit (callback) the current node, then move to the next
 * in the AVL tree.  Uses the same algorithm as avl_walk().
 */
int
avl_walk_step(mdb_walk_state_t *wsp)
{
	struct aw_info *aw;
	size_t offset;
	size_t size;
	uintptr_t addr;
	avl_node_t *node;
	int status;
	int was_child;

	/*
	 * don't walk past the end of the tree!
	 */
	addr = wsp->walk_addr;
	if (addr == NULL)
		return (WALK_DONE);

	aw = (struct aw_info *)wsp->walk_data;

	if (aw->aw_end != NULL && wsp->walk_addr == aw->aw_end)
		return (WALK_DONE);

	size = aw->aw_tree.avl_size;
	offset = aw->aw_tree.avl_offset;
	node = (avl_node_t *)((uintptr_t)aw->aw_buff + offset);

	/*
	 * must read the current node for the call back to use
	 */
	if (mdb_vread(aw->aw_buff, size, addr) == -1) {
		mdb_warn("failed to read %s at %#lx", aw->aw_elem_name, addr);
		return (WALK_ERR);
	}

	if (aw->aw_elem_check != NULL) {
		int rc = aw->aw_elem_check(aw->aw_buff, addr,
		    aw->aw_elem_check_arg);
		if (rc == -1)
			return (WALK_ERR);
		else if (rc == 1)
			return (WALK_DONE);
	}

	/*
	 * do the call back
	 */
	status = wsp->walk_callback(addr, aw->aw_buff, wsp->walk_cbdata);
	if (status != WALK_NEXT)
		return (status);

	/*
	 * move to the next node....
	 * note we read in new nodes, so the pointer to the buffer is fixed
	 */

	/*
	 * if the node has a right child then go to it and then all the way
	 * thru as many left children as possible
	 */
	addr = (uintptr_t)node->avl_child[1];
	if (addr != NULL) {
		addr = avl_leftmostchild(addr, aw->aw_buff, offset, size,
		    aw->aw_elem_name);
		if (addr == (uintptr_t)-1L)
			return (WALK_ERR);

	/*
	 * othewise return to parent nodes, stopping if we ever return from
	 * a left child
	 */
	} else {
		for (;;) {
			was_child = AVL_XCHILD(node);
			addr = (uintptr_t)AVL_XPARENT(node);
			if (addr == NULL)
				break;
			addr -= offset;
			if (was_child == 0) /* stop on return from left child */
				break;
			if (mdb_vread(aw->aw_buff, size, addr) == -1) {
				mdb_warn("failed to read %s at %#lx",
				    aw->aw_elem_name, addr);
				return (WALK_ERR);
			}
		}
	}

	wsp->walk_addr = addr;
	return (WALK_NEXT);
}