Esempio n. 1
0
//==============================================================================
void AztecDVBR_Matrix::loadComplete() {
//
// This is where we call the Aztec function AZ_transform, which calculates
// communication parameters and re-orders the equations for use as a
// global distributed matrix.
//
   MPI_Comm thisComm = amap_->getCommunicator();

// Sync processors.

   MPI_Barrier(thisComm);

#ifndef FEI_SER
   int thisProc = 0;
   MPI_Comm_rank(thisComm, &thisProc);
#endif

   AZ_transform(amap_->getProcConfig(), &external_, Amat_->bindx, Amat_->val,
                amap_->getBlockUpdate(), &update_index_, &extern_index_, &data_org_,
                N_update_, Amat_->indx, Amat_->bpntr, Amat_->rpntr,
                &(Amat_->cpntr), AZ_VBR_MATRIX);

   data_org_[AZ_internal_use] = 1;

   Amat_->data_org = data_org_;

//On return from AZ_transform, the array update_index_ contains a mapping
//to the local re-ordering of the indices of the update_ array. Now we will
//fill the orderingUpdate array with the reverse of that mapping. i.e., a
//record of how to get back to the original ordering of the update indices.

   orderingUpdate_ = new int[N_update_];
   for(int ii=0; ii<N_update_; ii++)
      orderingUpdate_[update_index_[ii]] = ii;

// Sync processors.
#ifndef FEI_SER
   MPI_Barrier(thisComm);
#endif

   setLoaded(true);

   return;
}
Esempio n. 2
0
void init_matrix_vector_structures(int proc_config[], int *update_index[], int
                                   *update[], int  *data_org[], int *external[],
                                   int *extern_index[], int input_option, double
                                   *val[], int *bindx[], int *indx[], int
                                   *bpntr[], int *rpntr[], int *cpntr[])


/*
 * Read in the points to be updated on this processor, create the global
 * distributed form of the application matrix, and then convert it to a
 * local distributed form for AZTEC kernels. Along the way, initialize the
 * following quantities:
 *     update_index[], update[], data_org[], a[], bindx[], bpntr[], cpntr[],
 *     rpntr[], indx[], external[], extern_index[].
 *
 * Author: Ray Tuminaro, Div 1422, SNL
 * Date:   3/15/95
 *
 * Parameters
 *
 *    proc_config    ==      On input, processor information:
 *                              proc_config[AZ_node] = name of this processor
 *                              proc_config[AZ_N_procs] = # of processors used
 *    update         ==      On output, list of pts to be updated on this node
 *    val,bindx      ==      On output, local distributed form of arrays
 *                           holding matrix values
 *    external       ==      On output, list of external vector elements
 *    update_index   ==      On output, ordering of update and external
 *    extern_index   ==      locally on this processor. For example
 *                           'update_index[i]' gives the index location
 *                           of the block which has the global index
 *                           'update[i]'.
 *    data_org       ==      On output, indicates how the data is set out on
 *                           this node. For example, data_org[] contains
 *                           information on how many unknowns are internal,
 *                           external, and border unknowns as well as which
 *                           points need to be communicated. See User's Guide
 *                           for more details.
 *    input_option   ==      Indicates how update[] will be initialized.
 *                           = 0, linear decomposition
 *                           = 1, points read from file 'update'.
 *                           = 2, box decomposition
 *                           See AZ_read_update() comments for more details.
 *
 *      The default finite difference MSR problem corresponds to a setting up
 *      a series of uncoupled 3D Poisson equations on a cube.
 *      To solve other problems, the call 'add_row_3D(...)' in
 *      'create_msr_matrix()' can be changed to 'add_row_5pt()' or
 *      'add_row_9pt()'.
 */

{

  int    N_update;            /* Number of pts updated on this processor     */
  int    MSRorVBR;
  int    chunks;
int blk_size, num_blk_cols,num_blk_rows,size,kk, convert_to_vbr = 0;
double *val2;
int    *bindx2;


  MSRorVBR = AZ_MSR_MATRIX;
  if (application == 1) MSRorVBR = AZ_VBR_MATRIX;

  chunks = num_PDE_eqns;
  if (MSRorVBR == AZ_VBR_MATRIX) chunks = 1;

  /* initialize the list of global indices. NOTE: the list of global */
  /* indices must be in ascending order so that subsequent calls to  */
  /* AZ_find_index() will function properly. */

  AZ_read_update(&N_update, update, proc_config, N_grid_pts, chunks,
                 input_option);

  /* create the matrix: each processor creates only the      */
  /* rows appearing in update[] ... however this row is      */
  /* created as if it were on a serial machine (i.e. using   */
  /* the global column numbers)                              */

  if (application == 1)
    create_vbr_matrix(*update, val, indx, N_update, rpntr, bpntr, bindx);
  else {
    *indx = NULL; *bpntr = NULL; *rpntr = NULL; *cpntr = NULL;

    if (application == 0) create_msr_matrix(*update, val, bindx, N_update);
    if (application == 2) create_fe_matrix(*update, proc_config[AZ_node],
                                           bindx, val, N_update);
    if (application == 3) { 
        AZ_read_msr_matrix(*update, val, bindx, N_update, proc_config);
    }
  }

  /* convert matrix to a distributed parallel matrix */

  AZ_transform(proc_config, external, *bindx, *val, *update, update_index,
               extern_index, data_org, N_update, *indx, *bpntr, *rpntr, cpntr,
               MSRorVBR);

  if ( (convert_to_vbr == 1) && (application == 3) ) {
     if (proc_config[AZ_node] == 0 ) {
	 printf("enter the block size\n");
	 scanf("%d",&blk_size);
     }
     AZ_broadcast((char *) &blk_size,  sizeof(int), proc_config, AZ_PACK);
     AZ_broadcast((char *) NULL         , 0          , proc_config, AZ_SEND);

     if ( N_update%blk_size != 0 ) {
        (void) fprintf(stderr," The block size must be a multiple of the number of rows per processor.\n");
        exit(-1);
     }

     num_blk_rows = N_update/blk_size;
     num_blk_cols = ( (*data_org)[AZ_N_external] + N_update)/blk_size;
     *cpntr = (int *) AZ_allocate( (num_blk_cols+2)*sizeof(int));
     *rpntr = (int *) AZ_allocate( (num_blk_cols+2)*sizeof(int));
     *bpntr = (int *) AZ_allocate( (num_blk_cols+2)*sizeof(int));
     size   = 20*(num_blk_cols+2);
     *indx  =  (int *) AZ_allocate(size*sizeof(int));
     bindx2 = *bindx;
     val2   = *val;
     *bindx = (int *) AZ_allocate(size*sizeof(int));
     *val   =  (double *) AZ_allocate(size*blk_size*blk_size*sizeof(double));

     for (kk = 0 ; kk < num_blk_cols ; kk++ ) (*cpntr)[kk] = blk_size;
     AZ_msr2vbr(*val,*indx,*rpntr,*cpntr,*bpntr,*bindx,bindx2,val2,
		num_blk_rows,num_blk_cols,size,size*blk_size*blk_size,blk_size);
     MSRorVBR = AZ_VBR_MATRIX;
     N_update /= blk_size;
     num_PDE_eqns = blk_size; 
     for (kk = 0 ; kk < N_update ; kk++ )
           (*update)[kk] = (*update)[blk_size*kk]/blk_size;
     for (kk = 0 ; kk < (*data_org)[AZ_N_external] ; kk++ ) 
           (*external)[kk] = (*external)[blk_size*kk]/blk_size;

     (*data_org)[AZ_matrix_type] = AZ_VBR_MATRIX;
     (*data_org)[AZ_N_int_blk ] /= blk_size;
     (*data_org)[AZ_N_bord_blk] /= blk_size;
     (*data_org)[AZ_N_ext_blk ] /= blk_size;
     AZ_free(bindx2);  AZ_free(val2);
  }


} /* init_matrix_vector_structures */
Esempio n. 3
0
int main(int argc, char *argv[])
{

  /* See Aztec User's Guide for the variables that follow:         */
  int    proc_config[AZ_PROC_SIZE];/* Processor information.                */
  int    N_update;                 /* # of unknowns updated on this node    */
  int    *update;                  /* vector elements updated on this node  */

  int    *data_orgA;               /* Array to specify data layout          */
  int    *externalA;               /* vector elements needed by this node.  */
  int    *update_indexA;           /* ordering of update[] and external[]   */
  int    *extern_indexA;           /* locally on this processor.            */
  int    *bindxA;                  /* Sparse matrix to be solved is stored  */
  double *valA;                    /* in these MSR arrays.                  */
  AZ_MATRIX *mat_curl_edge;        /* curl operator matrix                  */

  int    *data_orgB;                /* Array to specify data layout          */
  int    *externalB;                /* vector elements needed by this node.  */
  int    *update_indexB;            /* ordering of update[] and external[]   */
  int    *extern_indexB;            /* locally on this processor.            */
  int    *bindxB;                   /* Sparse matrix to be solved is stored  */
  double *valB;                     /* in these MSR arrays.                  */
  AZ_MATRIX *mat_curl_face;         /* curl operator matrix                  */

  int *bc_indx;
  int n_bc;

  double *efield;
  double *bfield;
  double *epsilon;
  double *tmp_vec;
  double *tmp_vec2;

  int    i, nrow, x, y, z;
  int k, t;
  long startTime, endTime;
  int myrank;
  int vec_len;


  /* get number of processors and the name of this processor */
#ifdef AZ_MPI
  MPI_Init(&argc,&argv);
  AZ_set_proc_config(proc_config, MPI_COMM_WORLD);
  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
#else
  myrank = 0;
  AZ_set_proc_config(proc_config, AZ_NOT_MPI);
#endif

  nrow = ncomp * nx * ny * nz;  /* overll number of matrix rows  */

  // Define partitioning:  matrix rows (ascending order) owned by this node
  // Here it is done automatically, but it can also be specified by hand
  AZ_read_update(&N_update, &update, proc_config, nrow, 1, AZ_linear);


  // In the following we set up the matrix for the edge centered curl operator
  // All the steps are described in detail in the AZTEC manual.
  // first: allocate space for the first matrix.
  bindxA = (int    *) malloc((N_update*MAX_NZ_ROW+1)*sizeof(int));
  valA   = (double *) malloc((N_update*MAX_NZ_ROW+1)*sizeof(double));
  if (valA == NULL) perror("Error: Not enough space to create matrix");
  // Initialize the index for the first off diagonal element
  bindxA[0] = N_update+1;

  // Create the matrix row by row. Each processor creates only rows appearing
  // in update[] (using global col. numbers).
  for (i = 0; i < N_update; i++)
    create_curl_matrix_row_edge(update[i], i, valA, bindxA);

  // convert matrix to a local distributed matrix
  AZ_transform(proc_config, &externalA, bindxA, valA, update, &update_indexA,
               &extern_indexA, &data_orgA, N_update, NULL, NULL, NULL, NULL,
               AZ_MSR_MATRIX);

  // convert the matrix arrays into a matrix structure, used in the
  // matrix vector multiplication
  mat_curl_edge = AZ_matrix_create(data_orgA[AZ_N_internal] + data_orgA[AZ_N_border]);
  AZ_set_MSR(mat_curl_edge, bindxA, valA, data_orgA, 0, NULL, AZ_LOCAL);

  // at this point the edge centered curl matrix is completed.

  // In the following we set up the matrix for the face centered curl operator
  // All the steps are described in detail in the AZTEC manual.
  // first: allocate space for the first matrix.
  bindxB = (int    *) malloc((N_update*MAX_NZ_ROW+1)*sizeof(int));
  valB   = (double *) malloc((N_update*MAX_NZ_ROW+1)*sizeof(double));
  if (valB == NULL) perror("Error: Not enough space to create matrix");

  // Initialize the index for the first off diagonal element
  bindxB[0] = N_update+1;

  // Create the matrix row by row. Each processor creates only rows appearing
  // in update[] (using global col. numbers).
  for (i = 0; i < N_update; i++)
      create_curl_matrix_row_face(update[i], i, valB, bindxB);

  // convert matrix to a local distributed matrix
  AZ_transform(proc_config, &externalB, bindxB, valB, update, &update_indexB,
			                   &extern_indexB, &data_orgB,
					   N_update, NULL, NULL, NULL, NULL,
					                  AZ_MSR_MATRIX);
  // convert the matrix arrays into a matrix structure, used in the
  // matrix vector multiplication
  mat_curl_face = AZ_matrix_create(data_orgB[AZ_N_internal] + data_orgB[AZ_N_border]);
  AZ_set_MSR(mat_curl_face, bindxB, valB, data_orgB, 0, NULL, AZ_LOCAL);

  // at this point the face centered curl matrix is completed.


  //  allocate memory for the fields and a temporary vector
  vec_len = N_update + data_orgA[AZ_N_external];
  efield = (double *) malloc(vec_len*sizeof(double));
  bfield = (double *) malloc(vec_len*sizeof(double));
  epsilon = (double *) malloc(vec_len*sizeof(double));
  tmp_vec = (double *) malloc(vec_len*sizeof(double));
  tmp_vec2 = (double *) malloc(vec_len*sizeof(double));

  // setup the boundary condition. We will get an arry that tells us
  // which positions need to be updated and where the results needs
  // to be stored in the E field.
  setup_bc(update, update_indexB, N_update, &bc_indx, &n_bc);

  // initialize the field vectors
  for(k = 0; k < vec_len; k++){
     efield[k] = 0.;
     bfield[k] = 0.;
     epsilon[k] = 1.;
     tmp_vec[k] = 0.;
  }

  // initialize the dielectric structure. Ugly hard-coded stuff,
  // needs to be cleaned out...
  for(y=45; y<55; y++){
   for(x = y; x<100; x++)
      epsilon[compZ + pos_to_row(x, y, 0)] = 0.95;
  }	
  // reorder the dielectric vector in order to align with the B field
  AZ_reorder_vec(epsilon, data_orgA, update_indexA, NULL);


  printf("Begin iteration \n");

  // just some timing ...
  startTime = currentTimeMillis();

  // *******************
  // begin of the time stepping loop
  // *******************

  for( t = 0; t < nsteps; t++){

    // first we do the e field update

    // convert the B field to the H field

    for(k = 0 ; k < vec_len; k++)
      bfield[k] *= epsilon[k];

    // setup the initial condition
    for( k = 0; k < n_bc; k++){
      x = bc_indx[4*k];
      y = bc_indx[4*k+1];
      z = bc_indx[4*k+2];
      efield[bc_indx[4*k+3]] =
           sin((double) y * 5. * 3.14159 / (double) ny) *
           sin(omega * dt * (double) (t + 1));
    }

    //  E field update:
    //  tmp_vec = Curl_Op * bfield
    //  efield = efield +  c^2 * dt * tmp_vec
    AZ_MSR_matvec_mult( bfield, tmp_vec, mat_curl_edge, proc_config);

    // reorder the result in tmp_vec so that it aligns with the
    // decomposition of the E field
    AZ_invorder_vec(tmp_vec, data_orgA, update_indexA, NULL, tmp_vec2);
    AZ_reorder_vec(tmp_vec2, data_orgB, update_indexB, NULL);

    // update the efield
    for(k = 0 ; k < N_update; k++)
      efield[k] = efield[k] + c2 * tmp_vec2[k] * dt;

    // bfield update :
    // tmp_vec = DualCurl_Op * efield
    // bfield = bfield - tmp_vec * dt
    AZ_MSR_matvec_mult( efield, tmp_vec, mat_curl_face, proc_config);

    // reorder the result so that it fits the decomposition of the bfield
    AZ_invorder_vec(tmp_vec, data_orgB, update_indexB, NULL, tmp_vec2);
    AZ_reorder_vec(tmp_vec2, data_orgA, update_indexA, NULL);

    // update the b field
    for(k = 0;  k < N_update; k++)
	  bfield[k] = bfield[k] - tmp_vec2[k] * dt;

    if(myrank == 0)
      printf("Taking step %d at time %g\n", t,
		       (double) (currentTimeMillis() - startTime) / 1000.);
  }
  // ******************
  // end of timestepping loop
  // *****************

  endTime = currentTimeMillis();
  printf("After iteration: %g\n", (double)(endTime - startTime) / 1000. );

#if 1
  system("rm efield.txt bfield.txt");

  // dump filed data: efield
  AZ_invorder_vec(efield, data_orgB, update_indexB, NULL, tmp_vec);
  write_file("efield.txt", tmp_vec, N_update);

  // dump filed data: bfield
  AZ_invorder_vec(bfield, data_orgA, update_indexA, NULL, tmp_vec);
  write_file("bfield.txt", tmp_vec, N_update);
#endif

  /* Free allocated memory */
  AZ_matrix_destroy( &mat_curl_edge);
  free((void *) update);   free((void *) update_indexA);
  free((void *) externalA); free((void *) extern_indexA);
  free((void *) bindxA);    free((void *) valA);  free((void *) data_orgA);

  AZ_matrix_destroy( &mat_curl_face);
  free((void *) externalB); free((void *) extern_indexB);
  free((void *) bindxB);    free((void *) valB);  free((void *) data_orgB);

  free((void *) efield);    free((void *) bfield);
  free((void *) tmp_vec);   free((void *) tmp_vec2);


#ifdef AZ_MPI
  MPI_Finalize();
#endif
  return(1);

}
Esempio n. 4
0
int main(int argc, char *argv[])
{
	int num_PDE_eqns=5, N_levels=3;
    /* int nsmooth=1; */

	int    leng, level, N_grid_pts, coarsest_level;

  /* See Aztec User's Guide for more information on the */
  /* variables that follow.                             */

  int    proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE];
  double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE];

  /* data structure for matrix corresponding to the fine grid */

  int    *data_org = NULL, *update = NULL, *external = NULL;
  int    *update_index = NULL, *extern_index = NULL;
  int    *cpntr = NULL;
  int    *bindx = NULL, N_update, iii;
  double *val = NULL;
	double *xxx, *rhs;

	AZ_MATRIX *Amat;
	AZ_PRECOND *Pmat = NULL;
	ML *ml;
	FILE *fp;
  int ch,i;
   struct AZ_SCALING *scaling;
double solve_time, setup_time, start_time;
ML_Aggregate *ag;
int *ivec;
#ifdef VBR_VERSION
ML_Operator *B, *C, *D;
int *vbr_cnptr, *vbr_rnptr, *vbr_indx, *vbr_bindx, *vbr_bnptr, total_blk_rows;
int total_blk_cols, blk_space, nz_space;
double *vbr_val;
struct ML_CSR_MSRdata *csr_data;
#endif


#ifdef ML_MPI
  MPI_Init(&argc,&argv);

  /* get number of processors and the name of this processor */

  AZ_set_proc_config(proc_config, MPI_COMM_WORLD);
#else
  AZ_set_proc_config(proc_config, AZ_NOT_MPI);
#endif

#ifdef binary
	fp=fopen(".data","rb");
#else
	fp=fopen(".data","r");
#endif
	if (fp==NULL)
		{
			printf("couldn't open file .data\n");
			exit(1);
		}
#ifdef binary
        fread(&leng, sizeof(int), 1, fp);
#else
	fscanf(fp,"%d",&leng);
#endif

	fclose(fp);

	N_grid_pts=leng/num_PDE_eqns;



  /* initialize the list of global indices. NOTE: the list of global */
  /* indices must be in ascending order so that subsequent calls to  */
  /* AZ_find_index() will function properly. */

  AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns,
                 AZ_linear);

  AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config);

  /* This code is to fix things up so that we are sure we have */
  /* all block (including the ghost nodes the same size.       */

  AZ_block_MSR(&bindx, &val, N_update, num_PDE_eqns, update);


  AZ_transform(proc_config, &external, bindx, val,  update, &update_index,
	       &extern_index, &data_org, N_update, 0, 0, 0, &cpntr,
               AZ_MSR_MATRIX);

  Amat = AZ_matrix_create( leng );

#ifndef VBR_VERSION

  AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL);

  Amat->matrix_type  = data_org[AZ_matrix_type];

  data_org[AZ_N_rows]  = data_org[AZ_N_internal] + data_org[AZ_N_border];

#else

total_blk_rows = N_update/num_PDE_eqns;
total_blk_cols = total_blk_rows;
blk_space      = total_blk_rows*20;
nz_space       = blk_space*num_PDE_eqns*num_PDE_eqns;

vbr_cnptr = (int    *) ML_allocate(sizeof(int   )*(total_blk_cols+1));
vbr_rnptr = (int    *) ML_allocate(sizeof(int   )*(total_blk_cols+1));
vbr_bnptr = (int    *) ML_allocate(sizeof(int   )*(total_blk_cols+2));
vbr_indx  = (int    *) ML_allocate(sizeof(int   )*(blk_space+1));
vbr_bindx = (int    *) ML_allocate(sizeof(int   )*(blk_space+1));
vbr_val   = (double *) ML_allocate(sizeof(double)*(nz_space+1));

for (i = 0; i <= total_blk_cols; i++) vbr_cnptr[i] = num_PDE_eqns;

  AZ_msr2vbr(vbr_val, vbr_indx, vbr_rnptr,  vbr_cnptr, vbr_bnptr,
                vbr_bindx, bindx, val,
                total_blk_rows, total_blk_cols, blk_space,
                nz_space, -1);

  data_org[AZ_N_rows]  = data_org[AZ_N_internal] + data_org[AZ_N_border];
  data_org[AZ_N_int_blk]  = data_org[AZ_N_internal]/num_PDE_eqns;
  data_org[AZ_N_bord_blk] = data_org[AZ_N_bord_blk]/num_PDE_eqns;
  data_org[AZ_N_ext_blk]  = data_org[AZ_N_ext_blk]/num_PDE_eqns;
  data_org[AZ_matrix_type] = AZ_VBR_MATRIX;


  AZ_set_VBR(Amat, vbr_rnptr, vbr_cnptr, vbr_bnptr, vbr_indx, vbr_bindx,
             vbr_val, data_org, 0, NULL, AZ_LOCAL);

  Amat->matrix_type  = data_org[AZ_matrix_type];
#endif

  start_time = AZ_second();

  ML_Create(&ml, N_levels);
  ML_Set_PrintLevel(3);


  /* set up discretization matrix and matrix vector function */

  AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config);

  ML_Aggregate_Create( &ag );
  ML_Aggregate_Set_Threshold(ag,0.0);
  ML_Set_SpectralNormScheme_PowerMethod(ml);
/*
   To run SA:
     a) set damping factor to 1 and use power method
        ML_Aggregate_Set_DampingFactor(ag, 4./3.);
   To run NSA:
     a) set damping factor to 0
        ML_Aggregate_Set_DampingFactor(ag, 0.);
   To run NSR
     a) set damping factor to 1 and use power method
        ML_Aggregate_Set_DampingFactor(ag, 1.);
        ag->Restriction_smoothagg_transpose = ML_FALSE;
        ag->keep_agg_information=1;
        ag->keep_P_tentative=1;
     b) hack code so it calls the energy minimizing restriction
          line 2973 of ml_agg_genP.c
     c) turn on the NSR flag in ml_agg_energy_min.cpp
   To run Emin
     a) set min_eneryg = 2 and keep_agg_info = 1;
      ag->minimizing_energy=2;
      ag->keep_agg_information=1;
      ag->cheap_minimizing_energy = 0;
      ag->block_scaled_SA = 1;
*/
  ag->minimizing_energy=2;
  ag->keep_agg_information=1;
  ag->block_scaled_SA = 1;

  ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, num_PDE_eqns, NULL, N_update);
  ML_Aggregate_Set_MaxCoarseSize( ag, 20);

/*
ML_Aggregate_Set_RandomOrdering( ag );
ML_Aggregate_Set_DampingFactor(ag, .1);
ag->drop_tol_for_smoothing = 1.0e-3;
ML_Aggregate_Set_Threshold(ag, 1.0e-3);
ML_Aggregate_Set_MaxCoarseSize( ag, 300);
*/


	coarsest_level = ML_Gen_MultiLevelHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag);
	coarsest_level = N_levels - coarsest_level;
	if ( proc_config[AZ_node] == 0 )
		printf("Coarse level = %d \n", coarsest_level);

	/* set up smoothers */

        AZ_defaults(options, params);

	for (level = N_levels-1; level > coarsest_level; level--) {
          /* This is the Aztec domain decomp/ilu smoother that we */
          /* usually use for this problem.                        */

/*
          options[AZ_precond] = AZ_dom_decomp;
          options[AZ_subdomain_solve] = AZ_ilut;
          params[AZ_ilut_fill] = 1.0;
          options[AZ_reorder] = 1;
          ML_Gen_SmootherAztec(ml, level, options, params,
                        proc_config, status, AZ_ONLY_PRECONDITIONER,
                        ML_PRESMOOTHER,NULL);
*/

          /*  Sparse approximate inverse smoother that acutally does both */
          /*  pre and post smoothing.                                     */
          /*

          ML_Gen_Smoother_ParaSails(ml , level, ML_PRESMOOTHER, nsmooth,
                                parasails_sym, parasails_thresh,
                                parasails_nlevels, parasails_filter,
                                parasails_loadbal, parasails_factorized);

          parasails_thresh /= 4.;
          */


          /* This is the symmetric Gauss-Seidel smoothing. In parallel,    */
          /* it is not a true Gauss-Seidel in that each processor          */
          /* does a Gauss-Seidel on its local submatrix independent of the */
          /* other processors.                                             */
          /*
	  ML_Gen_Smoother_SymGaussSeidel(ml,level,ML_PRESMOOTHER, nsmooth,1.);
	  ML_Gen_Smoother_SymGaussSeidel(ml,level,ML_POSTSMOOTHER,nsmooth,1.);
          */

          /* Block Gauss-Seidel with block size equal to #DOF per node.    */
          /* Not a true Gauss-Seidel in that each processor does a         */
          /* Gauss-Seidel on its local submatrix independent of the other  */
          /* processors.                                                   */
          /*

	  ML_Gen_Smoother_BlockGaussSeidel(ml,level,ML_PRESMOOTHER,
                                           nsmooth,0.67, num_PDE_eqns);
	  ML_Gen_Smoother_BlockGaussSeidel(ml,level,ML_POSTSMOOTHER,
                                           nsmooth, 0.67, num_PDE_eqns);
          */


  	  ML_Gen_Smoother_SymBlockGaussSeidel(ml,level,ML_POSTSMOOTHER,
                                                1, 1.0, num_PDE_eqns);
	}

        ML_Gen_CoarseSolverSuperLU( ml, coarsest_level);
	ML_Gen_Solver(ml, ML_MGW, N_levels-1, coarsest_level);
	AZ_defaults(options, params);

        options[AZ_solver]   = AZ_gmres;
        options[AZ_scaling]  = AZ_none;
        options[AZ_precond]  = AZ_user_precond;
/*
        options[AZ_conv]     = AZ_r0;
*/
        options[AZ_output]   = 1;
        options[AZ_max_iter] = 1500;
        options[AZ_poly_ord] = 5;
        options[AZ_kspace]   = 130;
        params[AZ_tol]       = 1.0e-8;
/*
options[AZ_precond] = AZ_dom_decomp;
options[AZ_subdomain_solve] = AZ_ilut;
params[AZ_ilut_fill] = 2.0;
*/

	AZ_set_ML_preconditioner(&Pmat, Amat, ml, options);
setup_time = AZ_second() - start_time;

	xxx = (double *) malloc( leng*sizeof(double));
	rhs=(double *)malloc(leng*sizeof(double));

	for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0;

        /* Set rhs */

        fp = fopen("AZ_capture_rhs.mat","r");
        if (fp == NULL) {
           if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n");
           AZ_random_vector(rhs, data_org, proc_config);
           AZ_reorder_vec(rhs, data_org, update_index, NULL);
        }
        else {
           fclose(fp);
	   ivec =(int *)malloc((leng+1)*sizeof(int));
           AZ_input_msr_matrix("AZ_capture_rhs.mat", update, &rhs, &ivec,
                                N_update, proc_config);
           free(ivec);
           AZ_reorder_vec(rhs, data_org, update_index, NULL);
        }

        /* Set x */

        fp = fopen("AZ_capture_init_guess.mat","r");
        if (fp != NULL) {
           fclose(fp);
	   ivec =(int *)malloc((leng+1)*sizeof(int));
           AZ_input_msr_matrix("AZ_capture_init_guess.mat",update, &xxx, &ivec,
                                N_update, proc_config);
           free(ivec);
           AZ_reorder_vec(xxx, data_org, update_index, NULL);
        }

        /* if Dirichlet BC ... put the answer in */

        for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) {
           if ( (val[i] > .99999999) && (val[i] < 1.0000001))
              xxx[i] = rhs[i];
        }

        fp = fopen("AZ_no_multilevel.dat","r");
        scaling = AZ_scaling_create();
start_time = AZ_second();
        if (fp != NULL) {
           fclose(fp);
           options[AZ_precond] = AZ_none;
           options[AZ_scaling] = AZ_sym_diag;
           options[AZ_ignore_scaling] = AZ_TRUE;

           options[AZ_keep_info] = 1;
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);

/*
           options[AZ_pre_calc] = AZ_reuse;
           options[AZ_conv] = AZ_expected_values;
           if (proc_config[AZ_node] == 0)
              printf("\n-------- Second solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);
           if (proc_config[AZ_node] == 0)
              printf("\n-------- Third solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling);
*/
        }
        else {
           options[AZ_keep_info] = 1;
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
           options[AZ_pre_calc] = AZ_reuse;
           options[AZ_conv] = AZ_expected_values;
/*
           if (proc_config[AZ_node] == 0)
              printf("\n-------- Second solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
           if (proc_config[AZ_node] == 0)
              printf("\n-------- Third solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling);
*/
        }
   solve_time = AZ_second() - start_time;

   if (proc_config[AZ_node] == 0)
      printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time);

   ML_Aggregate_Destroy(&ag);
   ML_Destroy(&ml);
   AZ_free((void *) Amat->data_org);
   AZ_free((void *) Amat->val);
   AZ_free((void *) Amat->bindx);
   AZ_free((void *) update);
   AZ_free((void *) external);
   AZ_free((void *) extern_index);
   AZ_free((void *) update_index);
   AZ_scaling_destroy(&scaling);
   if (Amat  != NULL) AZ_matrix_destroy(&Amat);
   if (Pmat  != NULL) AZ_precond_destroy(&Pmat);
   free(xxx);
   free(rhs);


#ifdef ML_MPI
  MPI_Finalize();
#endif

  return 0;

}
Esempio n. 5
0
int main(int argc, char *argv[])
{
	int num_PDE_eqns=3, N_levels=3, nsmooth=1;

	int    leng, level, N_grid_pts, coarsest_level;

  /* See Aztec User's Guide for more information on the */
  /* variables that follow.                             */

  int    proc_config[AZ_PROC_SIZE], options[AZ_OPTIONS_SIZE];
  double params[AZ_PARAMS_SIZE], status[AZ_STATUS_SIZE];

  /* data structure for matrix corresponding to the fine grid */

  int    *data_org = NULL, *update = NULL, *external = NULL;
  int    *update_index = NULL, *extern_index = NULL;
  int    *cpntr = NULL;
  int    *bindx = NULL, N_update, iii;
  double *val = NULL;
	double *xxx, *rhs;

	AZ_MATRIX *Amat;
	AZ_PRECOND *Pmat = NULL;
	ML *ml;
	FILE *fp;
  int ch,i,j, Nrigid, *garbage;
   struct AZ_SCALING *scaling;
double solve_time, setup_time, start_time, *mode, *rigid;
ML_Aggregate *ag;
int  nblocks, *blocks;
char filename[80];
double alpha;
int one = 1;


#ifdef ML_MPI
  MPI_Init(&argc,&argv);

  /* get number of processors and the name of this processor */

  AZ_set_proc_config(proc_config, MPI_COMM_WORLD);
#else
  AZ_set_proc_config(proc_config, AZ_NOT_MPI);
#endif

leng = 0;
if (proc_config[AZ_node] == 0) {
#ifdef binary
	fp=fopen(".data","rb");
#else
	fp=fopen(".data","r");
#endif
	if (fp==NULL)
		{
			printf("couldn't open file .data\n");
			exit(1);
		}
#ifdef binary
        fread(&leng, sizeof(int), 1, fp);
#else
	fscanf(fp,"%d",&leng);
#endif

	fclose(fp);
}
leng = AZ_gsum_int(leng, proc_config);

	N_grid_pts=leng/num_PDE_eqns;



  /* initialize the list of global indices. NOTE: the list of global */
  /* indices must be in ascending order so that subsequent calls to  */
  /* AZ_find_index() will function properly. */
	
  AZ_read_update(&N_update, &update, proc_config, N_grid_pts, num_PDE_eqns,
                 AZ_linear);
	
	
  AZ_read_msr_matrix(update, &val, &bindx, N_update, proc_config);

  AZ_transform(proc_config, &external, bindx, val,  update, &update_index,
	       &extern_index, &data_org, N_update, 0, 0, 0, &cpntr, 
               AZ_MSR_MATRIX);
	
  Amat = AZ_matrix_create( leng );
  AZ_set_MSR(Amat, bindx, val, data_org, 0, NULL, AZ_LOCAL);

  Amat->matrix_type  = data_org[AZ_matrix_type];
	
  data_org[AZ_N_rows]  = data_org[AZ_N_internal] + data_org[AZ_N_border];
			
  start_time = AZ_second();

AZ_defaults(options, params);
/*
scaling = AZ_scaling_create();
xxx = (double *) calloc( leng,sizeof(double));
rhs=(double *)calloc(leng,sizeof(double));
options[AZ_scaling] = AZ_sym_diag;
options[AZ_precond] = AZ_none;
options[AZ_max_iter] = 30;
options[AZ_keep_info] = 1;
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); 
don't forget vector rescaling ...
free(xxx);
free(rhs);
*/
options[AZ_scaling] = AZ_none;
	



  ML_Create(&ml, N_levels);
			
			
  /* set up discretization matrix and matrix vector function */
	
  AZ_ML_Set_Amat(ml, N_levels-1, N_update, N_update, Amat, proc_config);
	
  ML_Aggregate_Create( &ag );

  Nrigid = 0;
if (proc_config[AZ_node] == 0) {
  sprintf(filename,"rigid_body_mode%d",Nrigid+1);
  while( (fp = fopen(filename,"r")) != NULL) {
     fclose(fp);
     Nrigid++;
     sprintf(filename,"rigid_body_mode%d",Nrigid+1);
  }
}
Nrigid = AZ_gsum_int(Nrigid,proc_config);

  if (Nrigid != 0) {
     rigid = (double *) ML_allocate( sizeof(double)*Nrigid*(N_update+1) );
     if (rigid == NULL) {
        printf("Error: Not enough space for rigid body modes\n");
     }
  }

rhs=(double *)malloc(leng*sizeof(double));
AZ_random_vector(rhs, data_org, proc_config);
  
  for (i = 0; i < Nrigid; i++) {
     sprintf(filename,"rigid_body_mode%d",i+1);
     AZ_input_msr_matrix(filename, update, &mode, &garbage, 
                         N_update, proc_config);


/*
AZ_sym_rescale_sl(mode, Amat->data_org, options, proc_config, scaling);
*/
/*
Amat->matvec(mode, rigid, Amat, proc_config);
for (j = 0; j < N_update; j++) printf("this is %d %e\n",j,rigid[j]);
*/
for (j = 0; j < i; j++) {
alpha = -AZ_gdot(N_update, mode, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config);
daxpy_(&N_update, &alpha,  &(rigid[j*N_update]),  &one, mode, &one);
printf("alpha1 is %e\n",alpha);
}
alpha = -AZ_gdot(N_update, mode, rhs, proc_config)/AZ_gdot(N_update, mode, mode, proc_config);
printf("alpha2 is %e\n",alpha);
daxpy_(&N_update, &alpha,  mode,  &one, rhs, &one);

  
     for (j = 0; j < N_update; j++) rigid[i*N_update+j] = mode[j];
     free(mode);
     free(garbage);
  }
for (j = 0; j < Nrigid; j++) {
alpha = -AZ_gdot(N_update, rhs, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config);
daxpy_(&N_update, &alpha,  &(rigid[j*N_update]),  &one, rhs, &one);
printf("alpha4 is %e\n",alpha);
}


for (i = 0; i < Nrigid; i++) {
  alpha = -AZ_gdot(N_update, &(rigid[i*N_update]), rhs, proc_config);
  printf("alpha is %e\n",alpha);
}
  if (Nrigid != 0) {
     ML_Aggregate_Set_NullSpace(ag, num_PDE_eqns, Nrigid, rigid, N_update);
/*
     free(rigid);
*/
  }

	coarsest_level = ML_Gen_MGHierarchy_UsingAggregation(ml, N_levels-1, ML_DECREASING, ag);
	coarsest_level = N_levels - coarsest_level;
/*
ML_Operator_Print(&(ml->Pmat[N_levels-2]), "Pmat");
exit(1);
*/

	if ( proc_config[AZ_node] == 0 )
		printf("Coarse level = %d \n", coarsest_level);
	
	/* set up smoothers */
	
	for (level = N_levels-1; level > coarsest_level; level--) {
j = 10;
if (level == N_levels-1) j = 10;
options[AZ_solver] = AZ_cg;
options[AZ_precond]=AZ_sym_GS; options[AZ_subdomain_solve]=AZ_icc;
/*
options[AZ_precond] = AZ_none;
*/
options[AZ_poly_ord] = 5;
ML_Gen_SmootherAztec(ml, level, options, params, proc_config, status,
j, ML_PRESMOOTHER,NULL);
ML_Gen_SmootherAztec(ml, level, options, params, proc_config, status,
j, ML_POSTSMOOTHER,NULL);
/*
		ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth,1.0);
		ML_Gen_Smoother_SymGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth,1.0);
*/
/*
                nblocks = ML_Aggregate_Get_AggrCount( ag, level );
                ML_Aggregate_Get_AggrMap( ag, level, &blocks);
                ML_Gen_Smoother_VBlockSymGaussSeidel( ml , level, ML_BOTH, nsmooth, 1.0,
                                                 nblocks, blocks);
                ML_Gen_Smoother_VBlockSymGaussSeidel( ml , level, ML_POSTSMOOTHER, nsmooth, 1.0, 
                                                 nblocks, blocks);
*/
/*
                ML_Gen_Smoother_VBlockJacobi( ml , level, ML_PRESMOOTHER, nsmooth, .5,
                                                 nblocks, blocks);
                ML_Gen_Smoother_VBlockJacobi( ml , level, ML_POSTSMOOTHER, nsmooth,.5,
                                                 nblocks, blocks);
*/
/*
		ML_Gen_Smoother_GaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth);
		ML_Gen_Smoother_GaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth);    
*/
/* 
need to change this when num_pdes is different on different levels
*/
/*
if (level == N_levels-1) {
		ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth, 0.5, num_PDE_eqns);
		ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth, 0.5, num_PDE_eqns);
}
else {
		ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, nsmooth, 0.5, 2*num_PDE_eqns);
		ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_POSTSMOOTHER, nsmooth, 0.5, 2*num_PDE_eqns);
}
*/
/*
*/

/*
			ML_Gen_SmootherJacobi(ml , level, ML_PRESMOOTHER, nsmooth, .67);
			ML_Gen_SmootherJacobi(ml , level, ML_POSTSMOOTHER, nsmooth, .67 );
*/
		
		
	}
	
/*
	ML_Gen_CoarseSolverSuperLU( ml, coarsest_level);
*/
/*
ML_Gen_SmootherSymGaussSeidel(ml , coarsest_level, ML_PRESMOOTHER, 2*nsmooth,1.);
*/
/*
ML_Gen_SmootherBlockGaussSeidel(ml , level, ML_PRESMOOTHER, 50*nsmooth, 1.0, 2*num_PDE_eqns);
*/
ML_Gen_Smoother_BlockGaussSeidel(ml , level, ML_PRESMOOTHER, 2*nsmooth, 1.0, num_PDE_eqns);
		
	
	ML_Gen_Solver(ml, ML_MGV, N_levels-1, coarsest_level); 
	AZ_defaults(options, params);
	
        options[AZ_solver]   = AZ_GMRESR;
        options[AZ_scaling]  = AZ_none;
        options[AZ_precond]  = AZ_user_precond;
        options[AZ_conv]     = AZ_rhs;
        options[AZ_output]   = 1;
        options[AZ_max_iter] = 1500;
        options[AZ_poly_ord] = 5;
        options[AZ_kspace]   = 130;
        params[AZ_tol]       = 1.0e-8;
	
	AZ_set_ML_preconditioner(&Pmat, Amat, ml, options); 
setup_time = AZ_second() - start_time;
	
	xxx = (double *) malloc( leng*sizeof(double));

	
        /* Set rhs */
 
        fp = fopen("AZ_capture_rhs.dat","r");
        if (fp == NULL) {
           if (proc_config[AZ_node] == 0) printf("taking random vector for rhs\n");
/*
           AZ_random_vector(rhs, data_org, proc_config);
           AZ_reorder_vec(rhs, data_org, update_index, NULL);
           AZ_random_vector(xxx, data_org, proc_config);
           AZ_reorder_vec(xxx, data_org, update_index, NULL);
           Amat->matvec(xxx, rhs, Amat, proc_config);
*/
        }
        else {
           ch = getc(fp);
           if (ch == 'S') {
              while ( (ch = getc(fp)) != '\n') ;
           }
           else ungetc(ch,fp);
           for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) 
              fscanf(fp,"%lf",&(rhs[i]));
           fclose(fp);
        }
	for (iii = 0; iii < leng; iii++) xxx[iii] = 0.0; 

        /* Set x */

        fp = fopen("AZ_capture_init_guess.dat","r");
        if (fp != NULL) {
           ch = getc(fp);
           if (ch == 'S') {
              while ( (ch = getc(fp)) != '\n') ;
           }
           else ungetc(ch,fp);
           for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++)
              fscanf(fp,"%lf",&(xxx[i]));
           fclose(fp);
           options[AZ_conv] = AZ_expected_values;
        }

        /* if Dirichlet BC ... put the answer in */

        for (i = 0; i < data_org[AZ_N_internal]+data_org[AZ_N_border]; i++) {
           if ( (val[i] > .99999999) && (val[i] < 1.0000001))
              xxx[i] = rhs[i];      
        }

        fp = fopen("AZ_no_multilevel.dat","r");
        scaling = AZ_scaling_create();
start_time = AZ_second();
        if (fp != NULL) {
           fclose(fp);
           options[AZ_precond] = AZ_none;
           options[AZ_scaling] = AZ_sym_diag;
           options[AZ_ignore_scaling] = AZ_TRUE;

           options[AZ_keep_info] = 1;
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); 

/*
           options[AZ_pre_calc] = AZ_reuse;
           options[AZ_conv] = AZ_expected_values;
           if (proc_config[AZ_node] == 0) 
              printf("\n-------- Second solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); 
           if (proc_config[AZ_node] == 0) 
              printf("\n-------- Third solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, NULL, scaling); 
*/
        }
        else {
           options[AZ_keep_info] = 1;
/*
options[AZ_max_iter] = 40;
*/
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); 
for (j = 0; j < Nrigid; j++) {
alpha = -AZ_gdot(N_update, xxx, &(rigid[j*N_update]), proc_config)/AZ_gdot(N_update, &(rigid[j*N_update]), &(rigid[j*N_update]), proc_config);
daxpy_(&N_update, &alpha,  &(rigid[j*N_update]),  &one, xxx, &one);
printf("alpha5 is %e\n",alpha);
}
AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); 
           options[AZ_pre_calc] = AZ_reuse;
           options[AZ_conv] = AZ_expected_values;
/*
           if (proc_config[AZ_node] == 0) 
              printf("\n-------- Second solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); 
           if (proc_config[AZ_node] == 0) 
              printf("\n-------- Third solve with improved convergence test -----\n");
           AZ_iterate(xxx, rhs, options, params, status, proc_config, Amat, Pmat, scaling); 
*/
        }
   solve_time = AZ_second() - start_time;

   if (proc_config[AZ_node] == 0) 
      printf("Solve time = %e, MG Setup time = %e\n", solve_time, setup_time);

   ML_Aggregate_Destroy(&ag);
   ML_Destroy(&ml);
   AZ_free((void *) Amat->data_org);
   AZ_free((void *) Amat->val);
   AZ_free((void *) Amat->bindx);
   AZ_free((void *) update);
   AZ_free((void *) external);
   AZ_free((void *) extern_index);
   AZ_free((void *) update_index);
   if (Amat  != NULL) AZ_matrix_destroy(&Amat);
   if (Pmat  != NULL) AZ_precond_destroy(&Pmat);
   free(xxx);
   free(rhs);


#ifdef ML_MPI
  MPI_Finalize();
#endif
	
  return 0;
	
}
Esempio n. 6
0
int main(int argc, char *argv[])
{
  char  global[]="global";
  char  local[]="local";

  int    proc_config[AZ_PROC_SIZE];/* Processor information.                */
  int    options[AZ_OPTIONS_SIZE]; /* Array used to select solver options.  */
  double params[AZ_PARAMS_SIZE];   /* User selected solver paramters.       */
  int    *data_org;
                                   /* Array to specify data layout          */
  double status[AZ_STATUS_SIZE];   /* Information returned from AZ_solve(). */
  int    *update;                  /* vector elements updated on this node. */
  int    *external;
                                   /* vector elements needed by this node.  */
  int    *update_index;
                                   /* ordering of update[] and external[]   */
  int    *extern_index;
                                   /* locally on this processor.            */
  int    *indx;   /* MSR format of real and imag parts */
  int    *bindx;
  int    *bpntr;
  int    *rpntr;
  int    *cpntr;
  AZ_MATRIX *Amat;
  AZ_PRECOND *Prec;
  double *val;
  double *x, *b, *xexact, *xsolve;
  int    n_nonzeros, n_blk_nonzeros;
  int    N_update;           /* # of block unknowns updated on this node    */
  int    N_local;
                                 /* Number scalar equations on this node */
  int    N_global, N_blk_global; /* Total number of equations */
  int    N_external, N_blk_eqns;

  double *val_msr;
  int *bindx_msr;
  
  double norm, d ;

  int matrix_type;

  int has_global_indices, option;
  int i, j, m, mp ;
  int ione = 1;

#ifdef TEST_SINGULAR
  double * xnull; /* will contain difference of given exact solution and computed solution*/
  double * Axnull; /* Product of A time xnull */
  double norm_Axnull;
#endif

#ifdef AZTEC_MPI
  double MPI_Wtime(void) ;
#endif
  double time ;
#ifdef AZTEC_MPI
  MPI_Init(&argc,&argv);
#endif

  /* get number of processors and the name of this processor */
 
#ifdef AZTEC_MPI
  AZ_set_proc_config(proc_config,MPI_COMM_WORLD);
#else
  AZ_set_proc_config(proc_config,0);
#endif

  printf("proc %d of %d is alive\n",
	 proc_config[AZ_node],proc_config[AZ_N_procs]) ;

#ifdef AZTEC_MPI
  MPI_Barrier(MPI_COMM_WORLD) ;
#endif

#ifdef VBRMATRIX
  if(argc != 3) 
    perror("error: enter name of data and partition file on command line") ; 
#else
  if(argc != 2) perror("error: enter name of data file on command line") ; 
#endif
  /* Set exact solution to NULL */
  xexact = NULL;

  /* Read matrix file and distribute among processors.  
     Returns with this processor's set of rows */ 

#ifdef VBRMATRIX
  read_hb(argv[1], proc_config, &N_global, &n_nonzeros, 
	  &val_msr,  &bindx_msr, &x, &b, &xexact);
  
  create_vbr(argv[2], proc_config, &N_global, &N_blk_global,
	     &n_nonzeros, &n_blk_nonzeros, &N_update, &update,
	     bindx_msr, val_msr, &val, &indx, 
	     &rpntr, &cpntr, &bpntr, &bindx);

  if(proc_config[AZ_node] == 0) 
    {
      free ((void *) val_msr);
      free ((void *) bindx_msr);
      free ((void *) cpntr);
    }
    matrix_type = AZ_VBR_MATRIX;

#ifdef AZTEC_MPI
  MPI_Barrier(MPI_COMM_WORLD) ;
#endif

  distrib_vbr_matrix( proc_config, N_global, N_blk_global, 
		      &n_nonzeros, &n_blk_nonzeros,
		      &N_update, &update, 
		      &val, &indx, &rpntr, &cpntr, &bpntr, &bindx, 
		      &x, &b, &xexact);

#else
    read_hb(argv[1], proc_config, &N_global, &n_nonzeros,
             &val,  &bindx, &x, &b, &xexact);

#ifdef AZTEC_MPI
  MPI_Barrier(MPI_COMM_WORLD) ;
#endif

  distrib_msr_matrix(proc_config, N_global, &n_nonzeros, &N_update,
		  &update, &val, &bindx, &x, &b, &xexact);

#ifdef DEBUG
  for (i = 0; i<N_update; i++)
    if (val[i] == 0.0 ) printf("Zero diagonal at row %d\n",i);
#endif
    matrix_type = AZ_MSR_MATRIX;
#endif
  /* convert matrix to a local distributed matrix */
    cpntr = NULL;
  AZ_transform(proc_config, &external, bindx, val, update,
	       &update_index, &extern_index, &data_org, 
	       N_update, indx, bpntr, rpntr, &cpntr,
               matrix_type);

  printf("Processor %d: Completed AZ_transform\n",proc_config[AZ_node]) ;
      has_global_indices = 0;
      option = AZ_LOCAL;

#ifdef VBRMATRIX
  N_local = rpntr[N_update];
#else
  N_local = N_update;
#endif

  Amat = AZ_matrix_create(N_local);

#ifdef VBRMATRIX
  AZ_set_VBR(Amat, rpntr, cpntr, bpntr, indx, bindx, val, data_org,
          N_update, update, option);
#else
  AZ_set_MSR(Amat, bindx, val, data_org, N_update, update, option);
#endif


  printf("proc %d Completed AZ_create_matrix\n",proc_config[AZ_node]) ;

#ifdef AZTEC_MPI
  MPI_Barrier(MPI_COMM_WORLD) ;
#endif

  /* initialize AZTEC options */
 
  AZ_defaults(options, params);
  options[AZ_solver]  = AZ_gmres;
  options[AZ_precond] = AZ_sym_GS; 
  options[AZ_poly_ord] = 1;
  options[AZ_graph_fill] = 1;
  params[AZ_rthresh] = 0.0E-7;
  params[AZ_athresh] = 0.0E-7;
  options[AZ_overlap] = 1;
 /*
  params[AZ_ilut_fill] = 2.0;
  params[AZ_drop] = 0.01;
  options[AZ_overlap] = 0;
  options[AZ_reorder] = 0;
  params[AZ_rthresh] = 1.0E-1;
  params[AZ_athresh] = 1.0E-1;
  options[AZ_precond] = AZ_dom_decomp ;
  options[AZ_subdomain_solve] = AZ_bilu_ifp;
  options[AZ_reorder] = 0;
  options[AZ_graph_fill] = 0;
  params[AZ_rthresh] = 1.0E-7;
  params[AZ_athresh] = 1.0E-7;
 options[AZ_poly_ord] = 1;
 options[AZ_precond] = AZ_Jacobi;
  params[AZ_omega] = 1.0;
  options[AZ_precond] = AZ_none ;

  options[AZ_poly_ord] = 1;
  options[AZ_precond] = AZ_Jacobi ;
  options[AZ_scaling] = AZ_sym_row_sum ;
  options[AZ_scaling] = AZ_sym_diag;


  options[AZ_conv] = AZ_noscaled;
  options[AZ_scaling] = AZ_Jacobi ;

  options[AZ_precond] = AZ_dom_decomp ;
  options[AZ_subdomain_solve] = AZ_icc ;
  options[AZ_subdomain_solve] = AZ_ilut ;
  params[AZ_omega] = 1.2;
  params[AZ_ilut_fill] = 2.0;
  params[AZ_drop] = 0.01;
  options[AZ_reorder] = 0;
  options[AZ_overlap] = 0;
  options[AZ_type_overlap] = AZ_symmetric;

  options[AZ_precond] = AZ_dom_decomp ;
  options[AZ_subdomain_solve] = AZ_bilu ;
  options[AZ_graph_fill] = 0;
  options[AZ_overlap] = 0;

  options[AZ_precond] = AZ_dom_decomp ;
  options[AZ_subdomain_solve] = AZ_bilu_ifp ;
  options[AZ_graph_fill] = 0;
  options[AZ_overlap] = 0;
  params[AZ_rthresh] = 1.0E-3;
  params[AZ_athresh] = 1.0E-3;

 options[AZ_poly_ord] = 1;
 options[AZ_precond] = AZ_Jacobi ; */


  options[AZ_kspace] = 600 ;

  options[AZ_max_iter] = 600 ;
  params[AZ_tol] = 1.0e-14;

#ifdef BGMRES
  options[AZ_gmres_blocksize] = 3;
  options[AZ_gmres_num_rhs] = 1;
#endif

#ifdef DEBUG
  if (proc_config[AZ_N_procs]==1)
    write_vec("rhs.dat", N_local, b);
#endif

  /* xsolve is a little longer vector needed to account for external 
     entries.  Make it and copy x (initial guess) into it. 
  */

  if (has_global_indices)
    {
      N_external = 0;
    }
  else
    {
      N_external = data_org[AZ_N_external];
    }

  xsolve  = (double *) calloc(N_local + N_external, 
			   sizeof(double)) ;

  for (i=0; i<N_local; i++) xsolve[i] = x[i];

  /* Reorder rhs and xsolve to match matrix ordering from AZ_transform */
  if (!has_global_indices)
    {
      AZ_reorder_vec(b, data_org, update_index, rpntr) ;
      AZ_reorder_vec(xsolve, data_org, update_index, rpntr) ;
    }

#ifdef VBRMATRIX
  AZ_check_vbr(N_update, data_org[AZ_N_ext_blk], AZ_LOCAL, 
	       bindx, bpntr, cpntr, rpntr, proc_config);
#else
  AZ_check_msr(bindx, N_update, N_external, AZ_LOCAL, proc_config);
#endif

  printf("Processor %d of %d N_local = %d N_external = %d NNZ = %d\n",
	 proc_config[AZ_node],proc_config[AZ_N_procs],N_local,N_external,
	 n_nonzeros);

  /* solve the system of equations using b  as the right hand side */

  Prec = AZ_precond_create(Amat,AZ_precondition, NULL);

  AZ_iterate(xsolve, b, options, params, status, proc_config,
	     Amat, Prec, NULL);
  /*AZ_ifpack_iterate(xsolve, b, options, params, status, proc_config,
    Amat);*/

  if (proc_config[AZ_node]==0)
    {
      printf("True residual norm = %22.16g\n",status[AZ_r]);
      printf("True scaled res    = %22.16g\n",status[AZ_scaled_r]);
      printf("Computed res norm  = %22.16g\n",status[AZ_rec_r]);
    }

#ifdef TEST_SINGULAR

   xnull  = (double *) calloc(N_local + N_external, sizeof(double)) ;
   Axnull  = (double *) calloc(N_local + N_external, sizeof(double)) ;
   for (i=0; i<N_local; i++) xnull[i] = xexact[i];
   if (!has_global_indices)  AZ_reorder_vec(xnull, data_org, update_index, rpntr);
   for (i=0; i<N_local; i++) xnull[i] -= xsolve[i]; /* fill with nullerence */
   Amat->matvec(xnull, Axnull, Amat, proc_config);

   norm_Axnull = AZ_gvector_norm(N_local, 2, Axnull, proc_config);

   if (proc_config[AZ_node]==0) printf("Norm of A(xexact-xsolve) = %12.4g\n",norm_Axnull);
   free((void *) xnull);
   free((void *) Axnull);
#endif


  /* Get solution back into original ordering */
   if (!has_global_indices) {
     AZ_invorder_vec(xsolve, data_org, update_index, rpntr, x);
     free((void *) xsolve);
   }
  else {
    free((void *) x);
    x = xsolve;
  }

#ifdef DEBUG
  if (proc_config[AZ_N_procs]==1)
      write_vec("solution.dat", N_local, x);
#endif
  if (xexact != NULL)
    {
      double sum = 0.0;
      double largest = 0.0;
      for (i=0; i<N_local; i++) sum += fabs(x[i]-xexact[i]);
 printf("Processor %d:  Difference between exact and computed solution = %12.4g\n",
	     proc_config[AZ_node],sum);
      for (i=0; i<N_local; i++) largest = AZ_MAX(largest,fabs(xexact[i]));
 printf("Processor %d:  Difference divided by max abs value of exact   = %12.4g\n",
	     proc_config[AZ_node],sum/largest);
    }

				       

  free((void *) val);
  free((void *) bindx);
#ifdef VBRMATRIX
  free((void *) rpntr);
  free((void *) bpntr);
  free((void *) indx);
#endif
  free((void *) b);
  free((void *) x);
  if (xexact!=NULL) free((void *) xexact);

  AZ_free((void *) update);
  AZ_free((void *) update_index);
  AZ_free((void *) external); 
  AZ_free((void *) extern_index);
  AZ_free((void *) data_org);
  if (cpntr!=NULL) AZ_free((void *) cpntr);
  AZ_precond_destroy(&Prec);
  AZ_matrix_destroy(&Amat);
  


#ifdef AZTEC_MPI
  MPI_Finalize() ;
#endif

/* end main
*/
return 0 ;
}
Esempio n. 7
0
int create_and_transform_simple_matrix(int matrix_type,
                                    int N,
                                    double diag_term,
                                    int* proc_config,
                                    AZ_MATRIX*& Amat,
                                    int*& external,
                                    int*& update_index,
                                    int*& external_index)
{
  //We're going to create a very simple tri-diagonal matrix with diag_term
  //on the diagonal, and -1.0 on the off-diagonals.

  Amat = AZ_matrix_create(N);

  int* update = new int[N];
  int i;
  int numprocs = proc_config[AZ_N_procs];
  int first_eqn = proc_config[AZ_node]*N;
  int adjustment = 0;
  for(i=0; i<N; ++i) {
    update[i] = first_eqn+i;
    if (update[i] == 0 || update[i] == numprocs*N-1) ++adjustment;
  }

  int* data_org;

  //global row 0 and global-N-1 (N*numprocs-1) will have 2 nonzeros in the first
  //and last rows, and there will be 3 nonzeros in all other rows.
  //If you are brave enough to attempt to modify any of the following code,
  //bear in mind that the number of nonzeros per row (3) is hard-coded in
  //a few places.

  int nnz = 3*N - adjustment;
  double* val = new double[nnz+2];
  int* bindx = new int[nnz+2];
  int* indx = NULL;
  int* rpntr = NULL;
  int* cpntr = NULL;
  int* bpntr = NULL;

  int offs = N+1;
  for(i=0; i<N; ++i) {
    val[i] = diag_term;
    bindx[i] = offs;
    int num_off_diagonals = 2;
    if (update[i]==0 || update[i]==numprocs*N-1) num_off_diagonals = 1;
    offs += num_off_diagonals;
  }
  bindx[N] = offs;

  for(i=0; i<N; ++i) {
    int global_row = update[i];

    if (global_row > 0) {
      int ks = bindx[i];
      val[ks] = -1.0;
      bindx[ks] = global_row-1;
    }
    if (global_row < numprocs*N-1) {
      int ke = bindx[i+1]-1;
      val[ke] = -1.0;
      bindx[ke] = global_row+1;
    }
  }

  if (matrix_type == AZ_VBR_MATRIX) {
    //AZ_transform allocates cpntr
    rpntr = new int[N+1];
    bpntr = new int[N+1];
    indx  = new int[nnz+2];

    offs = 0;
    for(i=0; i<N; ++i) {
      rpntr[i] = i;
 
      bpntr[i] = offs;

      if (update[i]==0 || update[i]==numprocs*N-1) offs += 2;
      else offs += 3;
    }
    rpntr[N] = N;
    bpntr[N] = offs;

    for(i=0; i<N; ++i) {
      int global_col = update[i] - 1;
      if (update[i]==0) ++global_col;

      for(int j=bpntr[i]; j<=bpntr[i+1]-1; ++j) {
        if (global_col == update[i]) val[j] = diag_term;
        else val[j] = -1.0;

        bindx[j] = global_col++;
      }
    }

    for(i=0; i<nnz+2; ++i) {
      indx[i] = i;
    }
  }

  AZ_transform(proc_config, &external, bindx, val, update, &update_index,
               &external_index, &data_org, N, indx, bpntr, rpntr,
               &cpntr, matrix_type);

  if (matrix_type == AZ_MSR_MATRIX) {
    AZ_set_MSR(Amat, bindx, val, data_org, N, update, AZ_LOCAL);
  }
  else {
    AZ_set_VBR(Amat, rpntr, cpntr, bpntr, indx, bindx, val, data_org,
               N, update, AZ_LOCAL);
  }

  Amat->must_free_data_org = 1;

  return(0);
}