Esempio n. 1
0
static void avr_timer_reset(avr_io_t * port)
{
	avr_timer_t * p = (avr_timer_t *)port;
	avr_cycle_timer_cancel(p->io.avr, avr_timer_tov, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compa, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compb, p);
	avr_cycle_timer_cancel(p->io.avr, avr_timer_compc, p);

	// check to see if the comparators have a pin output. If they do,
	// (try) to get the ioport corresponding IRQ and connect them
	// they will automagically be triggered when the comparator raises
	// it's own IRQ
	for (int compi = 0; compi < AVR_TIMER_COMP_COUNT; compi++) {
		p->comp[compi].comp_cycles = 0;

		avr_ioport_getirq_t req = {
			.bit = p->comp[compi].com_pin
		};
		if (avr_ioctl(port->avr, AVR_IOCTL_IOPORT_GETIRQ_REGBIT, &req) > 0) {
			// cool, got an IRQ
//			printf("%s-%c COMP%c Connecting PIN IRQ %d\n", __FUNCTION__, p->name, 'A'+compi, req.irq[0]->irq);
			avr_connect_irq(&port->irq[TIMER_IRQ_OUT_COMP + compi], req.irq[0]);
		}
	}
	avr_ioport_getirq_t req = {
		.bit = p->icp
	};
	if (avr_ioctl(port->avr, AVR_IOCTL_IOPORT_GETIRQ_REGBIT, &req) > 0) {
		// cool, got an IRQ for the input capture pin
//		printf("%s-%c ICP Connecting PIN IRQ %d\n", __FUNCTION__, p->name, req.irq[0]->irq);
		avr_irq_register_notify(req.irq[0], avr_timer_irq_icp, p);
	}

}

static const char * irq_names[TIMER_IRQ_COUNT] = {
	[TIMER_IRQ_OUT_PWM0] = "8>pwm0",
	[TIMER_IRQ_OUT_PWM1] = "8>pwm1",
	[TIMER_IRQ_OUT_COMP + 0] = ">compa",
	[TIMER_IRQ_OUT_COMP + 1] = ">compb",
	[TIMER_IRQ_OUT_COMP + 2] = ">compc",
};

static	avr_io_t	_io = {
	.kind = "timer",
	.reset = avr_timer_reset,
	.irq_names = irq_names,
};

void avr_timer_init(avr_t * avr, avr_timer_t * p)
{
	p->io = _io;

	avr_register_io(avr, &p->io);
	avr_register_vector(avr, &p->overflow);
	avr_register_vector(avr, &p->icr);

	// allocate this module's IRQ
	avr_io_setirqs(&p->io, AVR_IOCTL_TIMER_GETIRQ(p->name), TIMER_IRQ_COUNT, NULL);

	// marking IRQs as "filtered" means they don't propagate if the
	// new value raised is the same as the last one.. in the case of the
	// pwm value it makes sense not to bother.
	p->io.irq[TIMER_IRQ_OUT_PWM0].flags |= IRQ_FLAG_FILTERED;
	p->io.irq[TIMER_IRQ_OUT_PWM1].flags |= IRQ_FLAG_FILTERED;

	if (p->wgm[0].reg) // these are not present on older AVRs
		avr_register_io_write(avr, p->wgm[0].reg, avr_timer_write, p);
	avr_register_io_write(avr, p->cs[0].reg, avr_timer_write, p);

	// this assumes all the "pending" interrupt bits are in the same
	// register. Might not be true on all devices ?
	avr_register_io_write(avr, p->overflow.raised.reg, avr_timer_write_pending, p);

	/*
	 * Even if the timer is 16 bits, we don't care to have watches on the
	 * high bytes because the datasheet says that the low address is always
	 * the trigger.
	 */
	for (int compi = 0; compi < AVR_TIMER_COMP_COUNT; compi++) {
		avr_register_vector(avr, &p->comp[compi].interrupt);

		if (p->comp[compi].r_ocr) // not all timers have all comparators
			avr_register_io_write(avr, p->comp[compi].r_ocr, avr_timer_write_ocr, p);
	}
	avr_register_io_write(avr, p->r_tcnt, avr_timer_tcnt_write, p);
	avr_register_io_read(avr, p->r_tcnt, avr_timer_tcnt_read, p);
}
Esempio n. 2
0
int main(int argc, char *argv[])
{
	elf_firmware_t f;
	const char * fname =  "atmega168_timer_64led.axf";
	//char path[256];

//	sprintf(path, "%s/%s", dirname(argv[0]), fname);
	//printf("Firmware pathname is %s\n", path);
	elf_read_firmware(fname, &f);

	printf("firmware %s f=%d mmcu=%s\n", fname, (int)f.frequency, f.mmcu);

	avr = avr_make_mcu_by_name(f.mmcu);
	if (!avr) {
		fprintf(stderr, "%s: AVR '%s' now known\n", argv[0], f.mmcu);
		exit(1);
	}
	avr_init(avr);
	avr_load_firmware(avr, &f);

	//
	// initialize our 'peripherals'
	//
	hc595_init(avr, &shifter);
	
	button_init(avr, &button[B_START], "button.start");
	avr_connect_irq(
		button[B_START].irq + IRQ_BUTTON_OUT,
		avr_io_getirq(avr, AVR_IOCTL_IOPORT_GETIRQ('C'), 0));
	button_init(avr, &button[B_STOP], "button.stop");
	avr_connect_irq(
		button[B_STOP].irq + IRQ_BUTTON_OUT,
		avr_io_getirq(avr, AVR_IOCTL_IOPORT_GETIRQ('B'), 1));
	button_init(avr, &button[B_RESET], "button.reset");
	avr_connect_irq(
		button[B_RESET].irq + IRQ_BUTTON_OUT,
		avr_io_getirq(avr, AVR_IOCTL_IOPORT_GETIRQ('B'), 0));

	// connects the fake 74HC595 array to the pins
	avr_irq_t * i_mosi = avr_io_getirq(avr, AVR_IOCTL_SPI_GETIRQ(0), SPI_IRQ_OUTPUT),
			* i_reset = avr_io_getirq(avr, AVR_IOCTL_IOPORT_GETIRQ('D'), 4),
			* i_latch = avr_io_getirq(avr, AVR_IOCTL_IOPORT_GETIRQ('D'), 7);
	avr_connect_irq(i_mosi, shifter.irq + IRQ_HC595_SPI_BYTE_IN);
	avr_connect_irq(i_reset, shifter.irq + IRQ_HC595_IN_RESET);
	avr_connect_irq(i_latch, shifter.irq + IRQ_HC595_IN_LATCH);

	avr_irq_t * i_pwm = avr_io_getirq(avr, AVR_IOCTL_TIMER_GETIRQ('0'), TIMER_IRQ_OUT_PWM0);
	avr_irq_register_notify(
		i_pwm,
		pwm_changed_hook, 
		NULL);	
	avr_irq_register_notify(
		shifter.irq + IRQ_HC595_OUT,
		hc595_changed_hook, 
		NULL);

	// even if not setup at startup, activate gdb if crashing
	avr->gdb_port = 1234;
	if (0) {
		//avr->state = cpu_Stopped;
		avr_gdb_init(avr);
	}

	/*
	 *	VCD file initialization
	 *	
	 *	This will allow you to create a "wave" file and display it in gtkwave
	 *	Pressing "r" and "s" during the demo will start and stop recording
	 *	the pin changes
	 */
	avr_vcd_init(avr, "gtkwave_output.vcd", &vcd_file, 10000 /* usec */);

	avr_vcd_add_signal(&vcd_file, 
		avr_get_interrupt_irq(avr, 7), 1 /* bit */ ,
		"TIMER2_COMPA" );
	avr_vcd_add_signal(&vcd_file, 
		avr_get_interrupt_irq(avr, 17), 1 /* bit */ ,
		"SPI_INT" );
	avr_vcd_add_signal(&vcd_file, 
		i_mosi, 8 /* bits */ ,
		"MOSI" );

	avr_vcd_add_signal(&vcd_file, 
		i_reset, 1 /* bit */ ,
		"595_RESET" );
	avr_vcd_add_signal(&vcd_file, 
		i_latch, 1 /* bit */ ,
		"595_LATCH" );
	avr_vcd_add_signal(&vcd_file, 
		button[B_START].irq + IRQ_BUTTON_OUT, 1 /* bits */ ,
		"start" );
	avr_vcd_add_signal(&vcd_file, 
		button[B_STOP].irq + IRQ_BUTTON_OUT, 1 /* bits */ ,
		"stop" );
	avr_vcd_add_signal(&vcd_file, 
		button[B_RESET].irq + IRQ_BUTTON_OUT, 1 /* bits */ ,
		"reset" );

	avr_vcd_add_signal(&vcd_file, 
		shifter.irq + IRQ_HC595_OUT, 32 /* bits */ ,
		"HC595" );
	avr_vcd_add_signal(&vcd_file, 
		i_pwm, 8 /* bits */ ,
		"PWM" );

	// 'raise' it, it's a "pullup"
	avr_raise_irq(button[B_START].irq + IRQ_BUTTON_OUT, 1);
	avr_raise_irq(button[B_STOP].irq + IRQ_BUTTON_OUT, 1);
	avr_raise_irq(button[B_RESET].irq + IRQ_BUTTON_OUT, 1);

	printf( "Demo : This is a real world firmware, a 'stopwatch'\n"
			"   timer that can count up to 99 days. It features a PWM control of the\n"
			"   brightness, blinks the dots, displays the number of days spent and so on.\n\n"
			"   Press '0' to press the 'start' button\n"
			"   Press '1' to press the 'stop' button\n"
			"   Press '2' to press the 'reset' button\n"
			"   Press 'q' to quit\n\n"
			"   Press 'r' to start recording a 'wave' file - with a LOT of data\n"
			"   Press 's' to stop recording\n"
			"  + Make sure to watch the brightness dim once you stop the timer\n\n"
			);

	/*
	 * OpenGL init, can be ignored
	 */
	glutInit(&argc, argv);		/* initialize GLUT system */


	int w = 22, h = 8;
	
	glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
	glutInitWindowSize(w * pixsize, h * pixsize);		/* width=400pixels height=500pixels */
	window = glutCreateWindow("Press 0, 1, 2 or q");	/* create window */

	// Set up projection matrix
	glMatrixMode(GL_PROJECTION); // Select projection matrix
	glLoadIdentity(); // Start with an identity matrix
	glOrtho(0, w * pixsize, 0, h * pixsize, 0, 10);
	glScalef(1,-1,1);
	glTranslatef(0, -1 * h * pixsize, 0);

	glutDisplayFunc(displayCB);		/* set window's display callback */
	glutKeyboardFunc(keyCB);		/* set window's key callback */
	glutTimerFunc(1000 / 24, timerCB, 0);

	// the AVR run on it's own thread. it even allows for debugging!
	pthread_t run;
	pthread_create(&run, NULL, avr_run_thread, NULL);

	glutMainLoop();
}