Esempio n. 1
0
/**
  The page fault handler that on-demand read PI CpuSaveStates for framework use. If the fault
  is not targeted to mFrameworkSmst->CpuSaveState range, the function will return FALSE to let
  PageFaultHandlerHook know it needs to pass the fault over to original page fault handler.
  
  @retval TRUE     The page fault is correctly handled.
  @retval FALSE    The page fault is not handled and is passed through to original handler.

**/
BOOLEAN
PageFaultHandler (
  VOID
  )
{
  BOOLEAN        IsHandled;
  UINT64         *PageTable;
  UINT64         PFAddress;
  UINTN          NumCpuStatePages;
  
  ASSERT (mPageTableHookEnabled);
  AcquireSpinLock (&mPFLock);

  PageTable = (UINT64*)(UINTN)(AsmReadCr3 () & mPhyMask);
  PFAddress = AsmReadCr2 ();
  NumCpuStatePages = EFI_SIZE_TO_PAGES (mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE));
  IsHandled = FALSE;
  if (((UINTN)mFrameworkSmst->CpuSaveState & ~(SIZE_2MB-1)) == (PFAddress & ~(SIZE_2MB-1))) {
    if ((UINTN)mFrameworkSmst->CpuSaveState <= PFAddress &&
        PFAddress < (UINTN)mFrameworkSmst->CpuSaveState + EFI_PAGES_TO_SIZE (NumCpuStatePages)
        ) {
      mCpuStatePageTable[BitFieldRead64 (PFAddress, 12, 20)] |= BIT0 | BIT1; // present and rw
      CpuFlushTlb ();
      ReadWriteCpuStatePage (PFAddress & ~(SIZE_4KB-1), TRUE);
      IsHandled = TRUE;
    } else {
      ASSERT (FALSE);
    }
  }

  ReleaseSpinLock (&mPFLock);
  return IsHandled;
}
Esempio n. 2
0
/**
  Save the volatile registers required to be restored following INIT IPI.
  
  @param  VolatileRegisters    Returns buffer saved the volatile resisters
**/
VOID
SaveVolatileRegisters (
  OUT CPU_VOLATILE_REGISTERS    *VolatileRegisters
  )
{
  UINT32                        RegEdx;

  VolatileRegisters->Cr0 = AsmReadCr0 ();
  VolatileRegisters->Cr3 = AsmReadCr3 ();
  VolatileRegisters->Cr4 = AsmReadCr4 ();

  AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
  if ((RegEdx & BIT2) != 0) {
    //
    // If processor supports Debugging Extensions feature
    // by CPUID.[EAX=01H]:EDX.BIT2
    //
    VolatileRegisters->Dr0 = AsmReadDr0 ();
    VolatileRegisters->Dr1 = AsmReadDr1 ();
    VolatileRegisters->Dr2 = AsmReadDr2 ();
    VolatileRegisters->Dr3 = AsmReadDr3 ();
    VolatileRegisters->Dr6 = AsmReadDr6 ();
    VolatileRegisters->Dr7 = AsmReadDr7 ();
  }
}
Esempio n. 3
0
File: DlEntry.c Progetto: jyao1/STM
/**

  This function prepare TXT environment.

  @param AcmBase  ACM base
  @param AcmSize  ACM size

**/
VOID
TxtPrepareEnvironment (
  IN UINT32   AcmBase,
  IN UINT32   AcmSize
  )
{
  MLE_PRIVATE_DATA    *MlePrivateData;

  DEBUG((EFI_D_INFO, "(TXT) TxtPrepareEnvironment ...\n"));

  MlePrivateData = GetMlePrivateData ();

  DEBUG((EFI_D_INFO, "(TXT) TxtSaveMtrr ...\n"));
  TxtSaveMtrr (MlePrivateData);
  DEBUG((EFI_D_INFO, "(TXT) TxtSaveMtrr Done\n"));
  MlePrivateData->Cr0 = AsmReadCr0 ();
  MlePrivateData->Cr4 = AsmReadCr4 ();
  MlePrivateData->Cr3 = (UINT32)AsmReadCr3 ();

  DEBUG((EFI_D_INFO, "(TXT) TxtConfigMtrr ...\n"));
  TxtConfigMtrr (
    AcmBase,
    AcmSize,
    MEMORY_TYPE_WB
    );
  DEBUG((EFI_D_INFO, "(TXT) TxtConfigMtrr Done\n"));

  DEBUG((EFI_D_INFO, "(TXT) AsmWriteCr0 ...\n"));
  AsmWriteCr0(AsmReadCr0 () | CR0_NE);
  DEBUG((EFI_D_INFO, "(TXT) AsmWriteCr0 Done\n"));

  DEBUG((EFI_D_INFO, "(TXT) TxtPrepareEnvironment Done\n"));
  return ;
}
Esempio n. 4
0
/** Flashes TLB caches. */
VOID
VmFlashCaches(VOID)
{

	// just reload CR3
	AsmWriteCr3(AsmReadCr3());
}
Esempio n. 5
0
/**
  Flushes all the Translation Lookaside Buffers(TLB) entries in a CPU.

  Flushes all the Translation Lookaside Buffers(TLB) entries in a CPU.

**/
VOID
EFIAPI
CpuFlushTlb (
    VOID
)
{
    AsmWriteCr3 (AsmReadCr3 ());
}
Esempio n. 6
0
VOID
GetCurrentPageTable(PAGE_MAP_AND_DIRECTORY_POINTER **PageTable, UINTN *Flags)
{
	UINTN	CR3;
	
	CR3 = AsmReadCr3();
	DBG("GetCurrentPageTable: CR3 = 0x%lx\n", CR3);
	*PageTable = (PAGE_MAP_AND_DIRECTORY_POINTER*)(UINTN)(CR3 & CR3_ADDR_MASK);
	*Flags = CR3 & (CR3_FLAG_PWT | CR3_FLAG_PCD);
}
Esempio n. 7
0
/**

  This function initialize basic context for FRM.

**/
VOID
InitBasicContext (
  VOID
  )
{
  UINT32  RegEax;

  mHostContextCommon.CpuNum = GetCpuNumFromAcpi ();

  GetPciExpressInfoFromAcpi (&mHostContextCommon.PciExpressBaseAddress, &mHostContextCommon.PciExpressLength);
  PcdSet64 (PcdPciExpressBaseAddress, mHostContextCommon.PciExpressBaseAddress);
  if (mHostContextCommon.PciExpressBaseAddress == 0) {
    CpuDeadLoop ();
  }

  mHostContextCommon.AcpiTimerIoPortBaseAddress = GetAcpiTimerPort (&mHostContextCommon.AcpiTimerWidth);
  PcdSet16 (PcdAcpiTimerIoPortBaseAddress, mHostContextCommon.AcpiTimerIoPortBaseAddress);
  PcdSet8 (PcdAcpiTimerWidth, mHostContextCommon.AcpiTimerWidth);
  if (mHostContextCommon.AcpiTimerIoPortBaseAddress == 0) {
    CpuDeadLoop ();
  }

  mHostContextCommon.ResetIoPortBaseAddress = GetAcpiResetPort ();

  mHostContextCommon.AcpiPmControlIoPortBaseAddress = GetAcpiPmControlPort ();
  if (mHostContextCommon.AcpiPmControlIoPortBaseAddress == 0) {
    CpuDeadLoop ();
  }

  mHostContextCommon.HostContextPerCpu = AllocatePages (FRM_SIZE_TO_PAGES(sizeof(FRM_HOST_CONTEXT_PER_CPU)) * mHostContextCommon.CpuNum);
  mGuestContextCommon.GuestContextPerCpu = AllocatePages (FRM_SIZE_TO_PAGES(sizeof(FRM_GUEST_CONTEXT_PER_CPU)) * mHostContextCommon.CpuNum);

  mHostContextCommon.LowMemoryBase = mCommunicationData.LowMemoryBase;
  mHostContextCommon.LowMemorySize = mCommunicationData.LowMemorySize;
  mHostContextCommon.LowMemoryBackupBase = (UINT64)(UINTN)AllocatePages (FRM_SIZE_TO_PAGES ((UINTN)mCommunicationData.LowMemorySize));

  //
  // Save current context
  //
  mBspIndex = ApicToIndex (ReadLocalApicId ());
  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr0 = AsmReadCr0 ();
  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr3 = AsmReadCr3 ();
  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr4 = AsmReadCr4 ();
  AsmReadGdtr (&mGuestContextCommon.GuestContextPerCpu[mBspIndex].Gdtr);
  AsmReadIdtr (&mGuestContextCommon.GuestContextPerCpu[mBspIndex].Idtr);

  AsmCpuid (CPUID_EXTENDED_INFORMATION, &RegEax, NULL, NULL, NULL);
  if (RegEax >= CPUID_EXTENDED_ADDRESS_SIZE) {
    AsmCpuid (CPUID_EXTENDED_ADDRESS_SIZE, &RegEax, NULL, NULL, NULL);
    mHostContextCommon.PhysicalAddressBits = (UINT8)RegEax;
  } else {
    mHostContextCommon.PhysicalAddressBits = 36;
  }
}
/**
  Prepares startup vector for APs.

  This function prepares startup vector for APs.

  @param  WorkingBuffer  The address of the work buffer.
**/
VOID
PrepareApStartupVector (
  EFI_PHYSICAL_ADDRESS  WorkingBuffer
  )
{
  EFI_PHYSICAL_ADDRESS                        StartupVector;
  MP_ASSEMBLY_ADDRESS_MAP                     AddressMap;

  //
  // Get the address map of startup code for AP,
  // including code size, and offset of long jump instructions to redirect.
  //
  ZeroMem (&AddressMap, sizeof (AddressMap));
  AsmGetAddressMap (&AddressMap);

  StartupVector = WorkingBuffer;

  //
  // Copy AP startup code to startup vector, and then redirect the long jump
  // instructions for mode switching.
  //
  CopyMem ((VOID *) (UINTN) StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
  *(UINT32 *) (UINTN) (StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (StartupVector + AddressMap.PModeEntryOffset);
  if (AddressMap.LongJumpOffset != 0) {
    *(UINT32 *) (UINTN) (StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (StartupVector + AddressMap.LModeEntryOffset);
  }

  //
  // Get the start address of exchange data between BSP and AP.
  //
  mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (StartupVector + AddressMap.Size);
  ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));

  CopyMem ((VOID *) (UINTN) &mExchangeInfo->GdtrProfile, (VOID *) (UINTN) mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
  CopyMem ((VOID *) (UINTN) &mExchangeInfo->IdtrProfile, (VOID *) (UINTN) mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));

  //
  // Copy AP's GDT, IDT and Machine Check handler from SMRAM to ACPI NVS memory
  //
  CopyMem ((VOID *) mExchangeInfo->GdtrProfile.Base, mGdtForAp, mExchangeInfo->GdtrProfile.Limit + 1);
  CopyMem ((VOID *) mExchangeInfo->IdtrProfile.Base, mIdtForAp, mExchangeInfo->IdtrProfile.Limit + 1);
  CopyMem ((VOID *)(UINTN) mAcpiCpuData.ApMachineCheckHandlerBase, mMachineCheckHandlerForAp, mAcpiCpuData.ApMachineCheckHandlerSize);

  mExchangeInfo->StackStart  = (VOID *) (UINTN) mAcpiCpuData.StackAddress;
  mExchangeInfo->StackSize   = mAcpiCpuData.StackSize;
  mExchangeInfo->BufferStart = (UINT32) StartupVector;
  mExchangeInfo->Cr3         = (UINT32) (AsmReadCr3 ());
  mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
}
Esempio n. 9
0
/**
  Initialize page table for pages contain HookData.
  
  The function initialize PDE for 2MB range that contains HookData. If the related PDE points
  to a 2MB page, a page table will be allocated and initialized for 4KB pages. Otherwise we juse
  use the original page table.

  @param[in] HookData   Based on which to initialize page table.

  @return    The pointer to a Page Table that points to 4KB pages which contain HookData.
**/
UINT64 *
InitCpuStatePageTable (
  IN VOID *HookData
  )
{
  UINTN  Index;
  UINT64 *PageTable;
  UINT64 *Pdpte;
  UINT64 HookAddress;
  UINT64 Pde;
  UINT64 Address;
  
  //
  // Initialize physical address mask
  // NOTE: Physical memory above virtual address limit is not supported !!!
  //
  AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
  mPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
  mPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;
  
  HookAddress = (UINT64)(UINTN)HookData;
  PageTable   = (UINT64 *)(UINTN)(AsmReadCr3 () & mPhyMask);
  PageTable = (UINT64 *)(UINTN)(PageTable[BitFieldRead64 (HookAddress, 39, 47)] & mPhyMask);
  PageTable = (UINT64 *)(UINTN)(PageTable[BitFieldRead64 (HookAddress, 30, 38)] & mPhyMask);
  
  Pdpte = (UINT64 *)(UINTN)PageTable;
  Pde = Pdpte[BitFieldRead64 (HookAddress, 21, 29)];
  ASSERT ((Pde & BIT0) != 0); // Present and 2M Page
  
  if ((Pde & BIT7) == 0) { // 4KB Page Directory
    PageTable = (UINT64 *)(UINTN)(Pde & mPhyMask);
  } else {
    ASSERT ((Pde & mPhyMask) == (HookAddress & ~(SIZE_2MB-1))); // 2MB Page Point to HookAddress
    PageTable = AllocatePages (1);
    ASSERT (PageTable != NULL);
    Address = HookAddress & ~(SIZE_2MB-1);
    for (Index = 0; Index < 512; Index++) {
      PageTable[Index] = Address | BIT0 | BIT1; // Present and RW
      Address += SIZE_4KB;
    }
    Pdpte[BitFieldRead64 (HookAddress, 21, 29)] = (UINT64)(UINTN)PageTable | BIT0 | BIT1; // Present and RW
  }
  return PageTable;
}
Esempio n. 10
0
/**

  This function initialize guest BSP in S3.

**/
VOID
BspS3Init (
  VOID
  )
{
  UINT32  Index;

  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr0 = AsmReadCr0 ();
  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr3 = AsmReadCr3 ();
  mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr4 = AsmReadCr4 ();
  AsmReadGdtr (&mGuestContextCommon.GuestContextPerCpu[mBspIndex].Gdtr);
  AsmReadIdtr (&mGuestContextCommon.GuestContextPerCpu[mBspIndex].Idtr);

  InitHostContextPerCpu (mBspIndex);

  for (Index = 0; Index < mHostContextCommon.CpuNum; Index++) {
    mGuestContextCommon.GuestContextPerCpu[Index].Cr0 = mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr0;
    mGuestContextCommon.GuestContextPerCpu[Index].Cr3 = mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr3;
    mGuestContextCommon.GuestContextPerCpu[Index].Cr4 = mGuestContextCommon.GuestContextPerCpu[mBspIndex].Cr4;
    CopyMem (&mGuestContextCommon.GuestContextPerCpu[Index].Gdtr, &mGuestContextCommon.GuestContextPerCpu[mBspIndex].Gdtr, sizeof(IA32_DESCRIPTOR));
  }
  InitGuestContextPerCpu (mBspIndex);
}
Esempio n. 11
0
/**
  The Page fault handler to save SMM profile data.

  @param  Rip        The RIP when exception happens.
  @param  ErrorCode  The Error code of exception.

**/
VOID
SmmProfilePFHandler (
  UINTN Rip,
  UINTN ErrorCode
  )
{
  UINT64                *PageTable;
  UINT64                PFAddress;
  UINTN                 CpuIndex;
  UINTN                 Index;
  UINT64                InstructionAddress;
  UINTN                 MaxEntryNumber;
  UINTN                 CurrentEntryNumber;
  BOOLEAN               IsValidPFAddress;
  SMM_PROFILE_ENTRY     *SmmProfileEntry;
  UINT64                SmiCommand;
  EFI_STATUS            Status;
  UINT8                 SoftSmiValue;
  EFI_SMM_SAVE_STATE_IO_INFO    IoInfo;

  if (!mSmmProfileStart) {
    //
    // If SMM profile does not start, call original page fault handler.
    //
    SmiDefaultPFHandler ();
    return;
  }

  if (mBtsSupported) {
    DisableBTS ();
  }

  IsValidPFAddress  = FALSE;
  PageTable         = (UINT64 *)AsmReadCr3 ();
  PFAddress         = AsmReadCr2 ();
  CpuIndex          = GetCpuIndex ();

  if (PFAddress <= 0xFFFFFFFF) {
    RestorePageTableBelow4G (PageTable, PFAddress, CpuIndex, ErrorCode);
  } else {
    RestorePageTableAbove4G (PageTable, PFAddress, CpuIndex, ErrorCode, &IsValidPFAddress);
  }

  if (!IsValidPFAddress) {
    InstructionAddress = Rip;
    if ((ErrorCode & IA32_PF_EC_ID) != 0 && (mBtsSupported)) {
      //
      // If it is instruction fetch failure, get the correct IP from BTS.
      //
      InstructionAddress = GetSourceFromDestinationOnBts (CpuIndex, Rip);
      if (InstructionAddress == 0) {
        //
        // It indicates the instruction which caused page fault is not a jump instruction,
        // set instruction address same as the page fault address.
        //
        InstructionAddress = PFAddress;
      }
    }

    //
    // Indicate it is not software SMI
    //
    SmiCommand    = 0xFFFFFFFFFFFFFFFFULL;
    for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
      Status = SmmReadSaveState(&mSmmCpu, sizeof(IoInfo), EFI_SMM_SAVE_STATE_REGISTER_IO, Index, &IoInfo);
      if (EFI_ERROR (Status)) {
        continue;
      }
      if (IoInfo.IoPort == mSmiCommandPort) {
        //
        // A software SMI triggered by SMI command port has been found, get SmiCommand from SMI command port.
        //
        SoftSmiValue = IoRead8 (mSmiCommandPort);
        SmiCommand = (UINT64)SoftSmiValue;
        break;
      }
    }

    SmmProfileEntry = (SMM_PROFILE_ENTRY *)(UINTN)(mSmmProfileBase + 1);
    //
    // Check if there is already a same entry in profile data.
    //
    for (Index = 0; Index < (UINTN) mSmmProfileBase->CurDataEntries; Index++) {
      if ((SmmProfileEntry[Index].ErrorCode   == (UINT64)ErrorCode) &&
          (SmmProfileEntry[Index].Address     == PFAddress) &&
          (SmmProfileEntry[Index].CpuNum      == (UINT64)CpuIndex) &&
          (SmmProfileEntry[Index].Instruction == InstructionAddress) &&
          (SmmProfileEntry[Index].SmiCmd      == SmiCommand)) {
        //
        // Same record exist, need not save again.
        //
        break;
      }
    }
    if (Index == mSmmProfileBase->CurDataEntries) {
      CurrentEntryNumber = (UINTN) mSmmProfileBase->CurDataEntries;
      MaxEntryNumber     = (UINTN) mSmmProfileBase->MaxDataEntries;
      if (FeaturePcdGet (PcdCpuSmmProfileRingBuffer)) {
        CurrentEntryNumber = CurrentEntryNumber % MaxEntryNumber;
      }
      if (CurrentEntryNumber < MaxEntryNumber) {
        //
        // Log the new entry
        //
        SmmProfileEntry[CurrentEntryNumber].SmiNum      = mSmmProfileBase->NumSmis;
        SmmProfileEntry[CurrentEntryNumber].ErrorCode   = (UINT64)ErrorCode;
        SmmProfileEntry[CurrentEntryNumber].ApicId      = (UINT64)GetApicId ();
        SmmProfileEntry[CurrentEntryNumber].CpuNum      = (UINT64)CpuIndex;
        SmmProfileEntry[CurrentEntryNumber].Address     = PFAddress;
        SmmProfileEntry[CurrentEntryNumber].Instruction = InstructionAddress;
        SmmProfileEntry[CurrentEntryNumber].SmiCmd      = SmiCommand;
        //
        // Update current entry index and data size in the header.
        //
        mSmmProfileBase->CurDataEntries++;
        mSmmProfileBase->CurDataSize = MultU64x64 (mSmmProfileBase->CurDataEntries, sizeof (SMM_PROFILE_ENTRY));
      }
    }
  }
  //
  // Flush TLB
  //
  CpuFlushTlb ();

  if (mBtsSupported) {
    EnableBTS ();
  }
}
Esempio n. 12
0
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  RegisterTable Pointer to register table of the running processor.

**/
VOID
SetProcessorRegister (
  CPU_REGISTER_TABLE        *RegisterTable
  )
{
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;

  //
  // Traverse Register Table of this logical processor
  //
  RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
  for (Index = 0; Index < RegisterTable->TableLength; Index++, RegisterTableEntry++) {
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (RegisterTableEntry->ValidBitLength >= 64) {
        //
        // If length is not less than 64 bits, then directly write without reading
        //
        AsmWriteMsr64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->Value
          );
      } else {
        //
        // Set the bit section according to bit start and length
        //
        AsmMsrBitFieldWrite64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->ValidBitStart,
          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
          RegisterTableEntry->Value
          );
        }
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
Esempio n. 13
0
{
  volatile MP_CPU_EXCHANGE_INFO    *ExchangeInfo;
  UINTN                            Index;

  PeiCpuMpData->ApFunction         = (UINTN) Procedure;
  PeiCpuMpData->ApFunctionArgument = (UINTN) ProcedureArgument;
  PeiCpuMpData->FinishedCount      = 0;

  ExchangeInfo                     = PeiCpuMpData->MpCpuExchangeInfo;
  ExchangeInfo->Lock               = 0;
  ExchangeInfo->StackStart         = PeiCpuMpData->Buffer;
  ExchangeInfo->StackSize          = PeiCpuMpData->CpuApStackSize;
  ExchangeInfo->BufferStart        = PeiCpuMpData->WakeupBuffer;
  ExchangeInfo->PmodeOffset        = PeiCpuMpData->AddressMap.PModeEntryOffset;
  ExchangeInfo->LmodeOffset        = PeiCpuMpData->AddressMap.LModeEntryOffset;
  ExchangeInfo->Cr3                = AsmReadCr3 ();
  ExchangeInfo->CFunction          = (UINTN) ApCFunction;
  ExchangeInfo->NumApsExecuting    = 0;
  ExchangeInfo->PeiCpuMpData       = PeiCpuMpData;

  //
  // Get the BSP's data of GDT and IDT
  //
  CopyMem ((VOID *)&ExchangeInfo->GdtrProfile, &mGdt, sizeof(mGdt));
  AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);

  if (PeiCpuMpData->ApLoopMode == ApInMwaitLoop) {
    //
    // Get AP target C-state each time when waking up AP,
    // for it maybe updated by platform again
    //
Esempio n. 14
0
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  PreSmmInit         Specify the target register table.
                             If TRUE, the target is the pre-SMM-init register table.
                             If FALSE, the target is the post-SMM-init register table.
  @param  ProcessorNumber    Handle number of specified logical processor.

**/
VOID
SetProcessorRegisterEx (
  IN BOOLEAN  PreSmmInit,
  IN UINTN    ProcessorNumber
  )
{
  CPU_REGISTER_TABLE        *RegisterTable;
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;
  UINTN                     StartIndex;
  UINTN                     EndIndex;

  if (PreSmmInit) {
    RegisterTable = &mCpuConfigConextBuffer.PreSmmInitRegisterTable[ProcessorNumber];
  } else {
    RegisterTable = &mCpuConfigConextBuffer.RegisterTable[ProcessorNumber];
  }
  
  //
  // If microcode patch has been applied, then the first register table entry
  // is for microcode upate, so it is skipped.  
  //
  StartIndex = 0;

  if (mSetBeforeCpuOnlyReset) {
    EndIndex    = StartIndex + RegisterTable->NumberBeforeReset;
  } else {
    StartIndex += RegisterTable->NumberBeforeReset;
    EndIndex    = RegisterTable->TableLength;
  }

  //
  // Traverse Register Table of this logical processor
  //
  for (Index = StartIndex; Index < EndIndex; Index++) {

    RegisterTableEntry = &RegisterTable->RegisterTableEntry[Index];
    
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      case 8:
        //
        //  Do we need to support CR8?
        //
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (!mRestoreSettingAfterInit) {
        if (RegisterTableEntry->ValidBitLength >= 64) {
          //
          // If length is not less than 64 bits, then directly write without reading
          //
          AsmWriteMsr64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->Value
            );
        } else {
          //
          // Set the bit section according to bit start and length
          //
          AsmMsrBitFieldWrite64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->ValidBitStart,
            RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
            RegisterTableEntry->Value
            );
        }
      }
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
/**
  Programs registers for the calling processor.

  This function programs registers for the calling processor.

  @param  RegisterTables        Pointer to register table of the running processor.
  @param  RegisterTableCount    Register table count.

**/
VOID
SetProcessorRegister (
  IN CPU_REGISTER_TABLE        *RegisterTables,
  IN UINTN                     RegisterTableCount
  )
{
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;
  SPIN_LOCK                 *MsrSpinLock;
  UINT32                    InitApicId;
  CPU_REGISTER_TABLE        *RegisterTable;

  InitApicId = GetInitialApicId ();
  RegisterTable = NULL;
  for (Index = 0; Index < RegisterTableCount; Index++) {
    if (RegisterTables[Index].InitialApicId == InitApicId) {
      RegisterTable =  &RegisterTables[Index];
      break;
    }
  }
  ASSERT (RegisterTable != NULL);

  //
  // Traverse Register Table of this logical processor
  //
  RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
  for (Index = 0; Index < RegisterTable->TableLength; Index++, RegisterTableEntry++) {
    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
    //
    // The specified register is Control Register
    //
    case ControlRegister:
      switch (RegisterTableEntry->Index) {
      case 0:
        Value = AsmReadCr0 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr0 (Value);
        break;
      case 2:
        Value = AsmReadCr2 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr2 (Value);
        break;
      case 3:
        Value = AsmReadCr3 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr3 (Value);
        break;
      case 4:
        Value = AsmReadCr4 ();
        Value = (UINTN) BitFieldWrite64 (
                          Value,
                          RegisterTableEntry->ValidBitStart,
                          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                          (UINTN) RegisterTableEntry->Value
                          );
        AsmWriteCr4 (Value);
        break;
      default:
        break;
      }
      break;
    //
    // The specified register is Model Specific Register
    //
    case Msr:
      //
      // If this function is called to restore register setting after INIT signal,
      // there is no need to restore MSRs in register table.
      //
      if (RegisterTableEntry->ValidBitLength >= 64) {
        //
        // If length is not less than 64 bits, then directly write without reading
        //
        AsmWriteMsr64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->Value
          );
      } else {
        //
        // Get lock to avoid Package/Core scope MSRs programming issue in parallel execution mode
        // to make sure MSR read/write operation is atomic.
        //
        MsrSpinLock = GetMsrSpinLockByIndex (RegisterTableEntry->Index);
        AcquireSpinLock (MsrSpinLock);
        //
        // Set the bit section according to bit start and length
        //
        AsmMsrBitFieldWrite64 (
          RegisterTableEntry->Index,
          RegisterTableEntry->ValidBitStart,
          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
          RegisterTableEntry->Value
          );
        ReleaseSpinLock (MsrSpinLock);
      }
      break;
    //
    // MemoryMapped operations
    //
    case MemoryMapped:
      AcquireSpinLock (mMemoryMappedLock);
      MmioBitFieldWrite32 (
        (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
        RegisterTableEntry->ValidBitStart,
        RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
        (UINT32)RegisterTableEntry->Value
        );
      ReleaseSpinLock (mMemoryMappedLock);
      break;
    //
    // Enable or disable cache
    //
    case CacheControl:
      //
      // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
      //
      if (RegisterTableEntry->Value == 0) {
        AsmDisableCache ();
      } else {
        AsmEnableCache ();
      }
      break;

    default:
      break;
    }
  }
}
Esempio n. 16
0
/**
  Relocate SmmBases for each processor.

  Execute on first boot and all S3 resumes

**/
VOID
EFIAPI
SmmRelocateBases (
  VOID
  )
{
  UINT8                 BakBuf[BACK_BUF_SIZE];
  SMRAM_SAVE_STATE_MAP  BakBuf2;
  SMRAM_SAVE_STATE_MAP  *CpuStatePtr;
  UINT8                 *U8Ptr;
  UINT32                ApicId;
  UINTN                 Index;
  UINTN                 BspIndex;

  //
  // Make sure the reserved size is large enough for procedure SmmInitTemplate.
  //
  ASSERT (sizeof (BakBuf) >= gcSmmInitSize);

  //
  // Patch ASM code template with current CR0, CR3, and CR4 values
  //
  gSmmCr0 = (UINT32)AsmReadCr0 ();
  gSmmCr3 = (UINT32)AsmReadCr3 ();
  gSmmCr4 = (UINT32)AsmReadCr4 ();

  //
  // Patch GDTR for SMM base relocation
  //
  gcSmiInitGdtr.Base  = gcSmiGdtr.Base;
  gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;

  U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
  CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);

  //
  // Backup original contents at address 0x38000
  //
  CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
  CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));

  //
  // Load image for relocation
  //
  CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);

  //
  // Retrieve the local APIC ID of current processor
  //
  ApicId = GetApicId ();

  //
  // Relocate SM bases for all APs
  // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
  //
  mIsBsp   = FALSE;
  BspIndex = (UINTN)-1;
  for (Index = 0; Index < mNumberOfCpus; Index++) {
    mRebased[Index] = FALSE;
    if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
      SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
      //
      // Wait for this AP to finish its 1st SMI
      //
      while (!mRebased[Index]);
    } else {
      //
      // BSP will be Relocated later
      //
      BspIndex = Index;
    }
  }

  //
  // Relocate BSP's SMM base
  //
  ASSERT (BspIndex != (UINTN)-1);
  mIsBsp = TRUE;
  SendSmiIpi (ApicId);
  //
  // Wait for the BSP to finish its 1st SMI
  //
  while (!mRebased[BspIndex]);

  //
  // Restore contents at address 0x38000
  //
  CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
  CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
}
Esempio n. 17
0
/**
  Update page table to map the memory correctly in order to make the instruction
  which caused page fault execute successfully. And it also save the original page
  table to be restored in single-step exception.

  @param  PageTable           PageTable Address.
  @param  PFAddress           The memory address which caused page fault exception.
  @param  CpuIndex            The index of the processor.
  @param  ErrorCode           The Error code of exception.
  @param  IsValidPFAddress    The flag indicates if SMM profile data need be added.

**/
VOID
RestorePageTableAbove4G (
  UINT64        *PageTable,
  UINT64        PFAddress,
  UINTN         CpuIndex,
  UINTN         ErrorCode,
  BOOLEAN       *IsValidPFAddress
  )
{
  UINTN         PTIndex;
  UINT64        Address;
  BOOLEAN       Nx;
  BOOLEAN       Existed;
  UINTN         Index;
  UINTN         PFIndex;

  ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));

  //
  // If page fault address is 4GB above.
  //

  //
  // Check if page fault address has existed in page table.
  // If it exists in page table but page fault is generated,
  // there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range.
  //
  Existed = FALSE;
  PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
  PTIndex = BitFieldRead64 (PFAddress, 39, 47);
  if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
    // PML4E
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
    PTIndex = BitFieldRead64 (PFAddress, 30, 38);
    if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
      // PDPTE
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
      PTIndex = BitFieldRead64 (PFAddress, 21, 29);
      // PD
      if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
        //
        // 2MB page
        //
        Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
        if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
          Existed = TRUE;
        }
      } else {
        //
        // 4KB page
        //
        PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
        if (PageTable != 0) {
          //
          // When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
          //
          PTIndex = BitFieldRead64 (PFAddress, 12, 20);
          Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
          if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
            Existed = TRUE;
          }
        }
      }
    }
  }

  //
  // If page entry does not existed in page table at all, create a new entry.
  //
  if (!Existed) {

    if (IsAddressValid (PFAddress, &Nx)) {
      //
      // If page fault address above 4GB is in protected range but it causes a page fault exception,
      // Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable.
      // this access is not saved into SMM profile data.
      //
      *IsValidPFAddress = TRUE;
    }

    //
    // Create one entry in page table for page fault address.
    //
    SmiDefaultPFHandler ();
    //
    // Find the page table entry created just now.
    //
    PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
    PFAddress = AsmReadCr2 ();
    // PML4E
    PTIndex = BitFieldRead64 (PFAddress, 39, 47);
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
    // PDPTE
    PTIndex = BitFieldRead64 (PFAddress, 30, 38);
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
    // PD
    PTIndex = BitFieldRead64 (PFAddress, 21, 29);
    Address = PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK;
    //
    // Check if 2MB-page entry need be changed to 4KB-page entry.
    //
    if (IsAddressSplit (Address)) {
      AcquirePage (&PageTable[PTIndex]);

      // PTE
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
      for (Index = 0; Index < 512; Index++) {
        PageTable[Index] = Address | IA32_PG_RW | IA32_PG_P;
        if (!IsAddressValid (Address, &Nx)) {
          PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
        }
        if (Nx && mXdSupported) {
          PageTable[Index] = PageTable[Index] | IA32_PG_NX;
        }
        if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
          PTIndex = Index;
        }
        Address += SIZE_4KB;
      } // end for PT
    } else {
      //
      // Update 2MB page entry.
      //
      if (!IsAddressValid (Address, &Nx)) {
        //
        // Patch to remove present flag and rw flag.
        //
        PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
      }
      //
      // Set XD bit to 1
      //
      if (Nx && mXdSupported) {
        PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX;
      }
    }
  }

  //
  // Record old entries with non-present status
  // Old entries include the memory which instruction is at and the memory which instruction access.
  //
  //
  ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
  if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
    PFIndex = mPFEntryCount[CpuIndex];
    mLastPFEntryValue[CpuIndex][PFIndex]   = PageTable[PTIndex];
    mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
    mPFEntryCount[CpuIndex]++;
  }

  //
  // Add present flag or clear XD flag to make page fault handler succeed.
  //
  PageTable[PTIndex] |= (UINT64)(IA32_PG_RW | IA32_PG_P);
  if ((ErrorCode & IA32_PF_EC_ID) != 0) {
    //
    // If page fault is caused by instruction fetch, clear XD bit in the entry.
    //
    PageTable[PTIndex] &= ~IA32_PG_NX;
  }

  return;
}