Esempio n. 1
0
/**
  Initialize the state information for the CPU Architectural Protocol

  @param  ImageHandle   of the loaded driver
  @param  SystemTable   Pointer to the System Table

  @retval EFI_SUCCESS           Protocol registered
  @retval EFI_OUT_OF_RESOURCES  Cannot allocate protocol data structure
  @retval EFI_DEVICE_ERROR      Hardware problems

**/
EFI_STATUS
GicV2DxeInitialize (
  IN EFI_HANDLE         ImageHandle,
  IN EFI_SYSTEM_TABLE   *SystemTable
  )
{
  EFI_STATUS              Status;
  UINTN                   Index;
  UINT32                  RegOffset;
  UINTN                   RegShift;
  UINT32                  CpuTarget;

  // Make sure the Interrupt Controller Protocol is not already installed in the system.
  ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);

  mGicInterruptInterfaceBase = PcdGet32 (PcdGicInterruptInterfaceBase);
  mGicDistributorBase = PcdGet32 (PcdGicDistributorBase);
  mGicNumInterrupts = ArmGicGetMaxNumInterrupts (mGicDistributorBase);

  for (Index = 0; Index < mGicNumInterrupts; Index++) {
    GicV2DisableInterruptSource (&gHardwareInterruptV2Protocol, Index);

    // Set Priority
    RegOffset = Index / 4;
    RegShift = (Index % 4) * 8;
    MmioAndThenOr32 (
      mGicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset),
      ~(0xff << RegShift),
      ARM_GIC_DEFAULT_PRIORITY << RegShift
      );
  }

  //
  // Targets the interrupts to the Primary Cpu
  //

  // Only Primary CPU will run this code. We can identify our GIC CPU ID by reading
  // the GIC Distributor Target register. The 8 first GICD_ITARGETSRn are banked to each
  // connected CPU. These 8 registers hold the CPU targets fields for interrupts 0-31.
  // More Info in the GIC Specification about "Interrupt Processor Targets Registers"
  //
  // Read the first Interrupt Processor Targets Register (that corresponds to the 4
  // first SGIs)
  CpuTarget = MmioRead32 (mGicDistributorBase + ARM_GIC_ICDIPTR);

  // The CPU target is a bit field mapping each CPU to a GIC CPU Interface. This value
  // is 0 when we run on a uniprocessor platform.
  if (CpuTarget != 0) {
    // The 8 first Interrupt Processor Targets Registers are read-only
    for (Index = 8; Index < (mGicNumInterrupts / 4); Index++) {
      MmioWrite32 (mGicDistributorBase + ARM_GIC_ICDIPTR + (Index * 4), CpuTarget);
    }
  }

  // Set binary point reg to 0x7 (no preemption)
  MmioWrite32 (mGicInterruptInterfaceBase + ARM_GIC_ICCBPR, 0x7);

  // Set priority mask reg to 0xff to allow all priorities through
  MmioWrite32 (mGicInterruptInterfaceBase + ARM_GIC_ICCPMR, 0xff);

  // Enable gic cpu interface
  ArmGicEnableInterruptInterface (mGicInterruptInterfaceBase);

  // Enable gic distributor
  ArmGicEnableDistributor (mGicDistributorBase);

  Status = InstallAndRegisterInterruptService (
          &gHardwareInterruptV2Protocol, GicV2IrqInterruptHandler, GicV2ExitBootServicesEvent);

  return Status;
}
Esempio n. 2
0
VOID
CEntryPoint (
  IN  UINTN                     MpId,
  IN  UINTN                     SecBootMode
  )
{
  CHAR8           Buffer[100];
  UINTN           CharCount;
  UINTN           JumpAddress;

  // Invalidate the data cache. Doesn't have to do the Data cache clean.
  ArmInvalidateDataCache ();

  // Invalidate Instruction Cache
  ArmInvalidateInstructionCache ();

  // Invalidate I & D TLBs
  ArmInvalidateInstructionAndDataTlb ();

  // CPU specific settings
  ArmCpuSetup (MpId);

  // Enable Floating Point Coprocessor if supported by the platform
  if (FixedPcdGet32 (PcdVFPEnabled)) {
    ArmEnableVFP ();
  }

  // Initialize peripherals that must be done at the early stage
  // Example: Some L2 controller, interconnect, clock, DMC, etc
  ArmPlatformSecInitialize (MpId);

  // Primary CPU clears out the SCU tag RAMs, secondaries wait
  if (ArmPlatformIsPrimaryCore (MpId) && (SecBootMode == ARM_SEC_COLD_BOOT)) {
    if (ArmIsMpCore()) {
      // Signal for the initial memory is configured (event: BOOT_MEM_INIT)
      ArmCallSEV ();
    }

    // SEC phase needs to run library constructors by hand. This assumes we are linked against the SerialLib
    // In non SEC modules the init call is in autogenerated code.
    SerialPortInitialize ();

    // Start talking
    if (FixedPcdGetBool (PcdTrustzoneSupport)) {
      CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Secure firmware (version %s built at %a on %a)\n\r",
          (CHAR16*)PcdGetPtr(PcdFirmwareVersionString), __TIME__, __DATE__);
    } else {
      CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Boot firmware (version %s built at %a on %a)\n\r",
          (CHAR16*)PcdGetPtr(PcdFirmwareVersionString), __TIME__, __DATE__);
    }
    SerialPortWrite ((UINT8 *) Buffer, CharCount);

    // Initialize the Debug Agent for Source Level Debugging
    InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, NULL, NULL);
    SaveAndSetDebugTimerInterrupt (TRUE);

    // Enable the GIC distributor and CPU Interface
    // - no other Interrupts are enabled,  doesn't have to worry about the priority.
    // - all the cores are in secure state, use secure SGI's
    ArmGicEnableDistributor (PcdGet32(PcdGicDistributorBase));
    ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
  } else {
    // Enable the GIC CPU Interface
    ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
  }

  // Enable Full Access to CoProcessors
  ArmWriteCpacr (CPACR_CP_FULL_ACCESS);

  // Test if Trustzone is supported on this platform
  if (FixedPcdGetBool (PcdTrustzoneSupport)) {
    if (ArmIsMpCore ()) {
      // Setup SMP in Non Secure world
      ArmCpuSetupSmpNonSecure (GET_CORE_ID(MpId));
    }

    // Either we use the Secure Stacks for Secure Monitor (in this case (Base == 0) && (Size == 0))
    // Or we use separate Secure Monitor stacks (but (Base != 0) && (Size != 0))
    ASSERT (((PcdGet32(PcdCPUCoresSecMonStackBase) == 0) && (PcdGet32(PcdCPUCoreSecMonStackSize) == 0)) ||
            ((PcdGet32(PcdCPUCoresSecMonStackBase) != 0) && (PcdGet32(PcdCPUCoreSecMonStackSize) != 0)));

    // Enter Monitor Mode
    enter_monitor_mode (
      (UINTN)TrustedWorldInitialization, MpId, SecBootMode,
      (VOID*) (PcdGet32 (PcdCPUCoresSecMonStackBase) +
          (PcdGet32 (PcdCPUCoreSecMonStackSize) * (ArmPlatformGetCorePosition (MpId) + 1)))
      );
  } else {
    if (ArmPlatformIsPrimaryCore (MpId)) {
      SerialPrint ("Trust Zone Configuration is disabled\n\r");
    }

    // With Trustzone support the transition from Sec to Normal world is done by return_from_exception().
    // If we want to keep this function call we need to ensure the SVC's SPSR point to the same Program
    // Status Register as the the current one (CPSR).
    copy_cpsr_into_spsr ();

    // Call the Platform specific function to execute additional actions if required
    JumpAddress = PcdGet32 (PcdFvBaseAddress);
    ArmPlatformSecExtraAction (MpId, &JumpAddress);

    NonTrustedWorldTransition (MpId, JumpAddress);
  }
  ASSERT (0); // We must never return from the above function
}