Esempio n. 1
0
void AZ_print_header(int options[], int mem_overlapped,
                          int mem_orig, int mem_factor)
{
if ((options[AZ_overlap] < 1) && 
    (options[AZ_subdomain_solve] != AZ_ilut)) return;
 if ((options[AZ_output] != AZ_none ) && (options[AZ_output] != AZ_warnings) && (options[AZ_diagnostics]==AZ_all)){
      AZ_printf_out("\n\t\t*******************************************************\n");
      if (options[AZ_overlap] > 0) {
         AZ_printf_out("\t\t*****       Subdomain overlapping requires %.3e times\n", 
                ((double) mem_overlapped)/ ((double) mem_orig));
         AZ_printf_out("\t\t*****       the memory used for the nonoverlapped\n");
         AZ_printf_out("\t\t*****       subdomain matrix.\n");
      }
      if (options[AZ_subdomain_solve] == AZ_ilut) {
         AZ_printf_out("\t\t***** ilut: The ilut factors require %.3e times \n\t\t", 
                 ((double) mem_factor)/((double) mem_overlapped));
         AZ_printf_out("*****       the memory of the overlapped subdomain matrix.");
      }
      AZ_printf_out("\n\t\t*******************************************************\n");
      AZ_printf_out("\n");
   }
}
Esempio n. 2
0
void AZ_precondition(double x[], int input_options[], int proc_config[],
                     double input_params[], AZ_MATRIX *Amat, 
		     AZ_PRECOND *input_precond)


/*******************************************************************************

  This routine calls appropriate sparse matrix preconditioner.

  Author:          John N. Shadid, SNL, 1421
  =======

  Return code:     void
  ============

  Parameter list:
  ===============


  x:               On input, contains the current solution. On output contains
                   the preconditioned solution to the linear system.

  options:         Determines specific solution method and other parameters.

  proc_config:     Machine configuration.  proc_config[AZ_node] is the node
                   number.  proc_config[AZ_N_procs] is the number of processors.

  params:          Drop tolerance and convergence tolerance info.

  Amat:            Structure used to represent the matrix (see az_aztec.h
                   and Aztec User's Guide).

  precond:         Structure used to represent the preconditioner
                   (see file az_aztec.h and Aztec User's Guide).

 * --------------------------------------------------------------------

 Related routines:

   scaling routines:
        AZ_block_diagonal_scaling -- block-diagonally scales sparse matrix
                                     problem.
        AZ_row_sum_scaling        -- row sum scales sparse matrix problem.
        sym_diagonal_scaling      -- diagonaly scales symm. sparse problem.
        sym_row_sum_scaling       -- row sum scales symmetric sparse problem.

   preconditioners:
        jacobi                 -- point Jacobi method.
        AZ_polynomial_expansion-- Polynomial expansion; Neumann series and
                                  least squares.
        domain decomposition   -- Block solvers (LU , ILU or ILUT) used on 
                                  each processor. The blocks are either
                                  non-overlapping or overlapping.
        icc                    -- incomplete sparse Choleski (symmetric
                                  version).

*******************************************************************************/

{

  /* local variables */

  int            ione = 1;
  double        *temp;
  int            m, N, k, length;
  int            i, step, j;
  static int    *d2_indx,*d2_bindx,*d2_rpntr,*d2_bpntr;
  static double *d2_inv;
  static AZ_MATRIX *Dmat;
  int            tsize, multilevel_flag = 0, max_externals;
  static int     previous_factors = -1;
  double        *v, *y;
  char          *yo = "precond: ";
  int          *data_org, *bindx, *indx, *cpntr, *rpntr, *bpntr;
  double       *val;
  char         label[64],suffix[32];
  char         tag[80];
  double       *current_rhs, *orig_rhs = NULL, *x_precond = NULL;
  int          *options, *ioptions, N_fixed, *fixed_pts;
  double       *params,  *iparams, *istatus;
  AZ_MATRIX    *Aptr, *Pmat;
  AZ_PRECOND   *Pptr, *precond;
  struct AZ_SCALING *Sptr;
  int          opt_save1, opt_save2, opt_save3, opt_save4, opt_save5, *itemp;
  double       *tttemp, norm1, *dtemp;
#ifdef TIMING
  double       ttt;
#endif


#ifdef eigen
  double         *tb, *tr;
#endif

  /**************************** execution begins ******************************/
#ifdef TIMING
  ttt = AZ_second();
#endif

  precond = input_precond;

  sprintf(suffix," in precond%d",input_options[AZ_recursion_level]);  
                                              /* set string that will be used */
                                              /* for manage_memory label      */

  data_org = precond->Pmat->data_org;
  options  = input_options;
  params   = input_params;

  m    = data_org[AZ_N_int_blk] + data_org[AZ_N_bord_blk];
  N    = data_org[AZ_N_internal] + data_org[AZ_N_border];
  max_externals = Amat->data_org[AZ_N_external];
  if (max_externals < data_org[AZ_N_external]) 
     max_externals = data_org[AZ_N_external];

  current_rhs = x; 
  if (options[AZ_precond] == AZ_multilevel) {

     /* make extra vectors to hold rhs and residual */

     sprintf(tag,"orig_rhs %s",precond->context->tag);
     orig_rhs = AZ_manage_memory((N+max_externals)*sizeof(double),
                               AZ_ALLOC, AZ_SYS+az_iterate_id,tag,&i);
     sprintf(tag,"x_prec %s",precond->context->tag);
     x_precond    = AZ_manage_memory((N+max_externals)*sizeof(double),
                               AZ_ALLOC, AZ_SYS+az_iterate_id, tag,&i);
     for (i = 0 ; i < N; i++) x_precond[i] = 0.0;
     for (i = 0 ; i < N; i++) orig_rhs[i] = current_rhs[i];
     multilevel_flag = 1;
     options = precond->options;
     params  = precond->params;
  }

  do {
     data_org = precond->Pmat->data_org;
     val      = precond->Pmat->val;
     bindx    = precond->Pmat->bindx;
     cpntr    = precond->Pmat->cpntr;
     indx     = precond->Pmat->indx;
     rpntr    = precond->Pmat->rpntr;
     bpntr    = precond->Pmat->bpntr;
     if (max_externals < data_org[AZ_N_external]) 
        max_externals = data_org[AZ_N_external];

     switch (options[AZ_precond]) {
     case AZ_none:
     break;

     case AZ_Jacobi:
        if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX) {
           for (i = 0; i < N; i++) current_rhs[i] /= val[i];

           if (options[AZ_poly_ord] > 1) {
              sprintf(tag,"v_prec %s",precond->context->tag);
              v = AZ_manage_memory((N+max_externals)*sizeof(double),
                                    AZ_ALLOC, AZ_SYS+az_iterate_id, tag, &i);
              sprintf(tag,"y_prec %s",precond->context->tag);
              y = AZ_manage_memory(N*sizeof(double), AZ_ALLOC, AZ_SYS+az_iterate_id, tag,&i);
              for (i = 0; i < N; i++) v[i] = current_rhs[i];

              for (step = 1; step < options[AZ_poly_ord]; step++) {
                 Amat->matvec(v, y, Amat, proc_config);
                 for(i = 0; i < N; i++) v[i] += current_rhs[i] - y[i] / val[i];
              }
              for (i = 0; i < N; i++) current_rhs[i] = v[i];
           }
        }
        else if (data_org[AZ_matrix_type] == AZ_USER_MATRIX) {
           if (options[AZ_pre_calc] < AZ_sys_reuse) {
              sprintf(tag,"d2_inv %s",precond->context->tag);
              d2_inv   = (double *) AZ_manage_memory(N*sizeof(double),AZ_ALLOC,
						data_org[AZ_name],tag,&i);
              Pmat = precond->Pmat;
              if ( (Pmat->N_nz < 0) || (Pmat->max_per_row < 0)) 
                 AZ_matfree_Nnzs(Pmat);

              if ( (Pmat->getrow == NULL) && (N != 0) ) {
                 AZ_printf_err("Error: Only matrices with getrow() defined via ");
                 AZ_printf_err("AZ_set_MATFREE_getrow(...) can do Jacobi preconditioning\n");
                 exit(1);
              }
              sprintf(tag,"dtemp %s",precond->context->tag);
              dtemp = (double *) AZ_manage_memory(Pmat->max_per_row*
				                sizeof(double),AZ_ALLOC,
						data_org[AZ_name],tag,&i);
              sprintf(tag,"itemp %s",precond->context->tag);
              itemp = (int    *) AZ_manage_memory(Pmat->max_per_row*
				                sizeof(int   ),AZ_ALLOC,
						data_org[AZ_name],tag,&i);
  
	      for (i = 0; i < N; i++) {
                 Pmat->getrow(itemp,dtemp,&length,Pmat,1,&i,Pmat->max_per_row);
                 for (k =0; k < length; k++) 
                    if (itemp[k] == i) break;

                 if (k == length) d2_inv[i] = 0.0; /* no diagonal */
                 else d2_inv[i] = 1./dtemp[k];
              }
           }
           for (i = 0; i < N; i++) current_rhs[i] *= d2_inv[i];

           if (options[AZ_poly_ord] > 1) {
              sprintf(tag,"v_prec %s",precond->context->tag);
              v = AZ_manage_memory((N+max_externals)*sizeof(double),
                                    AZ_ALLOC, AZ_SYS+az_iterate_id, tag, &i);
              sprintf(tag,"y_prec %s",precond->context->tag);
              y = AZ_manage_memory(N*sizeof(double), AZ_ALLOC, AZ_SYS+az_iterate_id, tag,&i);
              for (i = 0; i < N; i++) v[i] = current_rhs[i];

              for (step = 1; step < options[AZ_poly_ord]; step++) {
                 Amat->matvec(v, y, Amat, proc_config);
                 for(i = 0; i < N; i++) v[i] += current_rhs[i] - y[i]*d2_inv[i];
              }
              for (i = 0; i < N; i++) current_rhs[i] = v[i];
           }
        }
        else if (data_org[AZ_matrix_type] == AZ_VBR_MATRIX) {
           /* block Jacobi preconditioning */

           if (options[AZ_pre_calc] < AZ_sys_reuse) {
              /* First, compute block-diagonal inverse */
              /* (only if not already computed)        */

              tsize = 0;
              for (i = 0; i < m; i++)
                 tsize += (rpntr[i+1] - rpntr[i]) * (cpntr[i+1] - cpntr[i]);

                 sprintf(tag,"d2_indx %s",precond->context->tag);
                 d2_indx  = (int *) AZ_manage_memory((m+1)*sizeof(int),AZ_ALLOC,
                                            data_org[AZ_name], tag, &i);
                 sprintf(tag,"d2_bindx %s",precond->context->tag);
                 d2_bindx = (int *) AZ_manage_memory(m*sizeof(int), AZ_ALLOC,
                                            data_org[AZ_name], tag, &i);
                 sprintf(tag,"d2_rpntr %s",precond->context->tag);
                 d2_rpntr = (int *) AZ_manage_memory((m+1)*sizeof(int),AZ_ALLOC,
                                            data_org[AZ_name], tag, &i);
                 sprintf(tag,"d2_bpntr %s",precond->context->tag);
                 d2_bpntr = (int *) AZ_manage_memory((m+1)*sizeof(int),AZ_ALLOC,
                                            data_org[AZ_name], tag, &i);
                 sprintf(tag,"d2_inv %s",precond->context->tag);
                 d2_inv   = (double *) AZ_manage_memory(tsize*sizeof(double),
                                            AZ_ALLOC, data_org[AZ_name],tag,&i);
                 d2_bpntr[0] = 0;
                 sprintf(tag,"dmat_calk_binv %s",precond->context->tag);
                 Dmat     = (AZ_MATRIX *) AZ_manage_memory(sizeof(AZ_MATRIX), 
                                            AZ_ALLOC,data_org[AZ_name],tag,&i);

                 Dmat->rpntr         = d2_rpntr;   Dmat->cpntr    = d2_rpntr;
                 Dmat->bpntr         = d2_bpntr;   Dmat->bindx    = d2_bindx;
                 Dmat->indx          = d2_indx;    Dmat->val      = d2_inv;
                 Dmat->data_org      = data_org;
                 Dmat->matvec        = precond->Pmat->matvec;
                 Dmat->matrix_type   = precond->Pmat->matrix_type;

                 if (options[AZ_pre_calc] != AZ_reuse) {
                    AZ_calc_blk_diag_inv(val, indx, bindx, rpntr, cpntr, bpntr,
                                         d2_inv, d2_indx, d2_bindx, d2_rpntr, 
                                         d2_bpntr, data_org);
                 }
                 else if (i == AZ_NEW_ADDRESS) {
                   AZ_printf_err( "Error: options[AZ_pre_calc]==AZ_reuse and"
                         "previous factors\n       not found. Check"
                         "data_org[AZ_name].\n");
                   exit(-1);
                 }
           }
           else if (previous_factors != data_org[AZ_name]) {
              AZ_printf_err( "Warning: Using a previous factorization as a"
                       "preconditioner\neven though matrix"
                       "(data_org[AZ_name]) has changed\n");
           }
           previous_factors = data_org[AZ_name];

           /* scale rhs */

           sprintf(tag,"v_prec %s",precond->context->tag);
           v = AZ_manage_memory((N+max_externals)*sizeof(double),
                           AZ_ALLOC, AZ_SYS+az_iterate_id, tag, &i);

           Dmat->matvec(current_rhs, v, Dmat, proc_config);

           DCOPY_F77(&N, v, &ione, current_rhs, &ione);

           if (options[AZ_poly_ord] > 1) {
              sprintf(tag,"y_prec %s",precond->context->tag);
              y = AZ_manage_memory((N+max_externals)*sizeof(double),
                             AZ_ALLOC, AZ_SYS+az_iterate_id, tag, &i);

              sprintf(tag,"temp_prec %s",precond->context->tag);
              temp = AZ_manage_memory(N*sizeof(double), AZ_ALLOC,AZ_SYS+az_iterate_id,tag,&i);

              for (step = 1; step < options[AZ_poly_ord]; step++) {
                 Amat->matvec(v, y, Amat, proc_config);
                 Dmat->matvec(y, temp, Dmat, proc_config);

                 for (i = 0; i < N; i++) v[i] += current_rhs[i] - temp[i];
              }

              for (i = 0; i < N; i++) current_rhs[i] = v[i];
           }
        }
     break;
     case AZ_sym_GS:

        /* symmetric Gauss-Seidel preconditioner only available on 1 proc */

        if (data_org[AZ_matrix_type] == AZ_VBR_MATRIX) AZ_sym_gauss_seidel();
        else if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX)
           AZ_sym_gauss_seidel_sl(val, bindx, current_rhs, data_org, options,
				  precond->context, proc_config);
     break;

     case AZ_Neumann:
     case AZ_ls:
        if (!options[AZ_poly_ord]) return;
        AZ_polynomial_expansion(current_rhs, options, proc_config, precond);
     break;

     case AZ_dom_decomp:
     case AZ_rilu:
        AZ_domain_decomp(current_rhs, precond->Pmat, options, proc_config, 
                         params, precond->context);
     break;

     case AZ_icc:
        /* incomplete Cholesky factorization */

        (void) AZ_printf_out("Incomplete Cholesky not available (use ilu).\n");
     break;

     case AZ_user_precond:
        precond->prec_function(current_rhs, options, proc_config, 
                               params, Amat, precond);
     break;
     case AZ_smoother:
        sprintf(label,"istatus %s",precond->context->tag);
        istatus = AZ_manage_memory(AZ_STATUS_SIZE*sizeof(double),AZ_ALLOC,
				   AZ_SYS+az_iterate_id, label,&i);
        for (i = 0 ; i < AZ_STATUS_SIZE ; i++ ) istatus[i] = 0.0;

        sprintf(label,"y %s",precond->context->tag);
        y = AZ_manage_memory((N+max_externals)*sizeof(double), AZ_ALLOC, 
			     AZ_SYS+az_iterate_id, label, &i);
        sprintf(label,"tttemp %s",precond->context->tag);
        tttemp = AZ_manage_memory((N+max_externals)*sizeof(double),AZ_ALLOC,
				  AZ_SYS+az_iterate_id, label, &i);

        for (i = 0 ; i < N ; i++ ) tttemp[i] = current_rhs[i];

        N_fixed = 0; fixed_pts = NULL;
        if (Amat->aux_ival != NULL) {
           N_fixed   = Amat->aux_ival[0][0];
           fixed_pts = Amat->aux_ival[1];
        }
        else if (options[AZ_pre_calc] != AZ_sys_reuse)
           AZ_printf_out("Warning: Not fixed points set for local smoothing!!\n");

        for (j = 0; j < options[AZ_poly_ord]; j++) {
           AZ_loc_avg(Amat, tttemp, y, N_fixed, fixed_pts, proc_config);
           norm1 = sqrt(AZ_gdot(N, y, y, proc_config));
           if (proc_config[AZ_node] == 0) {
              if ((j==0) && (options[AZ_output] != AZ_none) &&
                  (options[AZ_output] != AZ_last) &&
                  (options[AZ_output] != AZ_summary) &&
                  (options[AZ_output] != AZ_warnings))
                  AZ_printf_out("   %d  %e\n",j, norm1);
              else if ((j==options[AZ_poly_ord]-1) && 
		  (options[AZ_output] != AZ_none) && 
                  (options[AZ_output] != AZ_warnings))
                  AZ_printf_out("   %d  %e\n",j, norm1);
              else if ((options[AZ_output] > 0) && (j%options[AZ_output] == 0))
                  AZ_printf_out("   %d  %e\n",j, norm1);
           }
           for (i = 0 ; i < N ; i++ ) tttemp[i] = y[i];
        }
        for (i = 0 ; i < N ; i++ ) y[i] = current_rhs[i] - y[i];
        for (i = 0 ; i < N ; i++ ) current_rhs[i] = 0.0;

        opt_save1 = options[AZ_output];
        opt_save2 = options[AZ_solver];
        opt_save3 = options[AZ_precond];
        opt_save4 = options[AZ_max_iter];
        opt_save5 = options[AZ_aux_vec];

        options[AZ_output]  = AZ_warnings;
        options[AZ_solver]  = AZ_tfqmr;
        options[AZ_precond] = AZ_dom_decomp;
        options[AZ_max_iter]= 1000;
        options[AZ_aux_vec] = AZ_rand;

        options[AZ_recursion_level]++;
        AZ_oldsolve(current_rhs, y,options, params, istatus, proc_config, 
                    Amat, precond, NULL);
        options[AZ_recursion_level]--;
        options[AZ_output]  = opt_save1;
        options[AZ_solver]  = opt_save2;
        options[AZ_precond] = opt_save3;
        options[AZ_max_iter]= opt_save4;
        options[AZ_aux_vec] = opt_save5;
     break;
     default:
        if (options[AZ_precond] < AZ_SOLVER_PARAMS) {
           AZ_recover_sol_params(options[AZ_precond], &ioptions, &iparams,
                                 &istatus, &Aptr, &Pptr, &Sptr);
           sprintf(label,"y %s",precond->context->tag);
           y = AZ_manage_memory((N+max_externals)*sizeof(double),
                                AZ_ALLOC, AZ_SYS+az_iterate_id, label, &i);
           for (i = 0 ; i < N ; i++ ) y[i] = current_rhs[i];
           for (i = 0 ; i < N ; i++ ) current_rhs[i] = 0.0;

           ioptions[AZ_recursion_level] = options[AZ_recursion_level] + 1;
           if ((options[AZ_pre_calc] == AZ_sys_reuse) &&
               (ioptions[AZ_keep_info] == 1)) 
              ioptions[AZ_pre_calc] = AZ_reuse;
           AZ_oldsolve(current_rhs, y,ioptions,iparams, istatus, proc_config, 
                       Aptr, Pptr, Sptr);
        }
        else {
           (void) AZ_printf_err( "%sERROR: invalid preconditioning flag.\n"
                   "       options[AZ_precond] improperly set (%d).\n", yo,
			   options[AZ_precond]);
           exit(-1);
        }

     }
     options[AZ_pre_calc] = AZ_sys_reuse;
     precond->context->Pmat_computed = 1;

     if (multilevel_flag) {
        if (precond->next_prec == NULL) {
           multilevel_flag = 0;
           for (i = 0; i < N; i++) current_rhs[i] += x_precond[i];
        }
        else {
           for (i = 0; i < N; i++) x_precond[i] += current_rhs[i];
           AZ_compute_residual(orig_rhs, x_precond, current_rhs, 
                               proc_config, Amat);
           precond = precond->next_prec;
           options = precond->options;
           params  = precond->params;
        }
     }

  } while (multilevel_flag);

  proc_config[AZ_MPI_Tag] = AZ_MSG_TYPE;   /* reset all the message types.   */
                                           /* This is to make sure that all  */
                                           /* processors (even those without */
                                           /* any preconditioning work) have */
                                           /* the same message types for the */
                                           /* next message.                  */
#ifdef TIMING
  ttt = AZ_second() - ttt;
  if (input_options[AZ_recursion_level] == 0) input_precond->timing[0] += ttt;
#endif

} /* precond */
Esempio n. 3
0
void AZ_factor_subdomain(struct context *context, int N, int N_nz,
	int *nz_used)
{
/****************************************************************************
  Given an overlapped subdomain matrix, factor it according to the
  chosen algorithm and store the result back in subdomain. Additionally, 
  store the number of nonzeros used in the factorization in nz_used.

  Notes:
    1) Matrix comes in as an MSR matrix.
    2) context contains several fields which need to be appropriately
       set. These fields are specific to the individual solvers.
    3) The factorization overwrites the matrix. However, different
       solvers will store the factorization in different formats.

  Author:          Ray Tuminaro, SNL, 9222 (3/98)

  Return code:     void
  ============

  Parameter list:
  ===============

  context        On input, context contains the matrix to be 
                   factored in context.A_overlapped (MSR format), 
                   On output, context contains the factored matrix
                   which is stored in a format specific to the solver and 
                   any additional parameters required by the backsolver.

  N                On input, the size of the linear system to be solved.

  N_nz             On input, the number of nonzero values in the matrix
                   to be factored.

  nz_used          On output, the number of nonzero values in the matrix
                   representing the factorization.

*******************************************************************************/

#ifdef HAVE_AZLU
	int ifail, N_nz_matrix, *rnr;
        double *fake_rhs, *aflag;
#endif
        int i, j, *bindx, *bpntr, *iw;
        double *cr, *unorm, *a, *val;
        int    *ind, *jnz, *ja, ifill;
        double dtemp = (context->aztec_choices->params)[AZ_omega];
        int    N_blk_rows, name = context->A_overlapped->data_org[AZ_name];
        char   str[80];

/* Begin Aztec 2.1 mheroux mod */
#ifdef IFPACK
	void *precon, *bmat;
	double rthresh, athresh;
	int N_int_blk, N_bord_blk, graph_fill;
#endif
/* End Aztec 2.1 mheroux mod */

        bindx = context->A_overlapped->bindx;

        *nz_used = bindx[N];

        switch(context->aztec_choices->options[AZ_subdomain_solve]) {
/* Begin Aztec 2.1 mheroux mod */
        case AZ_bilu_ifp:
#ifdef IFPACK
           if (N == 0) return;

           bindx = context->A_overlapped->bindx;
           val   = context->A_overlapped->val;

           /* for bilu(k) with k > 1 , figure out the new sparsity pattern */

           AZ_sort_msr(bindx, val, N);

           /* Let IFPACK handle fillin */
	      graph_fill = (context->aztec_choices->options)[AZ_graph_fill];
           (context->aztec_choices->options)[AZ_graph_fill] = 0;
           /* recover some space so that there will */
           /* be enough room to convert back to vbr */

           i = AZ_compress_msr(&(context->A_overlapped->bindx), 
                         &(context->A_overlapped->val), context->N_nz_allocated,
                         *nz_used, name, context);
           context->N_nz = *nz_used;
           context->N_nz_allocated = *nz_used;

           AZ_msr2vbr_mem_efficient(N, &(context->A_overlapped->bindx), 
                                 &(context->A_overlapped->val), 
                                 &(context->A_overlapped->cpntr), 
                                 &(context->A_overlapped->bpntr), 
                                 &(context->A_overlapped->indx), &N_blk_rows, 
                                 (context->A_overlapped->data_org)[AZ_name],
                                 context->tag,i);

	   context->A_overlapped->matrix_type = AZ_VBR_MATRIX;
   
	   /*ifp_initialize();*/
  
	   /* Create IFPACK encapsulation of Amat */

	   context->A_overlapped->rpntr = context->A_overlapped->cpntr;
	   N_int_blk = context->A_overlapped->data_org[AZ_N_int_blk];
	   N_bord_blk = context->A_overlapped->data_org[AZ_N_bord_blk];
	   context->A_overlapped->data_org[AZ_N_int_blk] = N_blk_rows;
	   context->A_overlapped->data_org[AZ_N_bord_blk] = 0;
	   (context->aztec_choices->options)[AZ_graph_fill] = graph_fill;

	   az2ifp_blockmatrix(&bmat, context->A_overlapped); 

	   context->A_overlapped->data_org[AZ_N_int_blk] = N_int_blk;
	   context->A_overlapped->data_org[AZ_N_bord_blk] = N_bord_blk;

	   rthresh =  (context->aztec_choices->params)[AZ_rthresh];
	   athresh =  (context->aztec_choices->params)[AZ_athresh];
           ifill = (context->aztec_choices->options)[AZ_graph_fill];
	   ifp_preconditioner(&precon, bmat, IFP_BILUK, (double) ifill, 0.0,
			    IFP_SVD, rthresh, athresh);
        if ((context->aztec_choices->options)[AZ_output]>0) {
              ifp_biluk_stats(precon);
        }
	   context->precon = precon;
           break;

/* End Aztec 2.1 mheroux mod */

#else
        AZ_perror("IFPACK not linked.  Must compile with -DIFPACK");
#endif
        case AZ_bilu:
           if (N == 0) return;

           bindx = context->A_overlapped->bindx;
           val   = context->A_overlapped->val;

           /* for bilu(k) with k > 1 , figure out the new sparsity pattern */

           AZ_sort_msr(bindx, val, N);
           ifill = (context->aztec_choices->options)[AZ_graph_fill];
           if (ifill > 0) {
              *nz_used = AZ_fill_sparsity_pattern(context, ifill, 
                                                  bindx, val, N);

           }
           /* recover some space so that there will */
           /* be enough room to convert back to vbr */

           i = AZ_compress_msr(&(context->A_overlapped->bindx), 
                         &(context->A_overlapped->val), context->N_nz_allocated,
                         *nz_used, name, context);
           context->N_nz = *nz_used;
           context->N_nz_allocated = *nz_used;

           AZ_msr2vbr_mem_efficient(N, &(context->A_overlapped->bindx), 
                                 &(context->A_overlapped->val), 
                                 &(context->A_overlapped->cpntr), 
                                 &(context->A_overlapped->bpntr), 
                                 &(context->A_overlapped->indx), &N_blk_rows, 
                                 (context->A_overlapped->data_org)[AZ_name],
                                 context->tag,i);

	   context->A_overlapped->matrix_type = AZ_VBR_MATRIX;
   
           bindx = context->A_overlapped->bindx;
           bpntr = context->A_overlapped->bpntr;
           val   = context->A_overlapped->val;

	   sprintf(str,"ipvt %s",context->tag);
           context->ipvt  = (int *) AZ_manage_memory((N+1)*sizeof(int),
                                    AZ_ALLOC, name, str, &i);
           sprintf(str,"dblock %s",context->tag);
           context->dblock= (int *) AZ_manage_memory((N_blk_rows+1)*
                                                 sizeof(int), AZ_ALLOC, name,
                                                 str, &i);

           context->N_blk_rows = N_blk_rows;

           /* set dblock to point to the diagonal block in each block row */

           for (i = 0 ; i < N_blk_rows ; i++ ) {
              for (j = bpntr[i] ; j < bpntr[i+1] ; j++ ) {
                 if (bindx[j] == i) context->dblock[i] = j;
              }
           }

           AZ_fact_bilu(N_blk_rows, context->A_overlapped, context->dblock,
                        context->ipvt);
           break;

	case AZ_ilut:
           cr = (double *) AZ_allocate((2*N+3+context->max_row)*sizeof(int)+
                                     (2*N+2+context->max_row)*sizeof(double));
           if (cr == NULL) AZ_perror("Out of space in ilut.\n");
           unorm = &(cr[N+2]);
           a     = &(unorm[N]);
           ind   = (int *) &(a[context->max_row]);
           jnz   = &(ind[N+3]);
           ja    = &(jnz[N]);
           sprintf(str,"iu %s",context->tag);
           context->iu    = (int *) AZ_manage_memory((N+1)*sizeof(int),
                                             AZ_ALLOC, name, str, &i);
           AZ_fact_ilut(&N, context->A_overlapped, a, ja,
                        (context->aztec_choices->params)[AZ_drop], 
                        context->extra_fact_nz_per_row, N_nz - bindx[N],
                        context->iu,cr,unorm,ind, nz_used, jnz,
                        (context->aztec_choices->params)[AZ_rthresh],
                        (context->aztec_choices->params)[AZ_athresh]);
           AZ_free(cr);
           break;
	case AZ_ilu:
           dtemp = 0.0;
	case AZ_rilu:
           if (N == 0) return;
           sprintf(str,"iu %s",context->tag);
           bindx = context->A_overlapped->bindx;
           val   = context->A_overlapped->val;

           /* for ilu(k) with k > 1 , figure out the new sparsity pattern */

           AZ_sort_msr(bindx, val, N);
           ifill = (context->aztec_choices->options)[AZ_graph_fill];
           if (ifill > 0) {
              *nz_used = AZ_fill_sparsity_pattern(context, ifill, 
                                                  bindx, val, N);
           }
           context->iu= (int *) AZ_manage_memory((N+1)*sizeof(int),AZ_ALLOC,
                                                    name, str, &i);
           iw = (int *) AZ_allocate((N+1)*sizeof(int));
           if (iw == NULL) AZ_perror("Out of space in ilu.\n");
           AZ_fact_rilu(N, nz_used, context->iu, iw, context->A_overlapped, 
                        dtemp,
                        (context->aztec_choices->params)[AZ_rthresh],
                        (context->aztec_choices->params)[AZ_athresh]);
           AZ_free(iw);
           break;
	case AZ_icc:
           sprintf(str,"iu %s",context->tag);
           bindx = context->A_overlapped->bindx;
           val   = context->A_overlapped->val;

           /* for ilu(k) with k > 1 , figure out the new sparsity pattern */

           AZ_sort_msr(bindx, val, N);
           ifill = (context->aztec_choices->options)[AZ_graph_fill];
           if (ifill > 0)
              *nz_used = AZ_fill_sparsity_pattern(context, ifill, 
                                                  bindx, val, N);

           AZ_fact_chol(context->A_overlapped->bindx,
                        context->A_overlapped->val,N,
                        (context->aztec_choices->params)[AZ_rthresh],
                        (context->aztec_choices->params)[AZ_athresh]);
           break;
	case AZ_lu:
#ifdef HAVE_AZLU
           if (N == 0) return;
           aflag = (double *) AZ_allocate(8*sizeof(double));
           rnr   = (int *) AZ_allocate(N_nz*sizeof(int));
           if (rnr == NULL) AZ_perror("Out of space in lu.\n");

           sprintf(str,"iflag %s",context->tag);
           context->iflag = (int *) AZ_manage_memory(10*sizeof(int), AZ_ALLOC,
                                                       name, str ,&i);
           sprintf(str,"ha %s",context->tag);
           context->ha = (int *) AZ_manage_memory(11*(N+1)*sizeof(int),
                                             AZ_ALLOC, name, str, &i);
           sprintf(str,"pivot %s",context->tag);
           context->pivot = (double *) AZ_manage_memory((N+1)*sizeof(double),
                                             AZ_ALLOC, name, str,&i);

           aflag[0] = 16.0;    aflag[2] = 1.0e8;   aflag[3] = 1.0e-12;   
           aflag[1] = (context->aztec_choices->params)[AZ_drop];

           /* set up flags for the sparse factorization solver */

           context->iflag[0] = 1;         context->iflag[1] = 2;
           context->iflag[2] = 1;         context->iflag[3] = 0;
           context->iflag[4] = 2;    
           /*    Note: if matrix is pos def, iflag[2] = 2 is cheaper */

           N_nz_matrix = bindx[N] - 1;

           AZ_msr2lu(N, context->A_overlapped, rnr);

           /* Mark bindx so we can see what was not used later */

           for (i =  N_nz_matrix ; i < N_nz ; i++) bindx[i] = -7;

           /* factor the matrix */ 

           if (N == 1) {
             context->A_overlapped->val[0]=1./context->A_overlapped->val[0];
           }
           else {
              context->N_nz_factors = N_nz;
              fake_rhs = (double *) AZ_allocate(N*sizeof(double));
              if (fake_rhs == NULL) {
                 AZ_printf_out("Not enough memory inside subdomain_solve\n");
              }
              for (i = 0 ; i < N ; i++ ) fake_rhs[i] = 0.0;
              AZ_fact_lu(fake_rhs, context->A_overlapped,aflag, 
                         context->pivot, rnr, context->ha, 
			 context->iflag, &N_nz_matrix,
                         &ifail, &(context->N_nz_factors),
                         &N, &N);

              (context->iflag)[4] = 3; 
              AZ_free(fake_rhs);

              /* find out what was not used by checking what was not touched */

              *nz_used = N_nz;
              for (i = N_nz_matrix; i < N_nz ; i++ ) {
                 if (bindx[i] != -7) *nz_used = i;
              }
              (*nz_used)++;
              context->N_nz_factors = *nz_used;
           }
           AZ_free(rnr);
           AZ_free(aflag);
#else
	   AZ_printf_err("AZ_lu unavailable: configure with --enable-aztecoo-azlu to make available\n");
	   exit(1);
#endif
           break;
        default:
           if (context->aztec_choices->options[AZ_subdomain_solve]
                  >= AZ_SOLVER_PARAMS) {
              AZ_printf_err("Unknown subdomain solver(%d)\n",
                   context->aztec_choices->options[AZ_subdomain_solve]);
              exit(1);
           }
        }      
}
Esempio n. 4
0
void AZ_space_for_factors(double input_fill, int N_nz, int N, 
	int *extra_factor_nonzeros, int options[],int bandwidth,
        int  max_nz_per_row)
{
/****************************************************************************

  Compute the additional number of nonzeros required to do the factorization
  specified by options[AZ_subdomain_solve]. 
 
  Author:          Ray Tuminaro, SNL, 9222
 
  Return code:     void
  ============
 
  Parameter list:
  ===============
 
  input_fill:      On input, input_fill*N_nz is roughly the number of
                   nonzeros that will be allowed in the matrix factors
                   for ilut.

  N_nz:            On input, number of nonzeros in the padded matrix
                   that will be factored.
  
  N:               On input, the order of the padded matrix to be factored.

  extra_factor_nonzeros: 
                   On output, the additional space that will be added to
                   accommodate fill-in during the factorization.

  options:         On input, user specified input options.

 */

  int fill, i;
  double new_nz, nz_per_row, t;
  int    max_per_row, temp;
  
 
  if (options[AZ_subdomain_solve] == AZ_ilut) {
     input_fill -= 1.0;
     if (N == 0) *extra_factor_nonzeros = 0;
     else {

        new_nz = input_fill * ((double) N_nz);
        nz_per_row = new_nz/((double) N);
        fill = (int) floor( nz_per_row/2. + .5);
        t = ((double) N_nz)/ ((double) N);
        max_per_row = N - (int) ceil(t);
        if ( 2*fill > max_per_row) fill = max_per_row/2;

        *extra_factor_nonzeros =  2*N*fill + 1;
         while ( *extra_factor_nonzeros < 0) {
           fill--; *extra_factor_nonzeros =  2*N*fill + 1;
        }
     }
     temp = N*bandwidth;
     if (temp < 0) temp = *extra_factor_nonzeros;
     if (temp < *extra_factor_nonzeros) *extra_factor_nonzeros = temp;
  }
/* Begin Aztec 2.1 mheroux mod */
  else if ((options[AZ_subdomain_solve] == AZ_rilu) ||
           (options[AZ_subdomain_solve] == AZ_ilu ) ||
           (options[AZ_subdomain_solve] == AZ_icc ) ||
           (options[AZ_subdomain_solve] == AZ_bilu_ifp) ||
           (options[AZ_subdomain_solve] == AZ_bilu) ){
     fill = options[AZ_graph_fill];
/* End Aztec 2.1 mheroux mod */
     if (fill < 0) {
         AZ_printf_out("options[AZ_graph_fill] must be greater or equal to 0\n");
         AZ_printf_out("when using an incomplete factorization\n");
         exit(1);
     }
     if (fill == 0) *extra_factor_nonzeros = 3;
     else {
        temp = max_nz_per_row;
        for (i = 0 ; i < fill ; i++) { 
           temp *= max_nz_per_row;
           if (temp > bandwidth) break;
        }
        if (temp > bandwidth) temp = bandwidth;
        temp = temp*N;
        *extra_factor_nonzeros = temp - N_nz + 200;
     }
  }
  else if (options[AZ_subdomain_solve] == AZ_lu) {
     *extra_factor_nonzeros = N*bandwidth - N_nz + 200;
                             /* for small matrices y12m seems to need some    */
                            /* additional space. It might use a dense solver */
                            /* in some case???? who knows...                 */
  }
  else *extra_factor_nonzeros = 1;

  /* make sure things don't overflow */

  temp = 2*(N_nz + *extra_factor_nonzeros)*sizeof(double);
  if ( temp < 0 || *extra_factor_nonzeros < 0 ) {
      temp = 2;
      while ( temp < (2*temp) ) temp = 2*temp;
      *extra_factor_nonzeros = temp/(2*sizeof(double));
  }

}
Esempio n. 5
0
void AZ_solve_subdomain(double x[],int N, struct context *context)
{
/****************************************************************************
  Given a vector 'x' representing the right hand side, solve the system
  using whatever subdomain solver is indicated by 'context->which'
  and whatever factorization information has already been computed.

  Author:          Ray Tuminaro, SNL, 9222 (3/98)

  Return code:     void
  ============

  Parameter list:
  ===============

  x                On input, the right hand side of the subdomain system that
                   is to be solved. 
                   On output, the solution of the subdomain system.

  N                On input, the size of the linear system to be solved.

  bindx2,val2      On input, matrix or factorization information to be used 
                   by the solver. For most schemes, this information is in
                   MSR format. However, the lu and bilu scheme would have
                   this information in another format.
                   Note: additional array information can be passed through
                   context.

  context          On input, the various fields are set to solver specific
                   information corresponding to algorithm parameters as
                   well as a previously done factorization.

*******************************************************************************/

double *val2;
int    *bindx2;
int N_blk_rows;
#ifdef HAVE_AZLU
int ifail;
#endif
int *sub_options, sub_proc_config[AZ_PROC_SIZE], *hold_data_org, *new_data_org;
double *sub_params, *sub_status;
AZ_MATRIX *sub_matrix;
AZ_PRECOND *sub_precond;
struct AZ_SCALING *sub_scaling;
#ifdef AZTEC_MPI
MPI_AZComm  *tptr;
#endif
double *y;
char label[80];
int  t1, t2, t3, i, t4, t5 = 0;

/* Begin Aztec 2.1 mheroux mod */
#ifdef IFPACK
  int ione = 1;
  void *precon;
#endif
/* End Aztec 2.1 mheroux mod */

   val2   = context->A_overlapped->val;
   bindx2 = context->A_overlapped->bindx;

   switch(context->aztec_choices->options[AZ_subdomain_solve]) {

/* Begin Aztec 2.1 mheroux mod */

   case AZ_bilu_ifp:
#ifdef IFPACK
     y = (double *) malloc (N * sizeof(double));
     DCOPY_F77(&N, x, &ione, y, &ione);
     precon = context->precon;
     ifp_apply(precon, N, 1, y, N, x, N);
     free((void *) y);
#endif
     break;

/* End Aztec 2.1 mheroux mod */

   case AZ_bilu:
      N_blk_rows = context->N_blk_rows;

      AZ_lower_triang_vbr_solve(N_blk_rows, context->A_overlapped->cpntr, 
                                context->A_overlapped->bpntr, 
				context->A_overlapped->indx,
                                bindx2, val2, x);

      AZ_upper_triang_vbr_solve(N_blk_rows, context->A_overlapped->cpntr,
                                context->A_overlapped->bpntr, 
				context->A_overlapped->indx, bindx2,
                                val2, x, context->ipvt, context->dblock);
      break;
   case AZ_ilut:
   case AZ_rilu:
   case AZ_ilu:
      AZ_lower_tsolve(x,N, val2, bindx2, context->iu, x ); 
      AZ_upper_tsolve( x, N, val2, bindx2, context->iu);
      break;
   case AZ_icc:
      AZ_lower_icc(bindx2,val2,N,x);
      AZ_upper_icc(bindx2,val2,N,x);
      break;
   case AZ_lu:
#ifdef HAVE_AZLU
      if (N == 0) return;
      else if (N== 1) {
         x[0] *= val2[0];
         ifail = 0;
      }
      else AZ_backsolve(val2, context->pivot,x, bindx2, 
	              context->ha, context->iflag, 
                      &ifail, &(context->N_nz_factors),
		      &N, &N);
#else
    AZ_printf_err("AZ_lu unavailable: configure with --enable-aztecoo-azlu to make available\n");
    exit(1);
#endif
      break;
   default: 
      if (context->aztec_choices->options[AZ_subdomain_solve]
                  >= AZ_SOLVER_PARAMS) {
         AZ_printf_out("ERROR: Unknown subdomain solver %d\n",
                context->aztec_choices->options[AZ_subdomain_solve]);
         exit(1);
       }
       else {
          /* better to put most of this in the factorization */

          AZ_recover_sol_params(context->aztec_choices->options[
			        AZ_subdomain_solve], &sub_options, 
				&sub_params, &sub_status, &sub_matrix, 
			        &sub_precond, &sub_scaling);
          t1 = sub_options[AZ_recursion_level];
          sub_options[AZ_recursion_level]++;

          t2 = sub_options[AZ_output];
          if (context->proc_config[AZ_node] != 0 ) 
             sub_options[AZ_output] = AZ_none;

          t3 = context->proc_config[AZ_MPI_Tag];

          /* fix data_org */

          hold_data_org = context->A_overlapped->data_org;
          new_data_org = (int *) AZ_allocate( sizeof(int) * AZ_send_list );
          if (new_data_org == NULL) {
             AZ_printf_out("Error: Not enough space for subdomain matrix\n");
             exit(1);
          }
          context->A_overlapped->data_org = new_data_org;
          context->A_overlapped->matvec = AZ_MSR_matvec_mult;
          new_data_org[AZ_matrix_type] = AZ_MSR_MATRIX;
          new_data_org[AZ_N_internal]  = N;
          new_data_org[AZ_N_border  ]  = 0;
          new_data_org[AZ_N_external]  = 0;
          new_data_org[AZ_N_int_blk ]  = N;
          new_data_org[AZ_N_bord_blk]  = 0;
          new_data_org[AZ_N_ext_blk ]  = 0;
          new_data_org[AZ_N_neigh   ]  = 0;
          new_data_org[AZ_total_send]  = 0;
          new_data_org[AZ_name      ]  = hold_data_org[AZ_name];
          new_data_org[AZ_internal_use]= 0;
          new_data_org[AZ_N_rows      ]= N;
          sub_precond->Pmat = context->A_overlapped;
          sub_precond->prec_function = AZ_precondition;
       
          sub_proc_config[AZ_node] = 0;
          sub_proc_config[AZ_N_procs] = 1;
#ifdef AZTEC_MPI
          tptr = AZ_get_comm(context->proc_config);
          AZ_set_comm(sub_proc_config, *tptr);
#endif

          sprintf(label,"y in ssolve%d", sub_options[AZ_recursion_level]);
          y = AZ_manage_memory((N+1)*sizeof(double),
                             AZ_ALLOC, AZ_SYS+az_iterate_id, label, &i);

          for (i = 0 ; i < N ; i++ ) y[i] = x[i];
          for (i = 0 ; i < N ; i++ ) x[i] = 0.0;

          t4 = sub_options[AZ_keep_info];
          sub_options[AZ_keep_info] = 1;

          if (context->aztec_choices->options[AZ_pre_calc] >= AZ_reuse) {
             t5 = sub_options[AZ_pre_calc];
             sub_options[AZ_pre_calc] = AZ_sys_reuse;
          }

          AZ_oldsolve(x, y,sub_options,sub_params, sub_status, sub_proc_config,
                       context->A_overlapped, sub_precond, sub_scaling);

          sub_options[AZ_keep_info] = t4;
          if (context->aztec_choices->options[AZ_pre_calc] == AZ_sys_reuse) 
             sub_options[AZ_pre_calc]  = t5;

          sub_options[AZ_recursion_level] = t1;
          sub_options[AZ_output] = t2;
          context->A_overlapped->data_org = hold_data_org;
          AZ_free(new_data_org);
          context->proc_config[AZ_MPI_Tag] = t3;
       }
   }
      
}
Esempio n. 6
0
void AZ_pgmresr(double b[], double x[],double weight[], int options[],
	double params[], int proc_config[], double status[], AZ_MATRIX *Amat, 
	AZ_PRECOND *precond, struct AZ_CONVERGE_STRUCT *convergence_info)

/*******************************************************************************

  This routine uses Saad's restarted Genralized Minimum Residual method to solve
  the nonsymmetric matrix problem Ax = b.

  IMPORTANT NOTE: While the 2-norm of the gmres residual is available, the
  actual residual is not normally computed as part of the gmres algorithm. Thus,
  if the user uses a convergence condition (see AZ_gmres_global_scalars()) that
  is based on the 2-norm of the residual there is no need to compute the
  residual (i.e. r_avail = AZ_FALSE). However, if another norm of r is
  requested, AZ_gmres_global_scalars() sets r_avail = AZ_TRUE and the algorithm
  computes the residual.

  Author:          John N. Shadid, SNL, 1421
  =======

  Return code:     void
  ============

  Parameter list:
  ===============

  Amat:            Structure used for DMSR and DVBR sparse matrix storage (see
                   file Aztec User's Guide).

  b:               Right hand side of linear system.

  x:               On input, contains the initial guess. On output contains the
                   solution to the linear system.

  weight:          Vector of weights for convergence norm #4.

  options:         Determines specific solution method and other parameters.

  params:          Drop tolerance and convergence tolerance info.

  data_org:        Array containing information on the distribution of the
                   matrix to this processor as well as communication parameters
                   (see file Aztec User's Guide).

  proc_config:     Machine configuration.  proc_config[AZ_node] is the node
                   number.  proc_config[AZ_N_procs] is the number of processors.

  status:          On output, indicates termination status:
                    0:  terminated normally.
                   -1:  maximum number of iterations taken without achieving
                        convergence.
                   -2:  Breakdown. The algorithm can not proceed due to
                        numerical difficulties (usually a divide by zero).
                   -3:  Internal residual differs from the computed residual due
                        to a significant loss of precision.

  Amat:            Structure used to represent the matrix (see file az_aztec.h
                   and Aztec User's Guide).
*******************************************************************************/

{

  /* local variables */

  register int k;
  int          i, N, NN, converged, one = 1, iter, r_avail = AZ_FALSE;
  int          print_freq, proc, kspace;
  double     **UU, **CC, *dots, *tmp, *res;
  double       dble_tmp, r_2norm = 1.0, epsilon;
  double       rec_residual, scaled_r_norm, true_scaled_r=0.0;
  double       actual_residual = -1.0, minus_alpha, alpha;
  double       *dummy = (double *) 0;
  double       *UUblock, *CCblock;
  int          mm, ii;
  char         label[64],suffix[32], prefix[64];
  int          *data_org, str_leng, first_time = AZ_TRUE;
  double       doubleone = 1.0, minusone = -1.0, init_time = 0.0;
char *T = "T";
char *T2 = "N";


  /**************************** execution begins ******************************/

  sprintf(suffix," in gmresr%d",options[AZ_recursion_level]);
						/* set string that will be used */
                                                /* for manage_memory label      */
  /* set prefix for printing */

  str_leng = 0;
  for (i = 0; i < 16; i++) prefix[str_leng++] = ' ';
  for (i = 0 ; i < options[AZ_recursion_level]; i++ ) {
     prefix[str_leng++] = ' '; prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
     prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
  }
  prefix[str_leng] = '\0';

  data_org = Amat->data_org;

  /* pull needed values out of parameter arrays */

  N            = data_org[AZ_N_internal] + data_org[AZ_N_border];
  epsilon      = params[AZ_tol];
  proc         = proc_config[AZ_node];
  print_freq   = options[AZ_print_freq];
  kspace       = options[AZ_kspace];

  /* Initialize some values in convergence info struct */
  convergence_info->print_info = print_freq;
  convergence_info->iteration = 0;
  convergence_info->sol_updated = 0; /* GMRES seldom updates solution */
  convergence_info->epsilon = params[AZ_tol];

  /* allocate memory for required vectors */

  NN    = kspace  + 1;
  /* +1: make sure everybody allocates something */

  sprintf(label,"dots%s",suffix);
  dots  = AZ_manage_memory(2*NN*sizeof(double), AZ_ALLOC,AZ_SYS+az_iterate_id,label,&i);
  tmp   = &(dots[NN]);
  sprintf(label,"CC%s",suffix);
  CC    = (double **) AZ_manage_memory(2*NN*sizeof(double *),
                                       AZ_ALLOC,AZ_SYS+az_iterate_id,label,&i);
  UU    = &(CC[NN]);

  NN    = N + data_org[AZ_N_external];
  if (NN == 0) NN++; /* make sure everybody allocates something */
  NN = NN + (NN%2);  /* make sure things are aligned for intel  */


  sprintf(label,"UUblock%s",suffix);
  UUblock = AZ_manage_memory(2*NN*kspace*sizeof(double),
                             AZ_ALLOC, AZ_SYS+az_iterate_id,label, &i);
  for (k = 0; k < kspace; k++) UU[k] = &(UUblock[k*NN]);
  CCblock = &(UUblock[kspace*NN]);
  for (k = 0; k < kspace; k++) CC[k] = &(CCblock[k*NN]);

  sprintf(label,"res%s",suffix);
  res = AZ_manage_memory(NN*sizeof(double),AZ_ALLOC,AZ_SYS+az_iterate_id,label,&i);

  AZ_compute_residual(b, x, res, proc_config, Amat);

  /*
   * Compute a few global scalars:
   *     1) ||r||                corresponding to options[AZ_conv]
   *     2) scaled ||r||         corresponding to options[AZ_conv]
   */
  r_2norm = DDOT_F77(&N, res, &one, res, &one);
  AZ_gdot_vec(1, &r_2norm, &rec_residual, proc_config);  
  r_2norm = sqrt(r_2norm);
  rec_residual = r_2norm;

  AZ_compute_global_scalars(Amat, x, b, res,
                          weight, &rec_residual, &scaled_r_norm, options,
                          data_org, proc_config, &r_avail, NULL, NULL, NULL,
                          convergence_info);
  r_2norm = rec_residual;

  converged = scaled_r_norm < epsilon;

  if ( (options[AZ_output] != AZ_none) && 
       (options[AZ_output] != AZ_last) &&
       (options[AZ_output] != AZ_summary) &&
       (options[AZ_output] != AZ_warnings) && (proc == 0) )
    (void) AZ_printf_out("%siter:    0           residual = %e\n",
                           prefix,scaled_r_norm);

  iter = 0;
/*rst change  while (!converged && iter < options[AZ_max_iter]) { */
  while (!(convergence_info->converged) && iter < options[AZ_max_iter] && !(convergence_info->isnan)) {

    convergence_info->iteration = iter;
    i = 0;

/*rst change   while (i < kspace && !converged && iter < options[AZ_max_iter]) { */
    while (i < kspace && !(convergence_info->converged) && iter < options[AZ_max_iter]
           && !(convergence_info->isnan)) {

      iter++;
    convergence_info->iteration = iter;


      /* v_i+1 = A M^-1 v_i */

      DCOPY_F77(&N, res , &one, UU[i], &one);

      if (iter == 1) init_time = AZ_second();

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
        /* Start timer. */
      static int precID = -1;
      precID = Teuchos_startTimer( "AztecOO: Operation Prec*x", precID );
#endif
#endif
      precond->prec_function(UU[i],options,proc_config,params,Amat,precond);
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Stop timer. */
      Teuchos_stopTimer( precID );
#endif
#endif
      if (iter == 1) status[AZ_first_precond] = AZ_second() - init_time;

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Start timer. */
      static int matvecID = -1;
      matvecID = Teuchos_startTimer( "AztecOO: Operation Op*x", matvecID );
#endif
#endif
      Amat->matvec(UU[i], CC[i], Amat, proc_config);
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Stop timer. */
      Teuchos_stopTimer( matvecID );
#endif
#endif

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Start the timer. */
      static int orthoID = -1;
      orthoID = Teuchos_startTimer( "AztecOO: Orthogonalization", orthoID );
#endif
#endif

      /* Gram-Schmidt orthogonalization */

      if (!options[AZ_orthog]) { /* classical  (stabilized) */
         for (ii = 0 ; ii < 2 ; ii++ ) {
            dble_tmp = 0.0; mm = i;
            if (N == 0) for (k = 0 ; k < i ; k++) dots[k] = 0.0;
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Start the timer. */
      static int orthoInnerProdID = -1;
      orthoInnerProdID = Teuchos_startTimer( "AztecOO: Ortho (Inner Product)", orthoInnerProdID );
#endif
#endif
            DGEMV_F77(CHAR_MACRO(T[0]), &N, &mm, &doubleone, CCblock, &NN, CC[i], 
                   &one, &dble_tmp, dots, &one);

            AZ_gdot_vec(i, dots, tmp, proc_config);
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      Teuchos_stopTimer( orthoInnerProdID );
#endif
#endif

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Start the timer. */
      static int orthoUpdateID = -1;
      orthoUpdateID = Teuchos_startTimer( "AztecOO: Ortho (Update)", orthoUpdateID );
#endif
#endif
            DGEMV_F77(CHAR_MACRO(T2[0]), &N, &mm, &minusone, CCblock, &NN, dots, 
                   &one, &doubleone, CC[i], &one);
            DGEMV_F77(CHAR_MACRO(T2[0]), &N, &mm, &minusone, UUblock, &NN, dots,
                   &one, &doubleone, UU[i], &one);
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      Teuchos_stopTimer( orthoUpdateID );
#endif
#endif
         }
      }
      else {                    /* modified */
        for (k = 0; k < i; k++) {
          alpha = AZ_gdot(N, CC[k], CC[i], proc_config);
          minus_alpha = -alpha;
          DAXPY_F77(&N, &minus_alpha, CC[k], &one, CC[i], &one);
          DAXPY_F77(&N, &minus_alpha, UU[k], &one, UU[i], &one);
        }
      }

      /* normalize vector */

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      static int orthoNormID = -1;
      orthoNormID = Teuchos_startTimer( "AztecOO: Ortho (Norm)", orthoNormID );
#endif
#endif
      dble_tmp = sqrt(AZ_gdot(N, CC[i], CC[i], proc_config));
#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      Teuchos_stopTimer( orthoNormID );
#endif
#endif

      if (dble_tmp  > DBL_EPSILON*r_2norm)
        dble_tmp  = 1.0 / dble_tmp;
      else
        dble_tmp = 0.0;

      DSCAL_F77(&N, &dble_tmp, CC[i], &one);
      DSCAL_F77(&N, &dble_tmp, UU[i], &one);

      dble_tmp = AZ_gdot(N, CC[i], res, proc_config);
      DAXPY_F77(&N, &dble_tmp, UU[i], &one, x, &one);
      dble_tmp = -dble_tmp;
      DAXPY_F77(&N, &dble_tmp, CC[i], &one, res, &one);

#ifdef AZ_ENABLE_TIMEMONITOR
#ifdef HAVE_AZTECOO_TEUCHOS
      /* Stop the timer. */
      Teuchos_stopTimer( orthoID );
#endif
#endif

      /* determine residual norm & test convergence */

      r_2norm      = sqrt(AZ_gdot(N, res, res, proc_config));
      rec_residual = r_2norm;

      /*
       * Compute a few global scalars:
       *     1) ||r||                corresponding to options[AZ_conv]
       *     2) scaled ||r||         corresponding to options[AZ_conv]
       * NOTE: if r_avail = AZ_TRUE or AZ_FIRST is passed in, we perform
       * step 1), otherwise ||r|| is taken as rec_residual.
       */

      AZ_compute_global_scalars(Amat, x, b, res,
                              weight, &rec_residual, &scaled_r_norm, options,
                              data_org, proc_config, &r_avail, dummy, dummy,
                              dummy, convergence_info);

      converged = scaled_r_norm < epsilon;

/*rst change      if ( (iter%print_freq == 0) && proc == 0) */
      if ( (iter%print_freq == 0) &&
           (options[AZ_conv]!=AZTECOO_conv_test) && proc == 0)
        (void) AZ_printf_out("%siter: %4d           residual = %e\n",prefix,iter,
                       scaled_r_norm);

      i++;      /* subspace dim. counter dim(K) = i - 1 */
#ifdef out
      if (options[AZ_check_update_size] & converged)
         converged = AZ_compare_update_vs_soln(N, -1.,dble_tmp, UU[i-1], x,
                                           params[AZ_update_reduction],
                                           options[AZ_output], proc_config, &first_time);



      if (converged) {

        /* compute true residual using 'v[kspace]' as a temporary vector */

        AZ_scale_true_residual(x, b,
                               res, weight, &actual_residual, &true_scaled_r,
                               options, data_org, proc_config, Amat,
			       convergence_info);

        converged = true_scaled_r < params[AZ_tol];

        if (!converged && (AZ_get_new_eps(&epsilon, scaled_r_norm,
                                          true_scaled_r,
                                          options, proc_config) == AZ_QUIT)) {

          /*
           * Computed residual has converged, actual residual has not
           * converged, AZ_get_new_eps() has decided that it is time to quit.
           */

          AZ_terminate_status_print(AZ_loss, iter, status, rec_residual, params,
                                    true_scaled_r, actual_residual, options,
                                    proc_config);
          return;
        }
      }
#endif
    }
  }

  if ( (iter%print_freq != 0) && (proc == 0) && (options[AZ_output] != AZ_none)
       && (options[AZ_output] != AZ_warnings))
    (void) AZ_printf_out("%siter: %4d           residual = %e\n",
		   prefix,iter, scaled_r_norm);


  if (convergence_info->converged) {
    i = AZ_normal;
    scaled_r_norm = true_scaled_r;
  }
  else if (convergence_info->isnan) i = AZ_breakdown;
  else i = AZ_maxits;

  AZ_terminate_status_print(i, iter, status, rec_residual, params,
                            scaled_r_norm, actual_residual, options,
                            proc_config);

#ifdef out
  /* check if we exceeded maximum number of iterations */

  if (converged) {
    i = AZ_normal;
    scaled_r_norm = true_scaled_r;
  }
  else
    i = AZ_maxits;

  AZ_terminate_status_print(i, iter, status, rec_residual, params,
                            scaled_r_norm, actual_residual, options,
                            proc_config);

#endif
} /* AZ_pgmres */
Esempio n. 7
0
void AZ_pcg_f(double b[], double x[], double weight[], int options[],
              double params[], int proc_config[],double status[],
              AZ_MATRIX *Amat, AZ_PRECOND *precond,
              struct AZ_CONVERGE_STRUCT *convergence_info)

     /*******************************************************************************

  Conjugate Gradient algorithm to solve the symmetric matrix problem Ax = b.

  Author:          John N. Shadid, SNL, 1421
  =======

  Return code:     void
  ============

  Parameter list:
  ===============

  b:               Right hand side of linear system.

  x:               On input, contains the initial guess. On output contains the
                   solution to the linear system.

  weight:          Vector of weights for convergence norm #4.

  options:         Determines specific solution method and other parameters.

  params:          Drop tolerance and convergence tolerance info.

  proc_config:     Machine configuration.  proc_config[AZ_node] is the node
                   number.  proc_config[AZ_N_procs] is the number of processors.

  status:          On output, indicates termination status:
                    0:  terminated normally.
                   -1:  maximum number of iterations taken without achieving
                        convergence.
                   -2:  Breakdown. The algorithm can not proceed due to
                        numerical difficulties (usually a divide by zero).
                   -3:  Internal residual differs from the computed residual due
                        to a significant loss of precision.

  Amat:            Structure used to represent the matrix (see file az_aztec.h
                   and Aztec User's Guide).

  precond:         Structure used to represent the preconditioner
                   (see file az_aztec.h and Aztec User's Guide).
*******************************************************************************/



{

  /* local variables */

  register int i;
  int          N, NN, one = 1, iter = 1, r_avail = AZ_TRUE, j;
  int          precond_flag, print_freq, proc, brkdown_will_occur = AZ_FALSE;
  double       alpha, beta = 0.0, nalpha, true_scaled_r=-1.0;
  double      *r, *z, *p, *ap, actual_residual = -1.0;
  double       r_z_dot, r_z_dot_old, p_ap_dot, rec_residual=-1.0;
  double       scaled_r_norm=-1.0, brkdown_tol = DBL_EPSILON;
  int          *data_org, str_leng, first_time = AZ_TRUE;
  char         label[64],suffix[32], prefix[64];

  double **saveme, *ptap;
  int *kvec_sizes = NULL, current_kept = 0;
  double *dots;
  double doubleone = 1., dzero = 0.;
  char *T = "T";
  char *T2 = "N";
  double *block;



  /**************************** execution begins ******************************/

  sprintf(suffix," in cg%d",options[AZ_recursion_level]);  /* set string that will be used */
                                                           /* for manage_memory label      */
  /* set prefix for printing */

  str_leng = 0;
  for (i = 0; i < 16; i++) prefix[str_leng++] = ' ';
  for (i = 0 ; i < options[AZ_recursion_level]; i++ ) {
    prefix[str_leng++] = ' '; prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
    prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
  }
  prefix[str_leng] = '\0';


  /* pull needed values out of parameter arrays */

  data_org = Amat->data_org;

  N            = data_org[AZ_N_internal] + data_org[AZ_N_border];


  precond_flag = options[AZ_precond];
  proc         = proc_config[AZ_node];
  print_freq   = options[AZ_print_freq];

  /* Initialize some values in convergence info struct */
  convergence_info->print_info = print_freq;
  convergence_info->iteration = 0;
  convergence_info->sol_updated = 1; /* CG always updates solution */
  convergence_info->epsilon = params[AZ_tol]; /* Test against this */

  /* allocate space for necessary vectors */

  NN = N + data_org[AZ_N_external];
  if (NN == 0) NN++;  /* make sure everybody allocates something */
  NN = NN + (NN%2);   /* make sure things are aligned for assembly */
                      /* matvec on paragon. */



  sprintf(label,"z%s",suffix);
  p  = (double *) AZ_manage_memory(4*NN*sizeof(double),AZ_ALLOC,
                                   AZ_SYS+az_iterate_id, label, &j);
  r  = &(p[1*NN]);
  z  = &(p[2*NN]);
  ap = &(p[3*NN]);

  AZ_compute_residual(b, x, r, proc_config, Amat);

  if (options[AZ_apply_kvecs]) {
    AZ_compute_global_scalars(Amat, x, b, r,
                              weight, &rec_residual, &scaled_r_norm, options,
                              data_org, proc_config, &r_avail,NULL, NULL, &r_z_dot,
                              convergence_info);
    AZ_space_for_kvecs(AZ_OLD_ADDRESS, &kvec_sizes, &saveme,
                       &ptap, options, data_org, suffix,
                       proc_config[AZ_node], &block);
    dots = (double *) AZ_allocate(2*kvec_sizes[AZ_Nkept]*sizeof(double));
    if (dots == NULL) {
      printf("Not space to apply vectors in CG\n");
      exit(1);
    }
    DGEMV_F77(CHAR_MACRO(T[0]),&N,&(kvec_sizes[AZ_Nkept]),&doubleone,block,&N, r, &one, &dzero, dots, &one);
    AZ_gdot_vec(kvec_sizes[AZ_Nkept], dots, &(dots[kvec_sizes[AZ_Nkept]]), proc_config);
    for (i = 0; i < kvec_sizes[AZ_Nkept]; i++) dots[i] = dots[i]/ptap[i];
    DGEMV_F77(CHAR_MACRO(T2[0]), &N, &(kvec_sizes[AZ_Nkept]), &doubleone, block, &N, dots, &one, &doubleone,
              x,  &one);

    AZ_free(dots);
    AZ_compute_residual(b, x, r, proc_config, Amat);
    if ((options[AZ_output] != AZ_none) && (proc == 0))
      printf("\t\tApplied Previous Krylov Vectors ... \n\n");
  }
  if (options[AZ_keep_kvecs] > 0)
    AZ_space_for_kvecs(AZ_NEW_ADDRESS, &kvec_sizes, &saveme,
                       &ptap, options, data_org, suffix,
                       proc_config[AZ_node], &block);



  /*  z = M r */
  /*  p = 0   */

  DCOPY_F77(&N, r, &one, z, &one);
  status[AZ_first_precond] = AZ_second();
  if (precond_flag)
    precond->prec_function(z,options,proc_config,params,Amat,precond);

  status[AZ_first_precond] = AZ_second() - status[AZ_first_precond];

  for (i = 0; i < N; i++ ) p[i] = 0.0;

  /* compute a few global scalars:                                 */
  /*     1) ||r||                corresponding to options[AZ_conv] */
  /*     2) scaled ||r||         corresponding to options[AZ_conv] */
  /*     3) r_z_dot = <z, r>                                       */

  AZ_compute_global_scalars(Amat, x, b, r,
                            weight, &rec_residual, &scaled_r_norm, options,
                            data_org, proc_config, &r_avail,r, z, &r_z_dot,
                            convergence_info);
  true_scaled_r = scaled_r_norm;

  if ((options[AZ_output] != AZ_none) &&
      (options[AZ_output] != AZ_last) &&
      (options[AZ_output] != AZ_warnings) &&
      (options[AZ_output] != AZ_summary) &&
      (options[AZ_conv]!=AZTECOO_conv_test) && (proc == 0))
    {
      (void) AZ_printf_out("%siter:    0           residual = %e\n",
                     prefix,scaled_r_norm);
      AZ_flush_out();
    }


  for (iter = 1; iter <= options[AZ_max_iter] && !(convergence_info->converged) && 
	 !(convergence_info->isnan); iter++ ) {
    convergence_info->iteration = iter;

    /* p  = z + beta * p */
    /* ap = A p          */

    for (i = 0; i < N; i++) p[i] = z[i] + beta * p[i];
    Amat->matvec(p, ap, Amat, proc_config);

    if ((options[AZ_orth_kvecs]) && (kvec_sizes != NULL)) {
      for (i = 0; i < current_kept; i++) {
        alpha = -AZ_gdot(N, ap, saveme[i], proc_config)/ptap[i];
        DAXPY_F77(&N, &alpha,  saveme[i],  &one, p, &one);
      }
      if (current_kept > 0) Amat->matvec(p, ap, Amat, proc_config);
    }

    p_ap_dot = AZ_gdot(N, p, ap, proc_config);
    if (p_ap_dot < brkdown_tol) {

      /* possible problem */

      if (p_ap_dot < 0 || AZ_breakdown_f(N, p, ap, p_ap_dot, proc_config)) {

        /* something wrong */

        AZ_scale_true_residual(x, b, ap,
                               weight, &actual_residual, &true_scaled_r,
                               options, data_org, proc_config, Amat,
                               convergence_info);
        AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,
                                  params, true_scaled_r, actual_residual,
                                  options, proc_config);
        return;
      }
      else brkdown_tol = 0.1 * p_ap_dot;
    }

    alpha  = r_z_dot / p_ap_dot;
    nalpha = -alpha;

    /* x = x + alpha*p  */
    /* r = r - alpha*Ap */
    /* z = M^-1 r       */

    DAXPY_F77(&N, &alpha,  p,  &one, x, &one);

    if (iter <= options[AZ_keep_kvecs]) {
      DCOPY_F77(&N, p, &one, saveme[iter-1], &one);
      ptap[iter-1] = p_ap_dot ;
      kvec_sizes[AZ_Nkept]++;
      current_kept = kvec_sizes[AZ_Nkept];
    }
    /*
      else {
      i = (iter-1)%options[AZ_keep_kvecs];
      DCOPY_F77(&N, p, &one, saveme[i], &one);
      ptap[i] = p_ap_dot ;
      }
    */
    DAXPY_F77(&N, &nalpha, ap, &one, r, &one);
    DCOPY_F77(&N, r, &one, z, &one);

    if (precond_flag) precond->prec_function(z,options,proc_config,params,Amat,precond);

    r_z_dot_old = r_z_dot;

    /* compute a few global scalars:                                 */
    /*     1) ||r||                corresponding to options[AZ_conv] */
    /*     2) scaled ||r||         corresponding to options[AZ_conv] */
    /*     3) r_z_dot = <z, r>                                       */

    AZ_compute_global_scalars(Amat, x, b, r,
                              weight, &rec_residual, &scaled_r_norm, options,
                              data_org, proc_config, &r_avail, r, z, &r_z_dot,
                              convergence_info);

    if (brkdown_will_occur) {
      AZ_scale_true_residual( x, b, ap,
                              weight, &actual_residual, &true_scaled_r, options,
                              data_org, proc_config, Amat,convergence_info);
      AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,
                                params, true_scaled_r, actual_residual, options,
                                proc_config);
      return;
    }

    beta = r_z_dot / r_z_dot_old;

    if (fabs(r_z_dot) < brkdown_tol) {

      /* possible problem */

      if (AZ_breakdown_f(N, r, z, r_z_dot, proc_config))
        brkdown_will_occur = AZ_TRUE;
      else
        brkdown_tol = 0.1 * fabs(r_z_dot);
    }

    if ( (iter%print_freq == 0) && (options[AZ_conv]!=AZTECOO_conv_test) && proc == 0 )
      {
        (void) AZ_printf_out("%siter: %4d           residual = %e\n", prefix, iter,
                       scaled_r_norm);
        AZ_flush_out();
      }

    /* convergence tests */

    if (options[AZ_check_update_size] & convergence_info->converged)
      convergence_info->converged = AZ_compare_update_vs_soln(N, -1.,alpha, p, x,
							      params[AZ_update_reduction],
							      options[AZ_output], proc_config, &first_time);


    if (convergence_info->converged) {
      AZ_scale_true_residual(x, b, ap,
                             weight, &actual_residual, &true_scaled_r, options,
                             data_org, proc_config, Amat, convergence_info);
      
      
      
      /*
       * Note: epsilon and params[AZ_tol] may not be equal due to a previous
       * call to AZ_get_new_eps().
       */
      
      if (!(convergence_info->converged) && options[AZ_conv]!=AZTECOO_conv_test) {

	if (AZ_get_new_eps(&(convergence_info->epsilon), scaled_r_norm, true_scaled_r,
			   options, proc_config) == AZ_QUIT) {

	  /*
	   * Computed residual has converged, actual residual has not converged,
	   * AZ_get_new_eps() has decided that it is time to quit.
	   */
	  
	  AZ_terminate_status_print(AZ_loss, iter, status, rec_residual, params,
				    true_scaled_r, actual_residual, options,
				    proc_config);
	  return;
	}
      }
    }
  }
  iter--;
  if ( (iter%print_freq != 0) && (proc == 0) && (options[AZ_output] != AZ_none)
       && (options[AZ_output] != AZ_warnings) &&
      (options[AZ_conv]!=AZTECOO_conv_test) )
    {
      (void) AZ_printf_out("%siter: %4d           residual = %e\n", prefix, iter,
                     scaled_r_norm);
      AZ_flush_out();
    }

  /* check if we exceeded maximum number of iterations */

  if (convergence_info->converged) {
    i = AZ_normal; scaled_r_norm = true_scaled_r; }
  else if (convergence_info->isnan) i = AZ_breakdown;
  else
    i = AZ_maxits;

  AZ_terminate_status_print(i, iter, status, rec_residual, params,
                            scaled_r_norm, actual_residual, options,
                            proc_config);

} /* AZ_pcg */
Esempio n. 8
0
void AZ_pbicgstab(double b[], double x[], double weight[], int options[], 
	double params[],int proc_config[], double status[], AZ_MATRIX *Amat, 
	AZ_PRECOND *precond, struct AZ_CONVERGE_STRUCT *convergence_info)

/*******************************************************************************

  Vand der Vorst's (1990) variation of the Bi-Conjugate Gradient algorthm
  (Sonneveld (1984,1989)) to solve the nonsymmetric matrix problem Ax = b.

  Author:          John N. Shadid, SNL, 1421
  =======

  Return code:     void
  ============

  Parameter list:
  ===============

  b:               Right hand side of linear system.

  x:               On input, contains the initial guess. On output contains the
                   solution to the linear system.

  weight:          Vector of weights for convergence norm #4.

  options:         Determines specific solution method and other parameters.

  params:          Drop tolerance and convergence tolerance info.

  proc_config:     Machine configuration.  proc_config[AZ_node] is the node
                   number.  proc_config[AZ_N_procs] is the number of processors.

  status:          On output, indicates termination status:
                    0:  terminated normally.
                   -1:  maximum number of iterations taken without achieving
                        convergence.
                   -2:  Breakdown. The algorithm can not proceed due to
                        numerical difficulties (usually a divide by zero).
                   -3:  Internal residual differs from the computed residual due
                        to a significant loss of precision.

  Amat:            Structure used to represent the matrix (see file az_aztec.h
                   and Aztec User's Guide).
  precond:         Structure used to represent the preconditionner
                   (see file az_aztec.h and Aztec User's Guide).

*******************************************************************************/

{

  /* local variables */

  register int    i;
  int             N, NN, one = 1, iter=1, r_avail = AZ_TRUE, j;
  int             precond_flag, print_freq, proc;
  int             brkdown_will_occur = AZ_FALSE;
  double          alpha = 1.0, beta, true_scaled_r=0.0;
  double          *v, *r, *rtilda, *p, *phat, *s, *shat;
  double          omega = 1.0, dot_vec[2], tmp[2], init_time = 0.0;
  double          rhonm1 = 1.0, rhon, sigma, brkdown_tol = DBL_EPSILON;
  double          scaled_r_norm= -1.0, actual_residual = -1.0, rec_residual= -1.0;
  double          dtemp;
  int          *data_org, str_leng, first_time = AZ_TRUE;
  char         label[64],suffix[32], prefix[64];


  /**************************** execution begins ******************************/

  sprintf(suffix," in cgstab%d",options[AZ_recursion_level]);
                                                           /* set string that will be used */
                                                           /* for manage_memory label      */
  /* set prefix for printing */

  str_leng = 0;
  for (i = 0; i < 16; i++) prefix[str_leng++] = ' ';
  for (i = 0 ; i < options[AZ_recursion_level]; i++ ) {
     prefix[str_leng++] = ' '; prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
     prefix[str_leng++] = ' '; prefix[str_leng++] = ' ';
  }
  prefix[str_leng] = '\0';

  data_org = Amat->data_org;

  /* pull needed values out of parameter arrays */

  N            = data_org[AZ_N_internal] + data_org[AZ_N_border];
  precond_flag = options[AZ_precond];
  proc         = proc_config[AZ_node];
  print_freq   = options[AZ_print_freq];

  /* Initialize some values in convergence info struct */
  convergence_info->print_info = print_freq;
  convergence_info->iteration = 0;
  convergence_info->sol_updated = 1; /* BiCGStab always updates solution */
  convergence_info->epsilon = params[AZ_tol]; /* Test against this */

  /* allocate memory for required vectors */

  NN     = N + data_org[AZ_N_external];
  if (NN == 0) NN++;   /* make sure everybody allocates something*/
  NN = NN + (NN%2);    /* make sure things are aligned for the   */
                       /* assembly coded matvec() on the Intel.  */

  sprintf(label,"phat%s",suffix);
  phat   = (double *) AZ_manage_memory(7*NN*sizeof(double), AZ_ALLOC, 
                                       AZ_SYS+az_iterate_id, label,&j);
  p      = &(phat[1*NN]);
  shat   = &(phat[2*NN]);   /* NOTE: phat and shat must be aligned */
                            /*       so that the assembly dgemv    */
                            /*       works on the paragon.         */
  s      = &(phat[3*NN]);
  r      = &(phat[4*NN]);
  rtilda = &(phat[5*NN]);
  v      = &(phat[6*NN]);

  AZ_compute_residual(b, x, r, proc_config, Amat);

  /* v, p <- 0 */

  for (i = 0; i < N; i++) v[i] = p[i] = 0.0;

  /* set rtilda */

  if (options[AZ_aux_vec] == AZ_resid)
    DCOPY_F77(&N, r, &one, rtilda, &one);
  else
    AZ_random_vector(rtilda, data_org, proc_config);

  /*
   * Compute a few global scalars:
   *     1) ||r||                corresponding to options[AZ_conv]
   *     2) scaled ||r||         corresponding to options[AZ_conv]
   *     3) rho = <rtilda, r>
   */

  AZ_compute_global_scalars(Amat, x, b, r,
                            weight, &rec_residual, &scaled_r_norm, options,
                            data_org, proc_config,&r_avail,r,rtilda, &rhon,
                            convergence_info);
  true_scaled_r = scaled_r_norm;

  if ((options[AZ_output] != AZ_none) && 
      (options[AZ_output] != AZ_last) &&
      (options[AZ_output] != AZ_warnings) &&
      (options[AZ_output] != AZ_summary) &&
      (options[AZ_conv]!=AZTECOO_conv_test) && (proc == 0))
    (void) AZ_printf_out("%siter:    0           residual = %e\n",prefix,scaled_r_norm);


  for (iter = 1; iter <= options[AZ_max_iter] && !(convergence_info->converged)
	 && !(convergence_info->isnan); iter++) {
    if (brkdown_will_occur) {
      AZ_scale_true_residual( x, b, v,
                             weight, &actual_residual, &true_scaled_r, options,
                             data_org, proc_config, Amat, convergence_info);

      AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,
                                params, true_scaled_r, actual_residual, options,
                                proc_config);
      return;
    }

    beta = (rhon/rhonm1) * (alpha/omega);

    if (fabs(rhon) < brkdown_tol) { /* possible problem */
      if (AZ_breakdown_f(N, r, rtilda, rhon, proc_config))
        brkdown_will_occur = AZ_TRUE;
      else
        brkdown_tol = 0.1 * fabs(rhon);
    }

    rhonm1 = rhon;

    /* p    = r + beta*(p - omega*v)       */
    /* phat = M^-1 p                       */
    /* v    = A phat                       */

    dtemp = beta * omega;
    for (i = 0; i < N; i++) p[i] = r[i] + beta * p[i] - dtemp * v[i];
    DCOPY_F77(&N, p, &one, phat, &one);

    if (iter==1) init_time = AZ_second();
    if (precond_flag)
      precond->prec_function(phat,options,proc_config,params,Amat,precond);

    if (iter==1) status[AZ_first_precond] = AZ_second() - init_time;

    Amat->matvec(phat, v, Amat, proc_config);

    sigma = AZ_gdot(N, rtilda, v, proc_config);

    if (fabs(sigma) < brkdown_tol) { /* possible problem */
      if (AZ_breakdown_f(N, rtilda, v, sigma, proc_config)) {

        /* break down */

        AZ_scale_true_residual( x, b, v,
                               weight, &actual_residual, &true_scaled_r,
                               options, data_org,proc_config, Amat,
			       convergence_info);

        AZ_terminate_status_print(AZ_breakdown, iter, status, rec_residual,
                                  params, true_scaled_r, actual_residual,
                                  options, proc_config);
        return;
      }
      else brkdown_tol = 0.1 * fabs(sigma);
    }

    alpha = rhon / sigma;

    /* s = r - alpha*v                     */
    /* shat = M^-1 s                       */
    /* r = A shat (r is a tmp here for t ) */

    for (i = 0; i < N; i++) s[i] = r[i] - alpha * v[i];
    DCOPY_F77(&N, s, &one, shat, &one);

    if (precond_flag)    
      precond->prec_function(shat,options,proc_config,params,Amat,precond);

    Amat->matvec(shat, r, Amat, proc_config);


    /* omega = (t,s)/(t,t) with r = t */

    dot_vec[0] = DDOT_F77(&N, r, &one, s, &one);
    dot_vec[1] = DDOT_F77(&N, r, &one, r, &one);
    AZ_gdot_vec(2, dot_vec, tmp, proc_config);

    if (fabs(dot_vec[1]) < DBL_MIN) {
      omega = 0.0;
      brkdown_will_occur = AZ_TRUE;
    }
    else omega = dot_vec[0] / dot_vec[1];

    /* x = x + alpha*phat + omega*shat */
    /* r = s - omega*r */

    DAXPY_F77(&N, &alpha, phat, &one, x, &one);
    DAXPY_F77(&N, &omega, shat, &one, x, &one);

    for (i = 0; i < N; i++) r[i] = s[i] - omega * r[i];

    /*
     * Compute a few global scalars:
     *     1) ||r||                corresponding to options[AZ_conv]
     *     2) scaled ||r||         corresponding to options[AZ_conv]
     *     3) rho = <rtilda, r>
     */

    AZ_compute_global_scalars(Amat, x, b, r,
                              weight, &rec_residual, &scaled_r_norm, options,
                              data_org, proc_config, &r_avail, r, rtilda, &rhon,
                              convergence_info);

    if ( (iter%print_freq == 0) && proc == 0)
      (void) AZ_printf_out("%siter: %4d           residual = %e\n",prefix,iter,
                     scaled_r_norm);

    /* convergence tests */

    if (options[AZ_check_update_size] & convergence_info->converged) {
      dtemp = alpha/omega;
      DAXPY_F77(&N, &dtemp, phat, &one, shat, &one);
      convergence_info->converged = AZ_compare_update_vs_soln(N, -1.,omega, shat, x,
                                         params[AZ_update_reduction],
                                         options[AZ_output], proc_config, &first_time);
    }

    if (convergence_info->converged) {
      AZ_scale_true_residual(x, b, v,
                             weight, &actual_residual, &true_scaled_r, options,
                             data_org, proc_config, Amat, convergence_info);


      /*
       * Note: epsilon and params[AZ_tol] may not be equal due to a previous
       *       call to AZ_get_new_eps().
       */

      if (!(convergence_info->converged) && options[AZ_conv]!=AZTECOO_conv_test) {
	if (AZ_get_new_eps(&convergence_info->epsilon, scaled_r_norm, true_scaled_r,
			   options, proc_config) == AZ_QUIT) {

	  /*
	   * Computed residual has converged, actual residual has not converged,
	   * AZ_get_new_eps() has decided that it is time to quit.
	   */
	  
	  AZ_terminate_status_print(AZ_loss, iter, status, rec_residual, params,
				    true_scaled_r, actual_residual, options,
				    proc_config);
	  return;
	}
      }
    }
  }

  iter--;
  if ( (iter%print_freq != 0) && (proc == 0) && (options[AZ_output] != AZ_none)
       && (options[AZ_output] != AZ_warnings) &&
       (options[AZ_conv]!=AZTECOO_conv_test))
    (void) AZ_printf_out("%siter: %4d           residual = %e\n", prefix,iter,
                   scaled_r_norm);

  /* check if we exceeded maximum number of iterations */

  if (convergence_info->converged) {
    i = AZ_normal;
    scaled_r_norm = true_scaled_r;
  }
  else if (convergence_info->isnan) i = AZ_breakdown;
  else
    i = AZ_maxits;

  AZ_terminate_status_print(i, iter, status, rec_residual, params,
                            scaled_r_norm, actual_residual, options,
                            proc_config);

} /* bicgstab */
Esempio n. 9
0
int AZ_check_input(int data_org[], int options[], double params[],
                   int proc_config[])

/*******************************************************************************

  Routine to perform checks for iterative solver library. This is to be called
  by the user of the solver library who must supply the necessary information
  in the input arrays. The routine checks that these values. If all the values
  are valid AZ_check_input() returns 0. Otherwise it returns an error code.

  Author:          Scott A. Hutchinson, SNL, 1421
  =======

  Return code:     int, error code, 0 => no errors.
  ============

  Parameter list:
  ===============

  data_org:        Array containing information on the distribution of the
                   matrix to this processor as well as communication parameters
                   (see Aztec User's Guide).

  options:         Determines specific solution method and other parameters.

  params:          Drop tolerance and convergence tolerance info.

  proc_config:     Machine configuration.  proc_config[AZ_node] is the node
                   number.  proc_config[AZ_N_procs] is the number of processors.

*******************************************************************************/

{

  /* local variables */

  int      i, sum;
  char     yo[32];

  sprintf(yo, "AZ_check_input: ");

  /* set a few default values */

  if (params[AZ_tol]            < 0.0       ) params[AZ_tol]          = 1.e-06;
  if (params[AZ_drop]           < 0.0       ) params[AZ_drop]         = 0.;
  if (params[AZ_omega]< 0.0 || params[AZ_omega]>1.) 
                                              params[AZ_omega]        = 1.;
  if (data_org[AZ_N_border]    == AZ_default) data_org[AZ_N_border]   = 0;
  if (data_org[AZ_N_external]  == AZ_default) data_org[AZ_N_external] = 0;
  if (data_org[AZ_N_bord_blk]  == AZ_default) data_org[AZ_N_bord_blk] = 0;
  if (data_org[AZ_N_ext_blk]   == AZ_default) data_org[AZ_N_ext_blk]  = 0;
  if (data_org[AZ_N_neigh]     == AZ_default) data_org[AZ_N_neigh]    = 0;
  if (data_org[AZ_total_send]  == AZ_default) data_org[AZ_total_send] = 0;
  if (data_org[AZ_name]        == AZ_default) data_org[AZ_name]       = 1;
  if (data_org[AZ_matrix_type] == AZ_default) data_org[AZ_matrix_type] =
                                                AZ_VBR_MATRIX;

  sum = 0;
  for (i = 0; i < data_org[AZ_N_neigh]; i++)
    sum += data_org[AZ_send_length + i];
  data_org[AZ_total_send] = sum;

  /* check for warnings */

  if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX) {
    if ((data_org[AZ_N_int_blk]  != data_org[AZ_N_internal])  ||
        (data_org[AZ_N_bord_blk] != data_org[AZ_N_border]) ||
        (data_org[AZ_N_ext_blk]  != data_org[AZ_N_external])) {

      /* set blocks information for msr applications */

      (void) AZ_printf_out( "Warning: Setting the number of blocks equal\n");
      (void) AZ_printf_out( "         to the number of unknowns for this\n");
      (void) AZ_printf_out( "         MSR application.                  \n");
      data_org[AZ_N_int_blk]  = data_org[AZ_N_internal];
      data_org[AZ_N_bord_blk] = data_org[AZ_N_border];
      data_org[AZ_N_ext_blk]  = data_org[AZ_N_external];
    }
  }

  /* do some error checking on the contents of "options" */

  if ( options[AZ_solver]     < AZ_cg           ||
       options[AZ_solver]     > AZ_lu            ) return  -1;

  if (options[AZ_scaling]     < AZ_none         ||
      options[AZ_scaling]     > AZ_sym_BJacobi   ) return  -2;

  if ((options[AZ_precond]    < AZ_none         ||
      options[AZ_precond]     > AZ_user_precond  ) &&
     (options[AZ_precond]    >= AZ_SOLVER_PARAMS)) return  -3;

  if (options[AZ_conv]        < AZ_r0                 ||
      options[AZ_conv]        > AZ_inf_noscaled  ) return  -4;

  if (options[AZ_output]      < AZ_all           ) return  -5;

  if (options[AZ_pre_calc]    < AZ_recalc       &&
      options[AZ_pre_calc]    > AZ_sys_reuse     ) return  -6;

  if (options[AZ_max_iter]    < 1                ) return  -7;

  if (options[AZ_precond]    == AZ_ls           &&
      options[AZ_poly_ord]    > AZ_MAX_POLY_ORDER) return  -8;

  if (options[AZ_overlap]  < AZ_diag )             return -9;

  if (options[AZ_solver]     == AZ_gmres        &&
      options[AZ_kspace]      < 1                ) return -10;

  if (options[AZ_solver]     == AZ_GMRESR       &&
      options[AZ_kspace]      < 1                ) return -10;

  if (options[AZ_orthog]     != AZ_classic         &&
      options[AZ_orthog]     != AZ_modified        &&
      options[AZ_orthog]     != AZ_single_classic  &&
      options[AZ_orthog]     != AZ_single_modified &&
      options[AZ_orthog]     != AZ_double_classic  &&
      options[AZ_orthog]     != AZ_double_modified ) return -11;

  if (options[AZ_aux_vec]    != AZ_resid        &&
      options[AZ_aux_vec]    != AZ_rand          ) return -12;

  if (data_org[AZ_N_border]   < 0                ) return -13;
  if (data_org[AZ_N_internal] < 0                ) return -14;
  if (data_org[AZ_N_external] < 0                ) return -15;
  if (data_org[AZ_N_bord_blk] < 0                ) return -16;
  if (data_org[AZ_N_int_blk]  < 0                ) return -17;
  if (data_org[AZ_N_ext_blk]  < 0                ) return -18;

  if (data_org[AZ_N_neigh]    < 0               ||
      data_org[AZ_N_neigh]    > AZ_MAX_NEIGHBORS ) return -19;

  if (proc_config[AZ_N_procs]<= 0                ) return -20;
  if (proc_config[AZ_node]    < 0                ) return -21;

  /* vector of neighboring processor numbers */

  for (i = 0; i < data_org[AZ_N_neigh]; i++) {
    if (data_org[AZ_neighbors + i] >= proc_config[AZ_N_procs] ||
        data_org[AZ_neighbors + i] < 0           ) return -22;
  }

  /* vector of number of unknowns to receive from neighbor */

  for (i = 0; i < data_org[AZ_N_neigh]; i++) {
    if (data_org[AZ_rec_length + i ] > data_org[AZ_N_external] ||
        data_org[AZ_rec_length + i ] < 0         ) return -23;
  }

  /* vector of number of unknowns to send to neighbor */

  sum = data_org[AZ_N_internal] + data_org[AZ_N_border];

  for (i = 0; i < data_org[AZ_N_neigh]; i++) {
    if (data_org[AZ_send_length+i] > sum ||
        data_org[AZ_send_length + i] < 0         ) return -24;
    else {
      if (data_org[AZ_send_length + i] > data_org[AZ_N_border]) {
        (void) AZ_printf_err( "WARNING: Processor %d sends more than just its \
border points implying that the\n         matrix sparsity pattern is not \
symmetric.\n", 
                       proc_config[AZ_node]);
/*
        (void) AZ_printf_err( "WARNING: Processor %d sends more than just ",
                       proc_config[AZ_node]);
        (void) AZ_printf_err("its border points implying that the matrix\n");
        (void) AZ_printf_err("         sparsity pattern is not symmetric.\n");
*/
      }
    }
  }

  if ( (options[AZ_output] > 0) && proc_config[AZ_node] == 0) {
    (void) AZ_printf_out("\n======================================="
                   "========================================\n");
    (void) AZ_printf_out("%sSetup information on processor 0\n\n", yo);
    (void) AZ_printf_out("\tsolver:\t\t\t\t\t%d\n", options[AZ_solver]);
    (void) AZ_printf_out("\tconvergence flag:\t\t\t%d\n", options[AZ_conv]);
    (void) AZ_printf_out("\tmaximum iterations:\t\t\t%d\n",
                   options[AZ_max_iter]);
    (void) AZ_printf_out("\treordering:    \t\t\t\t%d\n", options[AZ_reorder]);
    (void) AZ_printf_out("\tpreconditioner:\t\t\t\t%d\n", options[AZ_precond]);
    (void) AZ_printf_out("\tpolynomial order:\t\t\t%d\n",
                   options[AZ_poly_ord]);
  if (options[AZ_solver]==AZ_gmres) {
    (void) AZ_printf_out("\tGMRES ill conditioning threshold:\t\t\t%7.1e\n",
                   params[AZ_ill_cond_thresh]);
    (void) AZ_printf_out("\tGMRES restart size:\t\t\t%d\n",
                   options[AZ_kspace]);
    (void) AZ_printf_out("\torthogonalization:\t\t\t%d\n", options[AZ_orthog]);}
    (void) AZ_printf_out("\ttolerance:\t\t\t\t%7.1e\n", params[AZ_tol]);
    (void) AZ_printf_out("\tdrop:\t\t\t\t\t%7.1e\n", params[AZ_drop]);
    if ( (options[AZ_precond] == AZ_dom_decomp) &&
         (options[AZ_subdomain_solve] == AZ_ilut) ) {
      if (params[AZ_rthresh]!=0.0)
      (void) AZ_printf_out("\tRelative threshold:\t\t\t%7.1e\n", params[AZ_rthresh]);
      if (params[AZ_athresh]!=0.0)
      (void) AZ_printf_out("\tAbsolute threshold:\t\t\t%7.1e\n", params[AZ_athresh]);

    (void) AZ_printf_out("\tfill-in:\t\t\t\t%7.1e\n", params[AZ_ilut_fill]);}
    if ( (options[AZ_precond] == AZ_dom_decomp) &&
         (options[AZ_subdomain_solve] == AZ_rilu) ) {
    (void) AZ_printf_out("\tomega:\t\t\t\t\t%7.1e\n", params[AZ_omega]);}
    if ( (options[AZ_precond] == AZ_dom_decomp) && (
         (options[AZ_subdomain_solve] == AZ_rilu) ||
         (options[AZ_subdomain_solve] == AZ_ilu ) ||
         (options[AZ_subdomain_solve] == AZ_bilu) ||
         (options[AZ_subdomain_solve] == AZ_bilu_ifp) ||
         (options[AZ_subdomain_solve] == AZ_icc)) ) {
      if (params[AZ_rthresh]!=0.0)
      (void) AZ_printf_out("\tRelative threshold:\t\t\t%7.1e\n", params[AZ_rthresh]);
      if (params[AZ_athresh]!=0.0)
      (void) AZ_printf_out("\tAbsolute threshold:\t\t\t%7.1e\n", params[AZ_athresh]);
    (void) AZ_printf_out("\tfill-in:\t\t\t\t\t%d\n", options[AZ_graph_fill]);
    (void) AZ_printf_out("\toverlap:\t\t\t\t\t%d\n", options[AZ_overlap]);
  if ( proc_config[AZ_N_procs] > 0) 
    (void) AZ_printf_out("\ttypeoverlap:\t\t\t\t%d\n", options[AZ_type_overlap]);}
    (void) AZ_printf_out( "\n");
  }

  /* output debug information */

 if ((options[AZ_output] > 0) && proc_config[AZ_node] == 0) {
    (void) AZ_printf_out( "\tNumber of internal unknowns:\t\t%d\n",
                   data_org[AZ_N_internal]);
    (void) AZ_printf_out( "\tNumber of border  unknowns:\t\t%d\n",
                   data_org[AZ_N_border]);
    (void) AZ_printf_out( "\tTotal number of unknowns:\t\t%d\n",
                   data_org[AZ_N_internal] + data_org[AZ_N_border]);
    (void) AZ_printf_out("\tNumber of external unknowns:\t\t%d\n",
                   data_org[AZ_N_external]);
    (void) AZ_printf_out( "\tNumber of internal blocks:\t\t%d\n",
                   data_org[AZ_N_int_blk]);
    (void) AZ_printf_out( "\tNumber of border  blocks:\t\t%d\n",
                   data_org[AZ_N_bord_blk]);
    (void) AZ_printf_out( "\tTotal number of blocks:\t\t\t%d\n",
                   data_org[AZ_N_int_blk] + data_org[AZ_N_bord_blk]);
    (void) AZ_printf_out("\tNumber of external blocks:\t\t%d\n",
                   data_org[AZ_N_ext_blk]);
    (void) AZ_printf_out( "\tNumber of processors:\t\t\t%d\n",
                   proc_config[AZ_N_procs]);
    (void) AZ_printf_out( "\tNode number:\t\t\t\t%d\n", proc_config[AZ_node]);
    (void) AZ_printf_out( "\tNumber of neighbors:\t\t\t%d\n",
                   data_org[AZ_N_neigh]);
    (void) AZ_printf_out( "\tNumber of unknowns sent to neighbors:\t%d\n",
                   data_org[AZ_total_send]);
    (void) AZ_printf_out( "======================================="
                   "========================================\n");
  }

  /* no errors detected */

  return 0;

} /* AZ_check_input() */
Esempio n. 10
0
int AZ_check_options(int options[], int az_proc, int data_org[], int az_nprocs,
                     double params[], AZ_MATRIX *Amat, AZ_PRECOND *precond)

/*******************************************************************************

  Check values in option arrays for validity and compatibility.

  Author:          Ray S. Tuminaro, 1422, SNL
  =======

  Return code:     int, 1 indicates satisfactory check, 0 indicates a warning or
  ============     error has been encountered.

  Parameter list:
  ===============

  options:         Determines specific solution method and other parameters.

  az_proc:         Current processor.

  data_org:        Array containing information on the distribution of the
                   matrix to this processor as well as communication parameters
                   (see Aztec User's Guide).

  az_nprocs:       Number of processor in the current machine configuration.

  params:          Drop tolerance and convergence tolerance info.

*******************************************************************************/

{

  int   i;
  char     yo[32];

  int *sub_options;
  double     *sub_params, *sub_status;
  AZ_MATRIX  *sub_matrix;
  AZ_PRECOND *sub_precond;
  struct AZ_SCALING *sub_scaling;

  /**************************** execution begins ******************************/

  sprintf(yo, "AZ_check_options: ");
  switch (options[AZ_solver]) {

  case AZ_cg:
    break;
  case AZ_cg_condnum:
    break;
  case AZ_analyze:
    break;
  case AZ_GMRESR:
    break;
  case AZ_gmres:
    break;
  case AZ_gmres_condnum:
    break;
  case AZ_cgs:
    break;
  case AZ_tfqmr:
    break;
  case AZ_bicgstab:
    break;
  case AZ_symmlq:
    break;
  case AZ_fixed_pt:
    break;
  case AZ_lu:
#ifdef HAVE_AZLU
    if (az_nprocs != 1) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: LU not implemented in parallel."
                       "\n       Try domain decompostion with LU "
                       "preconditioning.\n\n", yo);
      }
      return 0;
    }
#else
    AZ_printf_err("AZ_lu unavailable: configure with --enable-aztecoo-azlu to make available\n");
    exit(1);
#endif
    break;

  default:
    if (az_proc == 0) {
      (void) AZ_printf_err( "%sERROR: options[AZ_solver] has improper value "
                     "(%d)\n\n", yo, options[AZ_solver]);
    }
    return 0;
  }

  switch (options[AZ_precond]) {

  case AZ_none:
    break;
  case AZ_Neumann:
    break;
  case AZ_ls:
    if (options[AZ_poly_ord] > AZ_MAX_POLY_ORDER) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: Exceeds highest order least_squares "
                       "polynomial available: %d vs %d\n\n", yo,
                       options[AZ_poly_ord], AZ_MAX_POLY_ORDER);
      }
      return 0;
    }
    break;

  case AZ_Jacobi:
    break;

  case AZ_sym_GS:
    if (data_org[AZ_matrix_type] != AZ_MSR_MATRIX) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: sym GS preconditioning can only "
                       "be used with MSR matrices.\n"
                       "       data_org[AZ_matrix_type] = %d\n\n", yo,
                       data_org[AZ_matrix_type]);
      }
      return 0;
    }
/*
    if (precond->Pmat!=Amat) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: sym GS preconditioning can only %s",
                       yo,"be used with Pmat=Amat .\n");
      }
      return 0;
    }
*/



    break;

  case AZ_bilu:
/* Begin Aztec 2.1 mheroux mod */
  case AZ_bilu_ifp:
/* End Aztec 2.1 mheroux mod */
     if (options[AZ_reorder]) {
        options[AZ_reorder] = 0;
        if ((options[AZ_output] != AZ_none) && (az_proc  == 0)) {
           AZ_printf_out("\t\t***** Reordering not implemented for Block ILU.\n");
           AZ_printf_out("\t\t***** Continuing without reordering\n");
        }
     }

    if (data_org[AZ_matrix_type] != AZ_VBR_MATRIX) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: Block ILU can only be used on VBR "
                       "matrices\n       data_org[AZ_matrix_type] = %d\n", yo,
                       data_org[AZ_matrix_type]);
        (void) AZ_printf_err( "       options[AZ_precond]      = %d\n\n",
                       options[AZ_precond]);
      }
      return 0;
    }
    if ( (options[AZ_solver] == AZ_cg) && (options[AZ_overlap] > 0) &&
         (options[AZ_type_overlap] != AZ_symmetric)) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Preconditioned matrix may not be"
                       " symmetric (due to overlap).\n\n", yo);
      }
    }
    break;
  case AZ_multilevel:
    if (az_proc == 0) 
      AZ_printf_out("Are you sure you want the multilevel preconditioner\n");
    break;
  case AZ_dom_decomp:
/* Begin Aztec 2.1 mheroux mod */
    if ((options[AZ_subdomain_solve]==AZ_bilu ||
        options[AZ_subdomain_solve]==AZ_bilu_ifp)&&(options[AZ_reorder])){
/* End Aztec 2.1 mheroux mod */
        options[AZ_reorder] = 0;
        if ((options[AZ_output] != AZ_none) && (az_proc  == 0)) {
           AZ_printf_out("\t\t***** Reordering not implemented for Block ILU.\n");
           AZ_printf_out("\t\t***** Continuing without reordering\n");
        }
    }
   if ( (options[AZ_solver] == AZ_cg) && 
          ((options[AZ_subdomain_solve] == AZ_ilu) ||
           (options[AZ_subdomain_solve] == AZ_rilu) ||
           (options[AZ_subdomain_solve] == AZ_bilu_ifp) ||
           (options[AZ_subdomain_solve] == AZ_ilut))) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Preconditioned matrix may not be"
                       " symmetric.\n\n", yo);
      }
    }

    if ( (options[AZ_subdomain_solve] != AZ_lu  ) &&
         (options[AZ_subdomain_solve] != AZ_ilu ) &&
         (options[AZ_subdomain_solve] != AZ_icc ) &&
         (options[AZ_subdomain_solve] != AZ_rilu) &&
         (options[AZ_subdomain_solve] != AZ_ilut) &&
/* Begin Aztec 2.1 mheroux mod */
         (options[AZ_subdomain_solve] != AZ_bilu_ifp) &&
/* End Aztec 2.1 mheroux mod */
         (options[AZ_subdomain_solve] != AZ_bilu) ) {
       if (options[AZ_subdomain_solve] >= AZ_SOLVER_PARAMS) {
          if (az_proc == 0) {
             (void) AZ_printf_err( "%sERROR: options[AZ_subdomain_solve]"
                    " has improper value = %d\n\n", yo, 
                    options[AZ_subdomain_solve]);
           }
           return 0; 
        }
        else {
           AZ_recover_sol_params(options[AZ_subdomain_solve], 
			         &sub_options,&sub_params,&sub_status,
                                 &sub_matrix,&sub_precond,&sub_scaling);
           if (!AZ_check_options(sub_options, az_proc, data_org, az_nprocs,
				    sub_params, sub_matrix, sub_precond)) 
	      return 0;
        }
    }
#ifdef eigen
  case AZ_slu:
#endif
  case AZ_lu:
  case AZ_ilu:
  case AZ_icc:
  case AZ_rilu:
  case AZ_ilut:
    if (options[AZ_overlap] < AZ_diag) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sERROR: Negative overlapping not allowed\n",
                       yo);
      }
       return 0;
    }
    if ( (options[AZ_solver] == AZ_cg) && (options[AZ_overlap] > 0) &&
         (options[AZ_type_overlap] != AZ_symmetric)) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Preconditioned matrix may not be"
                       " symmetric (due to overlap).\n\n", yo);
      }
    }

    break;

  case AZ_smoother:
    break;
  case AZ_user_precond:
    break;

  default:
    if (options[AZ_precond] >= AZ_SOLVER_PARAMS) {
    if (az_proc == 0) {
      (void) AZ_printf_err( "%sERROR: options[AZ_precond] has improper "
                     "value = %d\n\n", yo, options[AZ_precond]);
    }
    return 0; }
    else {
      AZ_recover_sol_params(options[AZ_precond], &sub_options, &sub_params,
                            &sub_status, &sub_matrix, &sub_precond, &sub_scaling);
      if (!AZ_check_options(sub_options, az_proc, data_org, az_nprocs,
                     sub_params, sub_matrix, sub_precond)) return 0;
    }
  }

  switch (options[AZ_scaling]) {

  case AZ_none:
  case AZ_sym_diag:
    break;
  case AZ_Jacobi:
    if (data_org[AZ_matrix_type] == AZ_VBR_MATRIX) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Jacobi scaling for VBR matrices "
                       "is not implemented. Substituting\n"
                       "         block Jacobi instead.\n\n", yo);
      }
    }

    if (options[AZ_solver] == AZ_cg) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Jacobi scaling may make matrix "
                       "unsymmetric for CG.\n\n", yo);
      }
    }
    break;

  case AZ_BJacobi:
    if ((data_org[AZ_matrix_type] != AZ_MSR_MATRIX) &&
        (data_org[AZ_matrix_type] != AZ_VBR_MATRIX)) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: block Jacobi scaling can only be "
                       "used with MSR or VBR\n                 matrices."
                       "Turning off scaling.\n\n", yo);
      }
    }

    if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Block Jacobi for MSR matrices is "
                       "not implemented. Substituting \n"
                       "         Jacobi instead.\n\n", yo);
      }
    }

    if (options[AZ_solver] == AZ_cg) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: Jacobi scaling may make matrix "
                       "unsymmetric for CG.\n\n", yo);
      }
    }
    break;

  case AZ_row_sum:
    if (options[AZ_solver] == AZ_cg) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: row sum scaling may make matrix "
                       "unsymmetric for CG.\n\n", yo);
      }
    }
    break;

  case AZ_sym_BJacobi:
    if (data_org[AZ_matrix_type] != AZ_VBR_MATRIX) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: sym block diag. scaling can only be "
                       "used with VBR\n                 matrices."
                       " Turning off.\n\n", yo);
      }
    }
    break;

  case AZ_sym_row_sum:
    if ((data_org[AZ_matrix_type] != AZ_MSR_MATRIX) &&
        (data_org[AZ_matrix_type] != AZ_VBR_MATRIX)) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: sym row scaling can only be "
                       "used with MSR or VBR matrices.\n"
                       "                     Turning off.\n\n", yo);
      }
    }
    break;

  case AZ_equil:
    if ((data_org[AZ_matrix_type] != AZ_MSR_MATRIX) &&
        (data_org[AZ_matrix_type] != AZ_VBR_MATRIX)) {
      if (az_proc == 0) {
        (void) AZ_printf_err( "%sWARNING: equilibrated scaling can only be "
                       "used with MSR or VBR matrices.\n"
                       "                     Turning off.\n\n", yo);
      }
    }
    break;

  default:
    if (az_proc == 0) {
      (void) AZ_printf_err( "%sERROR: scaling flag %d not implemented.\n\n",
                     yo, options[AZ_scaling]);
    }
    return 0;
  }

  /* check the the norm used */
  /* If options[AZ_conv]==AZ_Anorm and matrix is not MSR or VBR, then make
     sure that Amat->mat_norm is greater than zero. If it isn't, then
     issue an error.
  */
  if ((options[AZ_conv] == AZ_sol) || (options[AZ_conv] == AZ_Anorm)) {
    if ( ((data_org[AZ_matrix_type] != AZ_MSR_MATRIX) &&
          (data_org[AZ_matrix_type] != AZ_VBR_MATRIX)) ) {
      if (Amat->matrix_norm <= 0.0) {
        if (az_proc == 0) {
          (void) AZ_printf_err( "%sERROR: The matrix is not MSR or VBR, but "
                       "Amat->matrix_norm <= 0.0. Matrix norm must be set.\n"
                       "       data_org[AZ_matrix_type] = %d\n\n", yo,
                       data_org[AZ_matrix_type]);
        }
        return 0;
      }
    }
  }



  if (((options[AZ_conv] == 4) || (options[AZ_conv] == 3)) &&
      ((options[AZ_solver] == AZ_gmres) || (options[AZ_solver] == AZ_tfqmr))){
    if (az_proc == 0) {
      (void) AZ_printf_err( "%sWARNING: This convergence option requires "
                     "slightly more work for this solver\n"
                     "         in order to compute the residual.\n\n", yo);
    }
  }

  /* check the weights */

  if (options[AZ_conv] == 4) {
    for (i = 0; i < data_org[AZ_N_internal] + data_org[AZ_N_border]; i++) {
      if (params[AZ_weights+i] <= 0.0) {
        (void) AZ_printf_err( "%sWARNING: A weight vector component is <= 0, "
                       "check params[AZ_WEIGHTS]\n\n", yo);
        return 0;
      }
    }
  }

  return 1;

} /* AZ_check_options */
Esempio n. 11
0
void AZ_pad_matrix(struct context *context, int proc_config[], 
   int N_unpadded, int *N, int **map, int **padded_data_org, 
   int *N_nz, int estimated_requirements)
{
   static int New_N_rows;
   int *data_org;
   int overlap;
   int i;
int *bindx;
double *val;
int count, start, end, j;

   data_org = context->A_overlapped->data_org;
   overlap  = context->aztec_choices->options[AZ_overlap];
   bindx    = context->A_overlapped->bindx;
   val      = context->A_overlapped->val;
   *map     = NULL; 
   *padded_data_org = data_org;

   if (overlap > 0) {
           *padded_data_org = data_org;
           New_N_rows = data_org[AZ_N_internal] + data_org[AZ_N_border];

           AZ_setup_dd_olap_msr(N_unpadded, &New_N_rows, bindx, val, overlap,
                           proc_config, padded_data_org,map, *N_nz, 
                           data_org[AZ_name], data_org, estimated_requirements,
			   context);

           if (New_N_rows > *N) {
              AZ_printf_out("Incorrectly estimated the overlap space reqirements.\n");
              AZ_printf_out("N_unpadded = %d, N_external = %d, overlap = %d\n",
		     N_unpadded, data_org[AZ_N_external], overlap);
              AZ_printf_out("Guess = %d, actual number of padded rows = %d\n",
                     *N, New_N_rows);
              AZ_printf_out("\n\nTry less overlapping and maybe we'll get it right\n");

              AZ_exit(1);
           }

           *N = New_N_rows;
    }
    else if (overlap == 0) {
       *N    = data_org[AZ_N_internal] + data_org[AZ_N_border];
       /* remove entries corresponding to external variables */

       count = bindx[0];
       start = count;
       for (i = 0 ; i < *N ; i++ ) {
          end = bindx[i+1];
          for (j = start ; j < end ; j++) {
             if ( bindx[j] < *N ) {
                bindx[count] = bindx[j];
                val[count++] = val[j];
             }
          }
          bindx[i+1] = count;
          start      = end;
       }

    }
    else { /* diagonal overlapping */

       *N = data_org[AZ_N_internal] + data_org[AZ_N_border];

       if (*N_nz < *N + data_org[AZ_N_external]) {
          AZ_printf_err("Not enough memory for diagonal overlapping\n");
          AZ_exit(1);
       }

       /* make room */

       count = data_org[AZ_N_external];
       for (i = bindx[*N]-1 ; i >= bindx[0] ; i-- ) {
          bindx[i+count] = bindx[i];
          val[i+count]   = val[i];
       }
       for (i = 0 ; i <= *N; i++) bindx[i] += count;
       for (i = (*N)+1 ; i <= *N + data_org[AZ_N_external]; i++) 
          bindx[i] = bindx[i-1];

       /* communicate diagonal */

       AZ_exchange_bdry(val, data_org, proc_config);

       *N = data_org[AZ_N_internal] + data_org[AZ_N_border] + 
                data_org[AZ_N_external];
    }
}
Esempio n. 12
0
void AZ_domain_decomp(double x[], AZ_MATRIX *Amat, int options[],
                   int proc_config[], double params[],
		   struct context *context)


/*******************************************************************************

  Precondition 'x' using an overlapping domain decomposition method where a 
  solver specified by options[AZ_subdomain_solve] is used on the subdomains. 
  Note: if a factorization needs to be computed on the first iteration, this
  will be done and stored for future iterations.

  Author:          Lydie Prevost, SNL, 9222
  =======          Revised by R. Tuminaro (4/97), SNL, 9222

  Return code:     void
  ============

  Parameter list:
  ===============

  N_unpadded:      On input, number of rows in linear system (unpadded matrix) 
                   that will be factored (after adding values for overlapping).

  Nb_unpadded:     On input, number of block rows in linear system (unpadded) 
                   that will be factored (after adding values for overlapping).

  N_nz_unpadded:   On input, number of nonzeros in linear system (unpadded)
                   that will be factored (after adding values for overlapping).
             
  x:               On output, x[] is preconditioned by performing the subdomain
                   solve indicated by options[AZ_subdomain_solve].

  val    indx       
  bindx  rpntr:    On input, arrays containing matrix nonzeros (see manual). 
  cpntr  bpntr            

  options:         Determines specific solution method and other parameters.  In
                   this routine, we are concerned with options[AZ_overlap]:

                      == AZ_none: nonoverlapping domain decomposition
                      == AZ_diag: use rows corresponding to external variables 
                                  but only keep the diagonal for these rows.
                      == k      : Obtain rows that are a distance k away from
                                  rows owned by this processor.
                                  
  data_org:        Contains information on matrix data distribution and 
                   communication parameters (see manual).

*******************************************************************************/
{
  int N_unpadded, Nb_unpadded, N_nz_unpadded;
  double *x_pad = NULL, *x_reord = NULL, *ext_vals = NULL;
  int N_nz, N_nz_padded, nz_used;
  int mem_orig, mem_overlapped, mem_factor;
  int name, i, bandwidth;
  int *ordering = NULL;
  double condest;
/*
  double start_t;
*/
  int estimated_requirements;
  char str[80];
int *garbage;

  int N;
  int *padded_data_org = NULL, *bindx, *data_org;
  double *val;
  int *inv_ordering = NULL;
  int *map = NULL;
  AZ_MATRIX *A_overlapped = NULL;
  struct aztec_choices aztec_choices;


  /**************************** execution begins ******************************/
  data_org = Amat->data_org;
  bindx    = Amat->bindx;
  val      = Amat->val;
  N_unpadded = data_org[AZ_N_internal] + data_org[AZ_N_border];
  Nb_unpadded = data_org[AZ_N_int_blk]+data_org[AZ_N_bord_blk];
  if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX) 
     N_nz_unpadded = bindx[N_unpadded];
  else if (data_org[AZ_matrix_type] == AZ_VBR_MATRIX)
     N_nz_unpadded = (Amat->indx)[(Amat->bpntr)[Nb_unpadded]];
  else {
     if (Amat->N_nz < 0) 
        AZ_matfree_Nnzs(Amat);
     N_nz_unpadded = Amat->N_nz;
  }

  
  aztec_choices.options  = options;
  aztec_choices.params   = params;
  context->aztec_choices = &aztec_choices;
  context->proc_config   = proc_config;
  name                   = data_org[AZ_name];


  if ((options[AZ_pre_calc] >= AZ_reuse) && (context->Pmat_computed)) {
     N               = context->N;
     N_nz            = context->N_nz;
     A_overlapped    = context->A_overlapped;
     A_overlapped->data_org  = data_org;
     A_overlapped->matvec = Amat->matvec;
  }
  else {
     sprintf(str,"A_over %s",context->tag);
     A_overlapped = (AZ_MATRIX *) AZ_manage_memory(sizeof(AZ_MATRIX), 
                                                   AZ_ALLOC, name, str, &i);
     AZ_matrix_init(A_overlapped, 0);

     context->A_overlapped     = A_overlapped;
     A_overlapped->data_org    = data_org;
     A_overlapped->matvec      = Amat->matvec;
     A_overlapped->matrix_type = AZ_MSR_MATRIX;

     AZ_init_subdomain_solver(context);

     AZ_compute_matrix_size(Amat, options, N_nz_unpadded, N_unpadded, 
			 &N_nz_padded, data_org[AZ_N_external],
		 	 &(context->max_row), &N, &N_nz, params[AZ_ilut_fill], 
                         &(context->extra_fact_nz_per_row),
                         Nb_unpadded,&bandwidth);

     
        estimated_requirements = N_nz;
        if (N_nz*2 > N_nz) N_nz = N_nz*2;	/* check for overflow */
						/* Add extra memory to N_nz. */
                                                /* This extra memory is used */
                                                /* as temporary space during */
                                                /* overlapping calculation   */

        /* Readjust N_nz by allocating auxilliary arrays and allocate */
        /* the MSR matrix to check that there is enough space.        */

        /* block off some space for map and padded_data_org in dd_overlap */

        garbage = (int *) AZ_allocate((AZ_send_list + 2*(N-N_unpadded) +10)*
                                      sizeof(int));
        AZ_hold_space(context, N);

   
        if (N_nz*((int) sizeof(double)) < N_nz) N_nz=N_nz/2; /* check for overflow */
        if (N_nz*((int) sizeof(double)) < N_nz) N_nz=N_nz/2; /* check for overflow */
        if (N_nz*((int) sizeof(double)) < N_nz) N_nz=N_nz/2; /* check for overflow */
        if (N_nz*((int) sizeof(double)) < N_nz) N_nz=N_nz/2; /* check for overflow */
        if (N_nz*((int) sizeof(double)) < N_nz) N_nz=N_nz/2; /* check for overflow */

        N_nz = AZ_adjust_N_nz_to_fit_memory(N_nz,
                                 context->N_large_int_arrays,
                                 context->N_large_dbl_arrays);
        context->N_nz_factors = N_nz;

        if (N_nz <= N_nz_unpadded) {
           AZ_printf_out("Error: Not enough space for domain decomposition\n");
           AZ_exit(1);
        }


        if (estimated_requirements > N_nz ) estimated_requirements = N_nz;

        /* allocate matrix via AZ_manage_memory() */

        sprintf(str,"bindx %s",context->tag);
        A_overlapped->bindx =(int    *) AZ_manage_memory(N_nz*sizeof(int),
                                                AZ_ALLOC, name, str, &i);
        sprintf(str,"val %s",context->tag);
        A_overlapped->val =(double *) AZ_manage_memory(N_nz*sizeof(double),
                                                AZ_ALLOC, name, str, &i);
        context->N_nz_allocated = N_nz;
        AZ_free_space_holder(context);
        AZ_free(garbage);

        /* convert to MSR if necessary */

        if (data_org[AZ_matrix_type] == AZ_VBR_MATRIX)
          AZ_vb2msr(Nb_unpadded,val,Amat->indx,bindx,Amat->rpntr,Amat->cpntr,
		    Amat->bpntr, A_overlapped->val, A_overlapped->bindx);
        else if (data_org[AZ_matrix_type] == AZ_MSR_MATRIX) {
          for (i = 0 ; i < N_nz_unpadded; i++ ) {
             A_overlapped->bindx[i] = bindx[i];
             A_overlapped->val[i]   = val[i];
          }
        }
        else AZ_matfree_2_msr(Amat,A_overlapped->val,A_overlapped->bindx,N_nz);

        mem_orig = AZ_gsum_int(A_overlapped->bindx[N_unpadded],proc_config);

/*
        start_t = AZ_second();
*/
        AZ_pad_matrix(context, proc_config, N_unpadded, &N, 
                      &(context->map), &(context->padded_data_org), &N_nz, 
                      estimated_requirements);

/*
        if (proc_config[AZ_node] == 0)
           AZ_printf_out("matrix padding took %e seconds\n",AZ_second()-start_t);
*/


        mem_overlapped = AZ_gsum_int(A_overlapped->bindx[N],proc_config);
  
        if (options[AZ_reorder]) {
/*
           start_t = AZ_second();
*/
           AZ_find_MSR_ordering(A_overlapped->bindx,
                                &(context->ordering),N,
                                &(context->inv_ordering),name,context);
/*
           if (proc_config[AZ_node] == 0) 
              AZ_printf_out("took %e seconds to find ordering\n", AZ_second()-start_t);
*/
/*
           start_t = AZ_second();
*/
           AZ_mat_reorder(N,A_overlapped->bindx,A_overlapped->val,
                          context->ordering, context->inv_ordering);
/*
           if (proc_config[AZ_node] == 0) 
              AZ_printf_out("took %e seconds to reorder\n", AZ_second()-start_t);
*/
                /* NOTE: ordering is freed inside AZ_mat_reorder */
#ifdef AZ_COL_REORDER
           if (options[AZ_reorder]==2) {
             AZ_mat_colperm(N,A_overlapped->bindx,A_overlapped->val,
                        &(context->ordering), name, context );
           }
#endif

        }

        /* Do a factorization if needed.  */

/*
        start_t = AZ_second();
*/
        AZ_factor_subdomain(context, N, N_nz, &nz_used);

       if (options[AZ_output] > 0 && options[AZ_diagnostics]!=AZ_none) {
          AZ_printf_out("\n*********************************************************************\n");
	  condest = AZ_condest(N, context);
          AZ_printf_out("*****  Condition number estimate for subdomain preconditioner on PE %d = %.4e\n",
               proc_config[AZ_node], condest);
          AZ_printf_out("*********************************************************************\n");
        }


/*
        start_t        = AZ_second()-start_t;
        max_time = AZ_gmax_double(start_t,proc_config);
        min_time = AZ_gmin_double(start_t,proc_config);
        if (proc_config[AZ_node] == 0) 
           AZ_printf_out("time for subdomain solvers ranges from %e to %e\n",
                  min_time,max_time);
*/
  
        if ( A_overlapped->matrix_type == AZ_MSR_MATRIX)
           AZ_compress_msr(&(A_overlapped->bindx), &(A_overlapped->val),
                     context->N_nz_allocated, nz_used, name, context);


        context->N_nz = nz_used;
        context->N    = N;
        context->N_nz_allocated = nz_used;

        mem_factor = AZ_gsum_int(nz_used,proc_config);

        if (proc_config[AZ_node] == 0)
           AZ_print_header(options,mem_overlapped,mem_orig,mem_factor);

        if (options[AZ_overlap] >= 1) {
           sprintf(str,"x_pad %s",context->tag);
           context->x_pad  = (double *) AZ_manage_memory(N*sizeof(double),
                                                   AZ_ALLOC, name, str, &i);
           sprintf(str,"ext_vals %s",context->tag);
           context->ext_vals = (double *) AZ_manage_memory((N-N_unpadded)*
                                             sizeof(double), AZ_ALLOC, name, 
                                             str, &i);
        }
        if (options[AZ_reorder]) {
           sprintf(str,"x_reord %s",context->tag);
           context->x_reord = (double *) AZ_manage_memory(N*sizeof(double),
                                             AZ_ALLOC, name, str, &i);
        }

     }

  /* Solve L u = x where the solution u overwrites x */

    x_reord         = context->x_reord;
    inv_ordering    = context->inv_ordering;
    ordering        = context->ordering;
    x_pad           = context->x_pad;
    ext_vals        = context->ext_vals;
    padded_data_org = context->padded_data_org;
    map             = context->map;

   if (x_pad == NULL) x_pad = x;

   if (options[AZ_overlap] >= 1) {

      for (i = 0 ; i < N_unpadded ; i++) x_pad[i] = x[i];
      AZ_exchange_bdry(x_pad,padded_data_org, proc_config);
      for (i = 0 ; i < N-N_unpadded ; i++ ) 
         ext_vals[map[i]-N_unpadded] = x_pad[i+N_unpadded];
      for (i = 0 ; i < N-N_unpadded ; i++ ) x_pad[i + N_unpadded] = ext_vals[i];
   }
   else if (options[AZ_overlap] == AZ_diag) 
	AZ_exchange_bdry(x_pad,data_org, proc_config);

   if (x_reord == NULL) x_reord = x_pad;
   if (options[AZ_reorder]) {
      /* Apply row permutation to the right hand side */
      /* ((P'A P)Pi') Pi P'x = P'rhs,  b= P'rhs */
      for (i = 0 ; i < N ; i++ ) x_reord[inv_ordering[i]] = x_pad[i];
   }

   AZ_solve_subdomain(x_reord,N, context);

#ifdef AZ_COL_REORDER
   /* Apply column permutation to the solution   */
   if (options[AZ_reorder]==1){
      /* ((P'A P) P'sol = P'rhs   sol = P( P'sol)  */
      for (i = 0; i < N; i++) x_pad[i] = x_reord[inv_ordering[i]];
   }
   if (options[AZ_reorder]==2){
      /*
       * ((P'A P)Pi') Pi P'sol = P'rhs  sol = P Pi'( Pi P'sol)
       * Version 1:
       * for (i = 0; i < N; i++) pi_sol[i] = x_reord[ordering[i]];
       * for (j = 0; j < N; j++) x_pad[j] = pi_sol[inv_ordering[j]];
       * Version 2:
       */
      for (i = 0; i < N; i++) x_pad[i] = x_reord[ ordering[inv_ordering[i]] ];
   }

#else
   if (options[AZ_reorder])
      for (i = 0; i < N; i++) x_pad[i] = x_reord[inv_ordering[i]];
#endif

   AZ_combine_overlapped_values(options[AZ_type_overlap],padded_data_org, 
                             options, x_pad, map,ext_vals,name,proc_config);

   if (x_pad != x) 
     for (i = 0 ; i < N_unpadded ; i++ ) x[i] = x_pad[i];

} /* subdomain driver*/
Esempio n. 13
0
void AZ_find_MSR_ordering(int bindx2[],int **ordering,int N,
     int **inv_ordering, int name, struct context *context)

/*******************************************************************************
 
  Use a reverse cuthill McKee algorithm to find an ordering for the matrix.
 
  Author:          R. Tuminaro
 
  Return code:     void
  ============
 
  Parameter list:
  ===============
 
  bindx2:          On input, the nonzero sparsity pattern of the matrix
                   for which we will determine a new ordering. 
                   Note: bindx2 is changed in this routine, but then returned
                   to its original values before exiting.

  ordering:        On output, ordering[i] gives the new location of row i
                   in the reordered system.

  inv_ordering:    On output, inv_ordering[i] gives the location of row
*/
                   
{

   int i;
   int *mask;
   int root, nlvl, ccsize;
   int total = 0;
   char str[80];
  
   /* convert matrix to Fortran format */

   if (N==0) return;

   for (i = N+1 ; i < bindx2[N]; i++ ) bindx2[i]++;
   for (i = 0 ; i <= N ; i++ )         bindx2[i] -= N;

   /* initialize arrays for fnroot() and rcm() */

   sprintf(str,"inv_ordering %s",context->tag);
   *inv_ordering = (int *) AZ_manage_memory((N+1)*sizeof(int), AZ_ALLOC, name, 
                                            str,&i);
   sprintf(str,"ordering %s",context->tag);
   *ordering     = (int *) AZ_manage_memory((N+1)*sizeof(int), AZ_ALLOC, name,
                                            str,&i);
   mask          = (int *) AZ_allocate((N+1)*sizeof(int));
   if (mask == NULL) {
      AZ_printf_out("Not enough space for RCM reordering\n");
      AZ_exit(1);
   }

   for (i = 0 ; i < N ; i++ ) mask[i] = 1;
   root = 1;
   while (total != N ) {
      AZ_FNROOT_F77(&root,bindx2,&(bindx2[N+1]),mask, &nlvl, 
              &((*ordering)[total]), *inv_ordering);
      AZ_RCM_F77(&root,bindx2,&(bindx2[N+1]),mask,&((*ordering)[total]),
           &ccsize, *inv_ordering);

      if ( ccsize != N) {
         for (i = 0 ; i < ccsize ; i++) mask[(*ordering)[total+i]-1] = 0;
         for (i = 0 ; i < N ; i++ ) {
            if ( mask[i] == 1) break;
         }
         root = i+1;
      }
      total += ccsize;
      if (ccsize == 0) {
         AZ_printf_out("Error inside reordering\n");
         AZ_exit(1);
      }
   }

   /* convert matrix back to C format */

   for (i = 0 ; i <= N ; i++ ) bindx2[i] += N;
   for (i = N+1 ; i < bindx2[N]; i++ ) bindx2[i]--;

   /* convert ordering to C format */
   for (i = 0 ; i < N ; i++ ) (*ordering)[i]--;

   /* produce the inverse order */

   for (i = 0 ; i < N ; i++) (*inv_ordering)[(*ordering)[i]] = i;

   AZ_free(mask);
}