int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) { int ret = 0; BIGNUM *Ri, *R; BN_CTX_start(ctx); if ((Ri = BN_CTX_get(ctx)) == NULL) goto err; R = &(mont->RR); /* grab RR as a temp */ if (!BN_copy(&(mont->N), mod)) goto err; /* Set N */ mont->N.neg = 0; #ifdef MONT_WORD { BIGNUM tmod; BN_ULONG buf[2]; BN_init(&tmod); tmod.d = buf; tmod.dmax = 2; tmod.neg = 0; mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) /* Only certain BN_BITS2<=32 platforms actually make use of * n0[1], and we could use the #else case (with a shorter R * value) for the others. However, currently only the assembler * files do know which is which. */ BN_zero(R); if (!(BN_set_bit(R, 2 * BN_BITS2))) goto err; tmod.top = 0; if ((buf[0] = mod->d[0])) tmod.top = 1; if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) tmod.top = 2; if ((BN_mod_inverse_ct(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else /* if N mod word size == 1 */ { if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) goto err; /* Ri-- (mod double word size) */ Ri->neg = 0; Ri->d[0] = BN_MASK2; Ri->d[1] = BN_MASK2; Ri->top = 2; } if (!BN_div_ct(Ri, NULL, Ri, &tmod, ctx)) goto err; /* Ni = (R*Ri-1)/N, * keep only couple of least significant words: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; #else BN_zero(R); if (!(BN_set_bit(R, BN_BITS2))) goto err; /* R */ buf[0] = mod->d[0]; /* tmod = N mod word size */ buf[1] = 0; tmod.top = buf[0] != 0 ? 1 : 0; /* Ri = R^-1 mod N*/ if ((BN_mod_inverse_ct(Ri, R, &tmod, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, BN_BITS2)) goto err; /* R*Ri */ if (!BN_is_zero(Ri)) { if (!BN_sub_word(Ri, 1)) goto err; } else /* if N mod word size == 1 */ { if (!BN_set_word(Ri, BN_MASK2)) goto err; /* Ri-- (mod word size) */ } if (!BN_div_ct(Ri, NULL, Ri, &tmod, ctx)) goto err; /* Ni = (R*Ri-1)/N, * keep only least significant word: */ mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; mont->n0[1] = 0; #endif } #else /* !MONT_WORD */ { /* bignum version */ mont->ri = BN_num_bits(&mont->N); BN_zero(R); if (!BN_set_bit(R, mont->ri)) goto err; /* R = 2^ri */ /* Ri = R^-1 mod N*/ if ((BN_mod_inverse_ct(Ri, R, &mont->N, ctx)) == NULL) goto err; if (!BN_lshift(Ri, Ri, mont->ri)) goto err; /* R*Ri */ if (!BN_sub_word(Ri, 1)) goto err; /* Ni = (R*Ri-1) / N */ if (!BN_div_ct(&(mont->Ni), NULL, Ri, &mont->N, ctx)) goto err; } #endif /* setup RR for conversions */ BN_zero(&(mont->RR)); if (!BN_set_bit(&(mont->RR), mont->ri*2)) goto err; if (!BN_mod_ct(&(mont->RR), &(mont->RR), &(mont->N), ctx)) goto err; ret = 1; err: BN_CTX_end(ctx); return ret; }
static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp) { BN_CTX *ctx = NULL; BIGNUM *k = NULL, *r = NULL, *order = NULL, *X = NULL; EC_POINT *tmp_point = NULL; const EC_GROUP *group; int ret = 0; if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL) { ECDSAerror(ERR_R_PASSED_NULL_PARAMETER); return 0; } if (ctx_in == NULL) { if ((ctx = BN_CTX_new()) == NULL) { ECDSAerror(ERR_R_MALLOC_FAILURE); return 0; } } else ctx = ctx_in; k = BN_new(); /* this value is later returned in *kinvp */ r = BN_new(); /* this value is later returned in *rp */ order = BN_new(); X = BN_new(); if (!k || !r || !order || !X) { ECDSAerror(ERR_R_MALLOC_FAILURE); goto err; } if ((tmp_point = EC_POINT_new(group)) == NULL) { ECDSAerror(ERR_R_EC_LIB); goto err; } if (!EC_GROUP_get_order(group, order, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } do { /* get random k */ do if (!BN_rand_range(k, order)) { ECDSAerror(ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED); goto err; } while (BN_is_zero(k)); /* We do not want timing information to leak the length of k, * so we compute G*k using an equivalent scalar of fixed * bit-length. */ if (!BN_add(k, k, order)) goto err; if (BN_num_bits(k) <= BN_num_bits(order)) if (!BN_add(k, k, order)) goto err; BN_set_flags(k, BN_FLG_CONSTTIME); /* compute r the x-coordinate of generator * k */ if (!EC_POINT_mul(group, tmp_point, k, NULL, NULL, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) { if (!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, X, NULL, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } } #ifndef OPENSSL_NO_EC2M else /* NID_X9_62_characteristic_two_field */ { if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp_point, X, NULL, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } } #endif if (!BN_nnmod(r, X, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } } while (BN_is_zero(r)); /* compute the inverse of k */ if (!BN_mod_inverse_ct(k, k, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* clear old values if necessary */ BN_clear_free(*rp); BN_clear_free(*kinvp); /* save the pre-computed values */ *rp = r; *kinvp = k; ret = 1; err: if (!ret) { BN_clear_free(k); BN_clear_free(r); } if (ctx_in == NULL) BN_CTX_free(ctx); BN_free(order); EC_POINT_free(tmp_point); BN_clear_free(X); return (ret); }
static int ecdsa_do_verify(const unsigned char *dgst, int dgst_len, const ECDSA_SIG *sig, EC_KEY *eckey) { int ret = -1, i; BN_CTX *ctx; BIGNUM *order, *u1, *u2, *m, *X; EC_POINT *point = NULL; const EC_GROUP *group; const EC_POINT *pub_key; /* check input values */ if (eckey == NULL || (group = EC_KEY_get0_group(eckey)) == NULL || (pub_key = EC_KEY_get0_public_key(eckey)) == NULL || sig == NULL) { ECDSAerror(ECDSA_R_MISSING_PARAMETERS); return -1; } ctx = BN_CTX_new(); if (!ctx) { ECDSAerror(ERR_R_MALLOC_FAILURE); return -1; } BN_CTX_start(ctx); order = BN_CTX_get(ctx); u1 = BN_CTX_get(ctx); u2 = BN_CTX_get(ctx); m = BN_CTX_get(ctx); X = BN_CTX_get(ctx); if (!X) { ECDSAerror(ERR_R_BN_LIB); goto err; } if (!EC_GROUP_get_order(group, order, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) || BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) { ECDSAerror(ECDSA_R_BAD_SIGNATURE); ret = 0; /* signature is invalid */ goto err; } /* calculate tmp1 = inv(S) mod order */ if (!BN_mod_inverse_ct(u2, sig->s, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* digest -> m */ i = BN_num_bits(order); /* Need to truncate digest if it is too long: first truncate whole * bytes. */ if (8 * dgst_len > i) dgst_len = (i + 7)/8; if (!BN_bin2bn(dgst, dgst_len, m)) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* If still too long truncate remaining bits with a shift */ if ((8 * dgst_len > i) && !BN_rshift(m, m, 8 - (i & 0x7))) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* u1 = m * tmp mod order */ if (!BN_mod_mul(u1, m, u2, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* u2 = r * w mod q */ if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } if ((point = EC_POINT_new(group)) == NULL) { ECDSAerror(ERR_R_MALLOC_FAILURE); goto err; } if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) { if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } } #ifndef OPENSSL_NO_EC2M else /* NID_X9_62_characteristic_two_field */ { if (!EC_POINT_get_affine_coordinates_GF2m(group, point, X, NULL, ctx)) { ECDSAerror(ERR_R_EC_LIB); goto err; } } #endif if (!BN_nnmod(u1, X, order, ctx)) { ECDSAerror(ERR_R_BN_LIB); goto err; } /* if the signature is correct u1 is equal to sig->r */ ret = (BN_ucmp(u1, sig->r) == 0); err: BN_CTX_end(ctx); BN_CTX_free(ctx); EC_POINT_free(point); return ret; }
int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP * group, const EC_POINT * point, BIGNUM * x, BIGNUM * y, BN_CTX * ctx) { BN_CTX *new_ctx = NULL; BIGNUM *Z, *Z_1, *Z_2, *Z_3; const BIGNUM *Z_; int ret = 0; if (EC_POINT_is_at_infinity(group, point) > 0) { ECerror(EC_R_POINT_AT_INFINITY); return 0; } if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); if ((Z = BN_CTX_get(ctx)) == NULL) goto err; if ((Z_1 = BN_CTX_get(ctx)) == NULL) goto err; if ((Z_2 = BN_CTX_get(ctx)) == NULL) goto err; if ((Z_3 = BN_CTX_get(ctx)) == NULL) goto err; /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ if (group->meth->field_decode) { if (!group->meth->field_decode(group, Z, &point->Z, ctx)) goto err; Z_ = Z; } else { Z_ = &point->Z; } if (BN_is_one(Z_)) { if (group->meth->field_decode) { if (x != NULL) { if (!group->meth->field_decode(group, x, &point->X, ctx)) goto err; } if (y != NULL) { if (!group->meth->field_decode(group, y, &point->Y, ctx)) goto err; } } else { if (x != NULL) { if (!BN_copy(x, &point->X)) goto err; } if (y != NULL) { if (!BN_copy(y, &point->Y)) goto err; } } } else { if (!BN_mod_inverse_ct(Z_1, Z_, &group->field, ctx)) { ECerror(ERR_R_BN_LIB); goto err; } if (group->meth->field_encode == 0) { /* field_sqr works on standard representation */ if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) goto err; } else { if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) goto err; } if (x != NULL) { /* * in the Montgomery case, field_mul will cancel out * Montgomery factor in X: */ if (!group->meth->field_mul(group, x, &point->X, Z_2, ctx)) goto err; } if (y != NULL) { if (group->meth->field_encode == 0) { /* field_mul works on standard representation */ if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) goto err; } else { if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) goto err; } /* * in the Montgomery case, field_mul will cancel out * Montgomery factor in Y: */ if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) goto err; } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); return ret; }
int ec_GFp_simple_points_make_affine(const EC_GROUP * group, size_t num, EC_POINT * points[], BN_CTX * ctx) { BN_CTX *new_ctx = NULL; BIGNUM *tmp0, *tmp1; size_t pow2 = 0; BIGNUM **heap = NULL; size_t i; int ret = 0; if (num == 0) return 1; if (ctx == NULL) { ctx = new_ctx = BN_CTX_new(); if (ctx == NULL) return 0; } BN_CTX_start(ctx); if ((tmp0 = BN_CTX_get(ctx)) == NULL) goto err; if ((tmp1 = BN_CTX_get(ctx)) == NULL) goto err; /* * Before converting the individual points, compute inverses of all Z * values. Modular inversion is rather slow, but luckily we can do * with a single explicit inversion, plus about 3 multiplications per * input value. */ pow2 = 1; while (num > pow2) pow2 <<= 1; /* * Now pow2 is the smallest power of 2 satifsying pow2 >= num. We * need twice that. */ pow2 <<= 1; heap = reallocarray(NULL, pow2, sizeof heap[0]); if (heap == NULL) goto err; /* * The array is used as a binary tree, exactly as in heapsort: * * heap[1] heap[2] heap[3] heap[4] heap[5] * heap[6] heap[7] heap[8]heap[9] heap[10]heap[11] * heap[12]heap[13] heap[14] heap[15] * * We put the Z's in the last line; then we set each other node to the * product of its two child-nodes (where empty or 0 entries are * treated as ones); then we invert heap[1]; then we invert each * other node by replacing it by the product of its parent (after * inversion) and its sibling (before inversion). */ heap[0] = NULL; for (i = pow2 / 2 - 1; i > 0; i--) heap[i] = NULL; for (i = 0; i < num; i++) heap[pow2 / 2 + i] = &points[i]->Z; for (i = pow2 / 2 + num; i < pow2; i++) heap[i] = NULL; /* set each node to the product of its children */ for (i = pow2 / 2 - 1; i > 0; i--) { heap[i] = BN_new(); if (heap[i] == NULL) goto err; if (heap[2 * i] != NULL) { if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) { if (!BN_copy(heap[i], heap[2 * i])) goto err; } else { if (BN_is_zero(heap[2 * i])) { if (!BN_copy(heap[i], heap[2 * i + 1])) goto err; } else { if (!group->meth->field_mul(group, heap[i], heap[2 * i], heap[2 * i + 1], ctx)) goto err; } } } } /* invert heap[1] */ if (!BN_is_zero(heap[1])) { if (!BN_mod_inverse_ct(heap[1], heap[1], &group->field, ctx)) { ECerror(ERR_R_BN_LIB); goto err; } } if (group->meth->field_encode != 0) { /* * in the Montgomery case, we just turned R*H (representing * H) into 1/(R*H), but we need R*(1/H) (representing * 1/H); i.e. we have need to multiply by the Montgomery * factor twice */ if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err; } /* set other heap[i]'s to their inverses */ for (i = 2; i < pow2 / 2 + num; i += 2) { /* i is even */ if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) { if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx)) goto err; if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx)) goto err; if (!BN_copy(heap[i], tmp0)) goto err; if (!BN_copy(heap[i + 1], tmp1)) goto err; } else { if (!BN_copy(heap[i], heap[i / 2])) goto err; } } /* * we have replaced all non-zero Z's by their inverses, now fix up * all the points */ for (i = 0; i < num; i++) { EC_POINT *p = points[i]; if (!BN_is_zero(&p->Z)) { /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err; if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err; if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err; if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err; if (group->meth->field_set_to_one != 0) { if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err; } else { if (!BN_one(&p->Z)) goto err; } p->Z_is_one = 1; } } ret = 1; err: BN_CTX_end(ctx); BN_CTX_free(new_ctx); if (heap != NULL) { /* * heap[pow2/2] .. heap[pow2-1] have not been allocated * locally! */ for (i = pow2 / 2 - 1; i > 0; i--) { BN_clear_free(heap[i]); } free(heap); } return ret; }
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BIGNUM *t, *p1p2, *pm1; /* Only even e supported */ if (!BN_is_odd(e)) return 0; BN_CTX_start(ctx); if (p1 == NULL) { if ((p1 = BN_CTX_get(ctx)) == NULL) goto err; } if (p2 == NULL) { if ((p2 = BN_CTX_get(ctx)) == NULL) goto err; } if ((t = BN_CTX_get(ctx)) == NULL) goto err; if ((p1p2 = BN_CTX_get(ctx)) == NULL) goto err; if ((pm1 = BN_CTX_get(ctx)) == NULL) goto err; if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) goto err; if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) goto err; if (!BN_mul(p1p2, p1, p2, ctx)) goto err; /* First set p to value of Rp */ if (!BN_mod_inverse_ct(p, p2, p1, ctx)) goto err; if (!BN_mul(p, p, p2, ctx)) goto err; if (!BN_mod_inverse_ct(t, p1, p2, ctx)) goto err; if (!BN_mul(t, t, p1, ctx)) goto err; if (!BN_sub(p, p, t)) goto err; if (p->neg && !BN_add(p, p, p1p2)) goto err; /* p now equals Rp */ if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) goto err; if (!BN_add(p, p, Xp)) goto err; /* p now equals Yp0 */ for (;;) { int i = 1; BN_GENCB_call(cb, 0, i++); if (!BN_copy(pm1, p)) goto err; if (!BN_sub_word(pm1, 1)) goto err; if (!BN_gcd_ct(t, pm1, e, ctx)) goto err; if (BN_is_one(t) /* X9.31 specifies 8 MR and 1 Lucas test or any prime test * offering similar or better guarantees 50 MR is considerably * better. */ && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) break; if (!BN_add(p, p, p1p2)) goto err; } BN_GENCB_call(cb, 3, 0); ret = 1; err: BN_CTX_end(ctx); return ret; }